当前位置:文档之家› 2016-2017学年高中数学第二章随机变量及其分布课时作业16正态分布新人教A版选修2-3资料

2016-2017学年高中数学第二章随机变量及其分布课时作业16正态分布新人教A版选修2-3资料

2016-2017学年高中数学第二章随机变量及其分布课时作业16正态分布新人教A版选修2-3资料
2016-2017学年高中数学第二章随机变量及其分布课时作业16正态分布新人教A版选修2-3资料

2016-2017学年高中数学第二章随机变量及其分布课时作业16

正态分布新人教A版选修2-3

一、选择题(每小题5分,共20分)

1.对于标准正态分布N(0,1)的密度函数f(x)=1

e-

x2

2

,下列说法不正确的是( )

A.f(x)为偶函数

B.f(x)的最大值是1 2π

C.f(x)在x>0时是单调减函数,在x≤0时是单调增函数

D.f(x)关于x=1是对称的

解析:由正态分布密度函数知μ=0,即图象关于y轴对称.

答案: D

2.把一正态曲线C1沿着横轴方向向右移动2个单位,得到一条新的曲线C2,下列说法不正确的是( )

A.曲线C2仍是正态曲线

B.曲线C1,C2的最高点的纵坐标相等

C.以曲线C2为概率密度曲线的总体的方差比以曲线C1为概率密度曲线的总体的方差大2

D.以曲线C2为概率密度曲线的总体的期望比以曲线C1为概率密度曲线的总体的期望大2

解析:正态密度函数为φμ,σ(x)=

1

2π·σ

e-

x-μ 2

2σ2

,x∈(-∞,+∞),正

态曲线对称轴为x=μ,曲线最高点的纵坐标为f(μ)=

1

2π·σ

.所以C1沿着横轴方向向

右移动2个单位后,曲线形状没变,仍为正态曲线,且最高点的纵坐标没变,从而σ没变,所以方差没变,而平移前后对称轴变了,即μ变了,因为曲线向右平移2个单位,所以期望值μ增加了2个单位.

答案: C

3.已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(-2≤ξ≤2)=( )

A.0.447 B.0.628

C.0.954 D.0.977

解析:∵随机变量ξ服从标准正态分布N(0,σ2),

∴正态曲线关于直线x=0对称,又P(ξ>2)=0.023.

∴P(ξ<-2)=0.023.

∴P(-2≤ξ≤2)=1-2×0.023=0.954.

答案: C

4.(2015·武汉市重点中学高二期末联考)随机变量ξ~N(2,10),若ξ落在区间(-∞,k)和(k,+∞)的概率相等,则k等于( )

A.1 B.10

C.2 D.10

解析:∵区间(-∞,k)和(k,+∞)关于x=k对称,

所以x=k为正态曲线的对称轴,

∴k=2,故选C.

答案: C

二、填空题(每小题5分,共10分)

5.如图是三个正态分布X~N(0,0.25),Y~N(0,1),Z~N(0,4)的密度曲线,则三个随机变量X,Y,Z对应曲线分别是图中的________、________、________.

解析:在密度曲线中,σ越大,曲线越“矮胖”;σ越小,曲线越“瘦高”.

答案:①②③

6.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)=________.

解析:因为P(ξ>1)=p,所以P(0<ξ<1)=0.5-p,

故P(-1<ξ<0)=P(0<ξ<1)=0.5-p.

答案:0.5-p

三、解答题(每小题10分,共20分)

7.在一次测试中,测量结果X服从正态分布N(2,σ2)(σ>0),若X在(0,2)内取值的概率为0.2,求:

(1)X在(0,4)内取值的概率;

(2)P(X>4).

解析:(1)由X~N(2,σ2),

对称轴x=2,画出示意图,

∵P (0<X <2)=P (2<X <4),

∴P (0<X <4)=2P (0<X <2)=2×0.2=0.4. (2)P (X >4)=1

2[1-P (0<X <4)]

=1

2

(1-0.4)=0.3. 8.一投资者要在两个投资方案中选择一个,这两个方案的利润ξ(万元)分别服从正态分布N (8,32

)和N (3,22

),投资者要求“利润超过5万元”的概率尽量得大,那么他应选择哪个方案?

解析: 由题意知,只需求出两个方案中“利润超过5万元”的概率哪个大,大的即为最佳选择方案.对于第一套方案ξ~N (8,32

),则μ=8,σ=3.于是P (8-3<ξ≤8+3)=P (5<ξ≤11)=0.682 6.

