当前位置:文档之家› 软起动器与变频器

软起动器与变频器

软起动器与变频器
软起动器与变频器

1.什么是软起动器?它与变频器有什么区别?

软起动器是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为SoftStarter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。

运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。

软起动器和变频器是两种完全不同用途的产品。变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。

2.什么是电动机的软起动?有哪几种起动方式?

运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。软起动一般有下面几种起动方式。

(1)斜坡升压软起动。这种起动方式最简单,不具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。

(2)斜坡恒流软起动。这种起动方式是在电动机起动的初始阶段起动电流逐渐增加,当电流达到预先所设定的值后保持恒定(t1至t2阶段),直至起动完毕。起动过程中,电流上升变化的速率是可以根据电动机负载调整设定。电流上升速率大,则起动转矩大,起动时间短。该起动方式是应用最多的起动方式,尤其适用于风机、泵类负载的起动。

(3)阶跃起动。开机,即以最短时间,使起动电流迅速达到设定值,即为阶跃起动。通过调节起动电流设定值,可以达到快速起动效果。

(4)脉冲冲击起动。在起动开始阶段,让晶闸管在级短时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,连入恒流起动。该起动方法,在一般负载中较少应用,适用于重载并需克服较大静摩擦的起动场合。

3.软起动与传统减压起动方式的不同之处在哪里?

笼型电机传统的减压起动方式有Y-Δ起动、自耦减压起动、电抗器起动等。这些起动方式都属于有级减压起动,存在明显缺点,即起动过程中出现二次冲击电流。软起动与传统减压起动方式的不同之处是:

(1)无冲击电流。软起动器在起动电机时,通过逐渐增大晶闸管导通角,使电机起动电流从零线性上升至设定值。

(2)恒流起动。软起动器可以引入电流闭环控制,使电机在起动过程中保持恒流,确保电机平稳起动。

(3)根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的起动电流。

1 软启动器工作原理与主电路图

软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路,主电路图见图1。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。软启动与软停车的电压曲线见图2,3。

2 软启动器的选用

(1)选型:目前市场上常见的软启动器有旁路型、无旁路型、节能型等。根据负载性质选择不同型号的软启动器。

旁路型:在电动机达到额定转数时,用旁路接触器取代已完成任务的软启动器,降低晶闸管的热损耗,提高其工作效率。也可以用一台软启动器去启动多台电动机。

无旁路型:晶闸管处于全导通状态,电动机工作于全压方式,忽略电压谐波分量,经常用于短时重复工作的电动机。

节能型:当电动机负荷较轻时,软启动器自动降低施加于电动机定子上的电压,减少电动机电流励磁分量,提高电动机功率因数。

(2)选规格:根据电动机的标称功率,电流负载性质选择启动器,一般软启动器容量稍大于电动机工作电流,还应考虑保护功能是否完备,例如:缺相保护、短路保护、过载保护、逆序保护、过压保护、欠压保护等。

3 Alt48软启动器的特点

Alt48软启动器启动时采用专利技术的转矩控制。转矩斜坡上升更快速,损耗更低。具有电动机和软启动器综合保护功能,能全时连续检测电机电流,提供电机可靠和完整保护,这种保护功能在启动结束旁路后仍能起作用,这是其它软启动器都不具备的。

Alt48在保持加速力矩的同时,实时计算定子和转子的功率。在整个加速周期连续计算电机功率因数和定子损耗,通过检测电压和电流来计算功率因数,并扣除定子损耗,得到实际的转子功率和电机力矩。

4 Alt48软启动器的应用

设计采用一拖二方案,见图4,即一台软启动器带两台水泵,可以依次启动,停止两台水泵。一拖二方案主要特点是节约一台软启动器,减少了投资,充分体现了方案的经济性,实用性。

(1) 启动过程:首先选择一台电动机在软启动器拖动下按所选定的启动方式逐渐提升输出电压,达到工频电压后,旁路接触器接通。然后,软启动器从该回路中切除,去启动下一台电机。

(2) 停止过程:先启动软启动器与旁路接触器并联运行,然后切除旁路,最后软启动器按所选定的停车方式逐渐降低输出电压直到停止。

5 应用效果

通过一年的运行,表明该装置可靠性高,性能完善,能满足生产要求。主要体现在以下几点:

(1) 使用软启动器后,启动电流明显降低,减少配电容量与增容投资。

(2) 软启动器实现平稳启动,对水泵及管道无冲击,提高供电可靠性和供水可靠性。

(3) 采用软停车方式减少对机械的冲击,防止水锤效应,延长水泵及其相关设备的使用寿命。

(4) 多种启动模式及保护功能融于一体,防止事故的产生。

1、基本概念

(1)VVVF 改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。

(2)CVCF 恒电压、恒频率(Constant Voltage and Constant Frequency)的缩写。

各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz (50Hz)或100V/60Hz(50Hz)。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把三相或

单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。

变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。

2. 电机的旋转速度为什么能够自由地改变?

r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm。例如:4极电机60Hz 1,800 [r/min],4极电机50Hz 1,500 [r/min],电机的旋转速度同频率成比例。

本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地取决于电机的极数和频率。电机的极数是固定不变的。由于极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适合改变极对数来调节电机的速度。另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。

n = 60f/p,n: 同步速度,f: 电源频率,p: 电机极数,改变频率和电压是最优的电机控制方法。如果仅改变频率,电机将被烧坏。特别是当频率降低时,该问题就非常突出。为了防止电机烧毁事故的发生,变频器在改变频率的同时必须要同时改变电压,例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从200V改变到约100V。 例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从200V改变到约100V。

3、关于散热的问题

如果要正确的使用变频器, 必须认真地考虑散热的问题。变频器的故障率随温度升高而成指数的上升。使用寿命随温度升高而成指数的下降。环境温度升高10度,变频器使用寿命减半。因此,我们要重视散热问题啊!在变频器工作时,流过变频器的电流是很大的, 变频器产生的热量也是非常大的,不能忽视其发热所产生的影响。

通常,变频器安装在控制柜中。我们要了解一台变频器的发热量大概是多少,可以用以下公式估算:发热量的近似值=变频器容量(KW)×55 [W]在这里, 如果变频器容量是以恒转矩负载为准的(过流能力150% * 60s) 如果变频器带有直流电抗器或交流电抗器, 并且也在柜子里面, 这时发热量会更大一些。电抗器安装在变频器侧面或测上方比较好。这时

可以用估算: 变频器容量(KW)×60 [W]因为各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品. 注意:如果有制动电阻的话,因为制动电阻的散热量很大,因此最好安装位置最好和变频器隔离开,如装在柜子上面或旁边等。那么, 怎样采能降低控制柜内的发热量呢? 当变频器安装在控制机柜中时,要考虑变频器发热值的问题。根据机柜内产生热量值的增加,要适当地增加机柜的尺寸。因此,要使控制机柜的尺寸尽量减小,就必须要使机柜中产生的热量值尽可能地减少。如果在变频器安装时,把变频器的散热器部分放到控制机柜的外面,将会使变频器有70%的发热量释放到控制机柜的外面。由于大容量变频器有很大的发热量,所以对大容量变频器更加有效。还可以用隔离板把本体和散热器隔开, 使散热器的散热不影响到变频器本体。这样效果也很好。变频器散热设计中都是以垂直安装为基础的,横着放散热会变差的! 关于冷却风扇一般功率稍微大一点的变频器,都带有冷却风扇。同时,也建议在控制柜上出风口安装冷却风扇。进风口要加滤网以防止灰尘进入控制柜。注意控制柜和变频器上的风扇都是要的,不能谁替代谁。

另外,散热问题还要注意以下两个问题:

(1)在海拔高于1000m的地方,因为空气密度降低,因此应加大柜子的冷却风量以改善冷却效果。理论上变频器也应考虑降容,1000m每-5%。但由于实际上因为设计上变频器的负载能力和散热能力一般比实际使用的要大,所以也要看具体应用。比方说在1500m的地方,但是周期性负载,如电梯,就不必要降容。

(2)开关频率:变频器的发热主要来自于IGBT,IGBT的发热有集中在开和关的瞬间。因此开关频率高时自然变频器的发热量就变大了。有的厂家宣称降低开关频率可以扩容,就是这个道理。

4、矢量控制是怎样使电机具有大的转矩的?

转矩提升:此功能增加变频器的输出电压,以使电机的输出转矩和电压的平方成正比的关系增加,从而改善电机的输出转矩。改善电机低速输出转矩不足的技术,使用"矢量控制",可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。变频器的这个功能叫做"转矩提升"(*1)。转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。"矢量控制"把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。"矢量控制"可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。

5、变频器制动的有关问题

(1)制动的概念:指电能从电机侧流到变频器侧(或供电电源侧),这时电机的转速高于同步转速.负载的能量分为动能和势能. 动能(由速度和重量确定其大小)随着物体的运动而累积。当动能减为零时,该事物就处在停止状态。机械抱闸装置的方法是用制动装置把物体动能转换为摩擦和能