所以P (ξ≤5)=1

2[1-P (5<ξ≤11)]

=1

2

(1-0.682 6)=0.158 7. 所以P (ξ>5)=1-0.158 7=0.841 3. 对于第二套方案ξ~N (3,22

), 则μ=3,σ=2.

于是P (3-2<ξ≤3+2)=P (1<ξ≤5)=0.682 6, 所以P (ξ>5)=1

2[1-P (1<ξ≤5)]

=1

2(1-0.682 6)=0.158 7. 所以应选择第一方案.

9.(10分)

已知某地农民工年均收入ξ服从正态分布,某密度函数图象如图所示. (1)写出此地农民工年均收入的概率密度曲线函数式;

(2)求此地农民工年均收入在8 000~8 500之间的人数百分比. 解析: 设农民工年均收入ξ~N (μ,σ2

), 结合图象可知μ=8 000,σ=500.

(1)此地农民工年均收入的正态分布密度函数表达式 P (x )=1

2πσ

e - x -μ 2

2σ2

1

5002π

e-

x-8 000 2

2×5002

,x∈(-∞,+∞).

(2)∵P(7 500<ξ≤8 500)

=P(8 000-500<ξ≤8 000+500) =0.682 6.

∴P(8 000<ξ≤8 500)

=1

2

P(7 500<ξ≤8 500)

=0.341 3.

∴此地农民工年均收入在8 000~8 500之间的人数百分比为34.13%.

功到自然成课时作业本高中数学必修第章集合

第1章集合 1.1集合的含义及其表示 第1课时集合的含义 创新练习(1~10题每小题7分,11~12题每小题15分,共100分) 1.方程:x2-2x+l=0的解集为. 2.若a是小于9的自然数,且a是集合A={x|x=2n,n是整数}中的一个元素,则a的值可以是, 3.若集合A={x|ax2-2x+l=0,x,a∈R}仅有一个元素,则a= . 4.若x,y是非零实数,则的取值集合为. 5.将集合{(x,y)|x2-y2=5,x,y是整数}用列举法表示为. 6.对于集合:①{(1,2)};②{(2,1)};③{1,2};④{2,1}.其中表示同一集合的两个集合是(用序号表示). 7.对于集合:①{x|x=l};②{y|(y-1)2=0};③x =l};④{1}.其中不同于另外三个集合的是(用序号表示). 8.给出下列集合: ,其中是有限集的是. 9.给出下列语句:①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{2,3,1};③方程(x-1)2(x-2)=0的所有解构成的集合可表示为1{l,1,2};④集合{x|y=x2}与集合{(x,y)|y =x2}是同一集合.其中正确的有(用序号表示). *10.若集合A由三个元素2,x,x2-x构成,则实数x的取值范围是. 11.已知集合A={1,2},B={a+2,2a},其中a∈R,我们把集合{x|x=x1·x2,x1是A中元素,x2是B中元素}记为集合A×B.若集合A×B中的最大元素是2a+4,求实数a的取值集合. 12.已知集合A={x|(x-1)(x-a)(x-a2+2)=0,a∈R}. (1)若2∈A,求实数a的值; (2)若集合A中所有元素的和为0,求实数a的值. 第2课时元素与集合的关系 创新练习(1~10题每小题7分,11~12题每小题15分,共100分) 1.已知集合A={1,2,a2},B={1,a+2},若4∈A且4?B,则a= . 2.若集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的 个数为 . 3.给出下列叙述:①集合N中最小的数是1;②若a∈N, b∈N*,则a+b的最小值是2;③方程x2-2x+1=0的解得是{1,1};④{x|x2-x-2=0, x∈N*}={-1,2}.其中正确的个数是 . 4.已知P和Q是两个集合,定义集合P-Q={x|x∈P且x?Q}. 若P={1,2,3,4,5},Q={2,4,5},则P-Q= .

八年级下册数学全品作业本答案

1、在括号里填上“〉”“〈”或“=”。 15 × 34 ()15 ÷ 43 78 × 56 ()56 ÷ 78 2、9 ÷()= 0.75 =()小数=()成数=()% 3、有10吨媒,第一次用去15 ,第二次用去15 吨,还剩下()吨媒。 4、把37 、46%和0.45按从大到小的顺序排列起来应为()。 5、用圆规画一个周长为18.84厘米的圆,圆规两脚间的距离应取( )厘米,所画圆的面积是( )平方厘米。 6、()比20米多20%,3吨比()千克少40%。 7、一种商品提价10%后,再降价10%,现价是原价的()%。 8、小丽的妈妈在银行存入8000元,按年利率2%计算,存满三年后,应得本息()元。 9、一项工程,甲、乙合做需10小时完成,甲单独做14小时完成,乙单独做需()小时完成。 10、一种学习机出厂时经检验240台合格,10台不合格,产品的合格率是()。 二、判是非。(正确的打“√”,错误的打“×” ):5% 1、甲数是乙数的80%,那么乙数比甲数多25%。( ) 1、因为 35 = 60%,所以 35 米 = 60%米。( ) 3、圆的周长总是它直径的3倍多一点。 ( ) 4、因为1的倒数是1,所以0的倒数是0。( ) 5、某商品打“八五折”出售,就是降价85%出售() 三、把正确答案的序号填在括号里5% 1、周长相等时,()的面积最大。 ①圆②长方形③正方形 2、把30%的百分号去掉,原来的数就()。 ①扩大100倍②缩小100倍③不变 3、x、y、z是三个非零自然数,且x×65 = y×87 = z×109 ,那么x、y、z按照从大到小的顺序排列应是()。 ① x﹥y﹥z ② z﹥y﹥x ③ y﹥x﹥z ④ y﹥z﹥x 4、下面百分率可能大于100%的是() ①、成活率②、发芽率③、出勤率④、增长率 5、圆的半径扩大3倍,它的周长扩大()倍,它的面积扩大()倍。

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

高中数学第二章概率1离散型随机变量及其分布列知识导航北师大版选修2-3

§1 离散型随机变量及其分布列 自主整理 1.随机现象中试验(或观测)的每一个可能的结果都对应于一个数,这种对应称为一个_____________. 2.随机变量的取值能够_____________的随机变量称为离散型随机变量. 3.设离散型随机变量X 的取值为a 1,a 2,…,随机变量X 取a i 的概率为p i (i=1,2,…),记作 p(X=a i )=P i (i=1,2,…) 称为__________________________________________________________________________。 并且有①p i _____________0,②p 1+p 2+…=_____________. 如果随机变量X 的分布列如上表,则称随机变量X 服从这一分布(列),并记为_____________. 高手笔记 1.随机变量是将随机试验的结果数量化. 2.随机变量的取值对应于随机试验的某一随机事件. 3.随机变量X 取每一个值a i 的概率P(X=a i )等于其相应的随机事件A i 发生的概率P(A i ). 4.若X 为一个随机变量,则Y=aX+b(a,b 为常数)也为随机变量. 5.离散型随机变量的分布列中 第一行表述了随机变量X 的所有可能的取值,在这里要注意按一定的次序来填写;第二行表述了随机变量X 取相应上行中数值a i 的概率的大小p i =P(X=a i ),i=1,2,… 6.一般地,离散型随机变量在某一范围内取值的概率等于其在这个范围内取每一个值的概率之和. 7.离散型随机变量的分布列不仅清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值的概率大小,从而反映了随机变量在随机试验中取值的分布状况,是进一步研究随机试验数量特征的基础. 名师解惑 1.随机变量与以前学过的变量有什么区别与联系? 剖析:随机变量作为一个变量,当然有它的取值范围,这和以前学过的变量一样.不仅如此,还有它取每个值的可能性的大小,如:从装有无差别的6只黑球、4只白球的袋中,随机抽取3只球,所得的白球个数是一随机变量X ,其取值为X=0,1,2,3;而取每个值的可能性的大小,可通过其相应的随机事件发生的大小——即其概率来反映.即“若X=2”,对应事件A 2:“取出的3只球中恰有两只白球”,其概率: P(A 2)=.1031238910123 46310 2416=??????? =C C C 若“X=3”对应事件A 3:“取出的3只球中恰有三只白球”的概率: P(A 3)=.10112389101232 34310 34=????????=C C

高中数学课时作业:基本不等式

课时作业38 基本不等式 一、选择题 1.下列不等式一定成立的是( C ) A .lg ? ?? ?? x 2+14>lg x (x >0) B .sin x +1 sin x ≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1 x 2+1 >1(x ∈R ) 解析:对选项A,当x >0时,x 2 +1 4-x =? ????x -122≥0,所以lg ? ?? ??x 2+14≥lg x ;对选项 B,当sin x <0时显然不成立;对选项C,x 2+1=|x |2+1≥2|x |,一定成立;对选项D,因为x 2+1≥1,所以0<1 x 2+1 ≤1.故选C. 2.若2x +2y =1,则x +y 的取值范围是( D ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] 解析:∵1=2x +2y ≥22x ·2y =22x +y ? ????当且仅当2x =2y =12,即x =y =-1时等号成立, ∴2x +y ≤12,∴2x +y ≤1 4,得x +y ≤-2. 3.已知a +b =t (a >0,b >0),t 为常数,且ab 的最大值为2,则t =( C ) A .2 B .4 C .2 2 D .2 5 解析:∵a >0,b >0,∴ab ≤(a +b )24=t 24,当且仅当a =b =t 2时取等号.∵ab 的最大值为2,∴t 2 4=2,t 2=8.又t =a +b >0,∴t =8=2 2.

4.已知f (x )=x 2-2x +1x ,则f (x )在? ??? ?? 12,3上的最小值为( D ) A.1 2 B.4 3 C .-1 D .0 解析:f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1 x ,即x =1时取等 号.又1∈??????12,3,所以f (x )在???? ?? 12,3上的最小值是0. 5.已知x ,y 为正实数,且x +y +1x +1 y =5,则x +y 的最大值是( C ) A .3 B.72 C .4 D.92 解析:∵x +y +1x +1y =5,∴(x +y )[5-(x +y )]=(x +y )·? ?? ??1x +1y =2+y x +x y ≥2+2=4,∴(x +y )2-5(x +y )+4≤0,∴1≤x +y ≤4, ∴x +y 的最大值是4,当且仅当x =y =2时取得. 6.(吉林长春外国语学校质检)已知x >0,y >0,且3x +2y =xy ,若2x +3y >t 2+5t +1恒成立,则实数t 的取值范围是( B ) A .(-∞,-8)∪(3,+∞) B .(-8,3) C .(-∞,-8) D .(3,+∞) 解析:∵x >0,y >0,且3x +2y =xy ,可得3y +2x =1,∴2x +3y =(2x +3y )3y +2 x =13+6x y +6y x ≥13+2 6x y ·6y x =25,当且仅当x =y =5时取等号.∵2x +3y >t 2+5t +1恒成立,∴t 2+5t +1<(2x +3y )min ,∴t 2+5t +1<25,解得-80,不等式x x 2+3x +1≤a 恒成立,则实数a 的取值范围为 ( A ) A .a ≥1 5 B .a >15 C .a <15 D .a ≤1 5

全品作业本-高中-数学-必修4-RJA(1-64)

全品作业本 高中数学 必修4 新课标(RJA) 目录 课时作业 第一章三角函数 1.1 任意角和弧度制 1.1.1 任意角 1.1.2 弧度制 1.2 任意角的三角函数 1.2.1 任意角的三角函数 第1课时任意角的三角函数 第2课时三角函数线及其应用 1.2.2 同角三角函数的基本关系 1.3 三角函数的诱导公式 ?滚动习题(一)[范围1.1?1.3] 1.4 三角函数的图像与性质 1.4.1 正弦函数、余弦函数的图像 1.4.2 正弦函数、余弦函数的性质 1.4.3 正切函数的性质与图像 1.5 函数y=A sin(ωx+φ)的图像 第1课时函数y=A sin(ωx+φ)的图像 第2课时函数y=A sin(ωx+φ)的性质 1.6 三角函数模型的简单应用 ?滚动习题(二)[范围1.1~1.6] 第二章平面向量 2.1 平面向量的实际背景及基本概念 2.1.1 向量的物理背景与概念 2.1.2 向量的几何表示 2.1.3 相等向量与共线向量 2.2 平面向量的线性运算 2.2.1 向量加法运算及其几何意义 2.2.2 向量减法运算及其几何意义 2.2.3 向量数乘运算及其几何意义 2.3 平面向量的基本定理及坐标表示 2.3.1 平面向量基本定理 2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算 2.3.4 平面向量共线的坐标表示 2.4 平面向屋的数量积 2.4.1 平面向量数量积的物理背景及其含义2.4.2 平面向量数量积的坐标表示、模、夹角

2.5 平面向量应用举例 2.5.1 平面几何中的向量方法 2.5.2 向量在物理中的应用举例 ?滚动习题(三)[范围2.1~2.5] 第三章三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式 3.1.2 两角和与差的正弦、余弦、正切公式3.1.3 二倍角的正弦、余弦、正切公式 ?滚动习题(四)[范围3.1] 3.2 简单的三角恒等变换 第1课时三角函数式的化简与求值 第2课时三角函数公式的应用 ?滚动习题(五)[范围3.1?3.2] 参考答案 综合测评 单元知识测评(一)[第一章]卷1 单元知识测评(二)[第二章] 卷3 单元知识测评(三)[第三章]卷5 模块结业测评(一)卷7 模块结业测评(二)卷9 参考答案卷 提分攻略 (本部分另附单本) 第一章三角函数 1.1 任意角和弧度制 1.1.1 任意角 攻略1 判定角的终边所在象限的方法1.1.2 弧度制 攻略2 弧度制下的扇形问题 1.2 任意角的三角函数 1.2.1 任意角的三角函数 攻略3 三角函数线的巧用 1.2.2 同角三角函数的基本关系 攻略4 “平方关系”的应用方法 1.3 三角函数的诱导公式 攻略5 “诱导公式”的应用方法 攻略6 三角函数的诱导公式面面观 1.4 三角函数的图像与性质 1.4.1 正弦函数、余弦函数的图像 攻略7 含绝对值的三角函数的图像画法及应用1.4.2 正弦函数、余弦函数的性质 攻略8 三角函数性质的综合应用题型1.4.3 正切函数的性质与图像

(完整word版)高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ?? ≥?0,寿命<1000小时; Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验

高二数学《随机变量的方差(第2课时)》教案

§2.3.2离散型随机变量的方差(第2课时) 一、教材分析: 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差. 回顾一组数据的方差的概念:设在一组数据1x ,2x ,…, n x 中,各数据与它 们的平均值x 得差的平方分别是21)(x x -,2 2)(x x -,…,2)(x x n -,那么 [1 2n S = 21)(x x -+2 2)(x x -+…+])(2x x n -叫做这组数据的方差 。 二、学情分析: 学生学习本节应该比较轻松,定义比较简单,初中已经接触过方差,高中阶段是将原先学得知识进一步提升。主要学生能将离散型随机变量的分布列列出来,进行套公式运算就可以,应注意的是要求学生在计算过程中细心。有过探究、交流的课堂教学的尝试。 三、教学目标: 1、知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程和方法: 通过教师指导下的探究活动,经历数学思维过程,熟悉理解“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.了解方差公式“D (a ξ+b )=a 2 D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感和价值: 承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

第2章 2.1 2.1.1 离散型随机变量

2.1离散型随机变量及其分布列 2.1.1离散型随机变量 学 习目标核心素养 1.理解随机变量及离散型随机变量的含义.(重 点) 2.了解随机变量与函数的区别与联系.(易混点) 3.能写出离散型随机变量的可能取值,并能解释其意义.(难点)通过学习随机变量及离散型随机变量,培养数学抽象的素养. 1.随机变量 (1)定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化的变量称为随机变量. (2)表示:随机变量常用字母X,Y,ξ,η,…表示. 2.离散型随机变量 (1)定义:所有取值可以一一列出的随机变量,称为离散型随机变量. (2)特征: ①可用数值表示. ②试验之前可以判断其出现的所有值. ③在试验之前不能确定取何值. ④试验结果能一一列出. 思考:离散型随机变量的取值必须是有限个吗? [提示]离散型随机变量的取值可以是有限个,例如取值为1,2,…,n;也

可以是无限个,如取值为1,2,…,n,…. 1.下列变量中,是离散型随机变量的是() A.到2019年10月1日止,我国发射的人造地球卫星数 B.一只刚出生的大熊猫,一年以后的身高 C.某人在车站等出租车的时间 D.某人投篮10次,可能投中的次数 D[根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,即可以按一定次序一一列出,试验前可以判断其出现的所有值.选项A,B,C的数值均有不确定性,而选项D中,投篮10次,可能投中的次数是离散型随机变量.] 2.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止时,所需要的取球次数为随机变量X,则X的可能取值为() A.1,2,3,…,6B.1,2,3,…,7 C.0,1,2,…,5 D.1,2,…,5 B[由于取到白球游戏结束,由题意可知X的可能取值为1,2,3,4,5,6,7.] 3.下列随机变量不是离散型随机变量的是________. ①某景点一天的游客数X; ②某手机一天内收到呼叫次数X; ③水文站观测到江水的水位数X; ④某收费站一天内通过的汽车车辆数X. ③[①②④中的随机变量X可能取的值,我们都可以按一定的次序一一列出,因此都是离散型随机变量;③中X可以取一区间内的一切值,无法按一定次序一一列出,故③不是离散型随机变量.] 随机变量的概念 【例1】件,则下列可作为随机变量的是()

高中数学课时作业20解析及答案

课后作业(二十) 一、选择题 1.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切 C .相交但直线不过圆心 D .相交且直线过圆心 2.已知直线l :y =k (x -1)-3与圆x 2+y 2=1相切,则直线l 的倾斜角为( ) A.π6 B.π2 C.2π3 D.56 π 3.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3] C .[-3,1] D .(-∞,-3]∪[1,+∞) 4.过点(-4,0)作直线l 与圆x 2+y 2+2x -4y -20=0交于A 、B 两点,如果|AB |=8,则直线l 的方程为( ) A .5x +12y +20=0 B .5x +12y +20=0或x +4=0 C .5x -12y +20=0 D .5x -12y +20=0或x +4=0 5.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =( ) A.33 B.33或-33 C. 3 D.3或- 3 6.若圆C :x 2+y 2+2x -4y +3=0关于直线2ax +by +6=0对称,则由点M (a ,b )向圆所作的切线长的最小值是( ) A .2 B .3 C .4 D .6 二、填空题 7.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A 、B 两点,则线段AB 的中垂线方程为________.

全品作业本数学7年级下沪科版(HK)-1

第6章实数 6.1 平方根、立方根 1.平方根 第1课时 平方根知识要点分类练 1.“36的平方根是±6”,用数学式子表示为 ( ) A . 366B .366 C .366 D .366【答案】B 2.9的平方根是( ) A .±3 B .13 C .3 D .-3 【答案】A 3.若某正数的一个平方根是- 5,则它的另一个平方根是________.【答案】5 4.求下列各数的平方根: (1)81;(2) 1625 ;(3)124 ;(4)0.49.【答案】(1)81的平方根是±9 (2)1625 的平方根是45(3)124的平方根是32 (4)0.49的平方根是±0.7 5.下列各数没有平方根的是 ( ) A .0 B .|-4| C .-4 D .-(-25) 【答案】C 6.下列说法正确的是( ) A .任何数的平方根都有两个 B .只有正数才有平方根 C .负数的平方根是负数 D .一个非负数的平方根的平方就是它本身 【答案】D 7.平方根等于它本身的数是 ( ) A .-1 B .1 C .0 D .±1 【答案】C 8.若m 和n 是同一个数的平方根,且m ≠n ,则2016()________m n .

【答案】0 规律方法综合练 9.求下列各式中的 x :(1)2425x ;(2)2(1)36x . 【答案】(1)5 2x 或5 2 x (2)x =5或x =-7 10.已知x -1的平方根是±2,3x +y -1的平方根是±4,求3x +5y 的平方根. 【答案】解:由x -1的平方根是±2,3x +y -1的平方根是±4,得14, 3116,x x y 解得 5,2. x y 所以3x +5y =15+10=25. 因为25的平方根为±5,所以3x +5y 的平方根为±5. 拓广探究创新练 11.若a 的两个平方根是方程 3x +2y =2的一组解.(1)求a 的值; (2)求a 的平方根. 【答案】解:(1)因为a 的两个平方根是方程 3x +2y =2的一组解,所以x +y =0,联立322,0,x y x y 解得2,2.x y 所以22 24a x . (2)42a .第2课时 算术平方根知识要点分类练 1.9的算术平方根是( ) A .-3 B .±3 C .3 C .9 【答案】C 2.4的值是( ) A .4 B .2 C .-2 D .±2 【答案】B 3.下列说法错误的是 ( ) A .10是2(10)的算术平方根

高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n 的概率为()i i P X x p ,则表 (2)分布列的性质:①0,1,2,,i p i n ;②11n i i p (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x 为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C 其中min{,}m M n ,且*,,,,)n N M N n M N N ,称分布列为超几何分布列。如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5

【变式1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列;(2)求此员工月工资的期望. 知识点二 1.条件概率及其性质 对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用 符号P(A|B)来表示,其公式为P(A|B)=P(AB) P(B) (P(B)>0). 在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B) . 2.相互独立事件 (1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件. (2)若A与B相互独立,则P(AB)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布

高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ??≥?0,寿命<1000小时;Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验 注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上, ξ=1,

创新设计高中数学必修4课时作业【全套142页】附有详细解析

§3.2 简单的三角恒等变换 课时目标 1.了解半角公式及推导过程.2.能利用两角和与差的公式进行简单的三角恒等变换.3.了解三角变换在解数学问题时所起的作用,进一步体会三角变换的规律. 1.半角公式 (1)S α2:sin α 2=____________________; (2)C α2:cos α 2=____________________________; (3)T α2:tan α 2=______________(无理形式)=________________=______________(有理 形式). 2.辅助角公式 使a sin x +b cos x =a 2+b 2 sin(x +φ)成立时,cos φ=__________________,sin φ=______,其中φ称为辅助角,它的终边所在象限由__________决定. 一、选择题 1.已知180°<α<360°,则cos α 2的值等于( ) A .-1-cos α 2 B. 1-cos α 2 C .- 1+cos α2 D. 1+cos α 2 2.函数y =sin ? ????x +π3+sin ? ????x -π3的最大值是( ) A .2 B .1 C.1 2 D. 3 3.函数f (x )=sin x -cos x ,x ∈? ?????0,π2的最小值为( ) A .-2 B .- 3 C .- 2 D .-1 4.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π3 5.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( ) A.??????-π,-5π6 B.??????-5π 6 ,-π6 C.??????-π3,0 D.???? ??-π6,0 6.若cos α=-4 5,α是第三象限的角,则1+tan α21-tan α 2 等于( ) A .-12 B.1 2 C .2 D .-2

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

第二章 离散型随机变量

第二章离散型随机变量 教学目的与要求 1.熟练掌握一维离散型随机变量及其分布的概念,会求一维随机变量的分布列. 2.熟练掌握二维离散型随机变量的概念及其分布,了解常见的二维随机变量的分布. 3.掌握二维离散型随机变量的边际分布及其计算公式. 4.了解多维随机变量的概念及其分布. 5.理解随机变量相互独立的关系及其判别方法. 6.掌握一维、二维离散型随机变量函数的分布列的求法. 7.准确理解数学期望、方差的概念及其相关的性质,熟练掌握常见的几种分布的数学期 望和方差. 8.了解条件分布与条件期望及其性质. 教学重点一、二维随机变量及其分布 教学难点随机变量的分布 教学方法讲解法 教学时间安排 1~2 第一节一维随机变量及分布列 3~4 第二节多维随机变量、联合分布列和边际分布列 5~6 习题辅导 7~8 随机变量函数的分布列 9~10 数学期望的定义及性质 11~12方差的定义及性质 13~14条件分布与条件数学期望 15~16 习题辅导 教学内容

1~2. 第一节一维随机变量及分布列 一、随机变量 在上一章所讲的有些随机试验的样本空间中基本事件是用数值描述的,这就提示我们,无论什么随机试验,如果用一个变量的不同取值来描述它的全部可能结果,样本空间的表达及其相应的概率就显得更明了、更简单.事实上,这种想法是可以的,为此,引入一个新概念. 定义2.1 设E 维随机试验,()ωΩ=为其样本空间,若对任意的ω∈Ω,有唯一的实数与之对应,则称()ξω为随机变量. 这样,事件可通过随机变量的取值来表示,随机变量,(),(), b a b ξξξ≤<≤等都表 示为事件,其中,a b 表示任意实数.即用随机变量的各种取值状态和取值范围来表示随机事件. 二、一维离散型随机变量的概念 定义 2.2 定义在样本空间Ω上,取之于实数域R ,且只取有限个或可列个值的变量 ()ξξω=,称作是一维(实值)离散型随机变量,简称为离散型随机变量.称 ()i i P a p ξ==, 1,2,i = 为随机变量()ξω的概率分布列,也称为分布律,有时就简称为分布. 离散型随机变量()ξω的分布列常常习惯地把它们写成表格的形式或矩阵形式: 121 2 a a p p ?? ??? 例2.1 在5n =的贝努里试验中,设事件A 在一次试验中出现的概率为p ,令 ξ=5次试验中事件A 出现的次数 则 55(),05k k k P k C p q k ξ-==≤≤ 于是,ξ的分布列为:

2017-2018学年高一数学必修1全册同步课时作业含解析【人教A版】

2017-2018学年高一数学必修1 全册同步课时作业 目录

1.1.1-1集合与函数概念 1.1.1-2集合的含义与表示 1.1.1-3集合的含义与表示 1.1.2集合间的包含关系 1.1.3-1集合的基本运算(第1课时)1.1.3-2集合的基本运算(第2课时)1.1习题课 1.2.1函数及其表示 1.2.2-1函数的表示法(第1课时)1.2.2-2函数的表示法(第2课时)1.2.2-3函数的表示法(第3课时)1.2习题课 1.3.1-1单调性与最大(小)值(第1课时) 1.3.1-2单调性与最大(小)值(第2课时) 1.3.1-3单调性与最大(小)值(第3课时) 1.3.1-4单调性与最大(小)值(第4课时) 1.3.2-1函数的奇偶性(第1课时)1.3.2-2函数的奇偶性(第2课时)函数的值域专题研究 第一章单元检测试卷A 第一章单元检测试卷B 2.1.1-1基本初等函数(Ⅰ) 2.1.1-2指数与指数幂的运算(第2课时) 2.1.2-1指数函数及其性质(第1课时)2.1.2-2指数函数及其性质(第2课时)2.1.2-3对数与对数运算(第3课时)2.2.1-1对数与对数运算(第1课时)2.2.1-2对数与对数运算(第2课时)2.2.1-3对数与对数运算(第3课时)2.2.2-1对数函数及其性质(第1课时)2.2.2-2对数函数的图像与性质(第2课时) 2.2.2-3对数函数的图像与性质 2.3 幂函数 图像变换专题研究 第二章单元检测试卷A 第二章单元检测试卷B 3.1.1函数的应用 3.1.2用二分法求方程的近似解 3.2.1函数模型及其应用 3.2.2函数模型的应用实例 第三章单元检测试卷A 第三章单元检测试卷B 全册综合检测试题模块A 全册综合检测试题模块B 1.1.1-1集合与函数概念课时作业 1.下列说法中正确的是() A.联合国所有常任理事国组成一个集合 B.衡水中学年龄较小的学生组成一个集合 C.{1,2,3}与{2,1,3}是不同的集合 D.由1,0,5,1,2,5组成的集合有六个元素 答案 A 解析根据集合中元素的性质判断.

高中数学《随机变量及其分布》单元测试

数学选修2-3第二章《随机变量及其分布》单元测试 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟 第Ⅰ卷(选择题共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的) 1.设X~B(n,p),E(X)=12,D(X)=4,则n,p的值分别为() A.18, B.36, C.36, D.18, 2.10张奖劵中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为() A. B. C. D. 3.设随机变量X等可能地取值1,2,3,…,10.又设随机变量Y=2X-1,则P(Y<6)的值为() A.0.3 B.0.5 C.0.1 D.0.2 4.在区间(0,1)内随机取一个数x,若A=,B=,则P(B|A)等于() A. B. C.D. 5.若离散型随机变量X的分布列为 X123 P

则X的数学期望E(X)=() A. B.2 C. D.3 6.已知某离散型随机变量X的分布列如下表,则随机变量X的方差D(X)等于() X01 P m2m A. B. C. D. 7.同时抛掷两枚质地均匀的硬币10次,设两枚硬币出现不同面的次数为X,则D(X)=() A. B. C. D.5 的值分别为() 8.已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1) 与D(2ξ+1) A.13,4 B.13,8 C.7,8 D.7,16 9.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为() A.恰有1只是坏的 B.4只全是好的 C.恰有2只是好的 D.至多有2只是坏的 10.节日期间,某种鲜花进货价是每束 2.5元,销售价是每束5元,节日后没卖出的鲜花以每束1.6元的价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X的分布列为 X200300400500 P0.200.350.300.15 若进这种鲜花500束,则利润Y的均值是() A.706 B.690 C.754 D.720 11.现有甲,乙两个靶,某射手向甲靶射击一次,命中的概率为;向乙靶射击两次,每次命中的概率为.该射手每次射击的结果相互独立.假设该射手完成以上三次射击,该射手恰好命中一次的概率为()

相关主题
文本预览
相关文档 最新文档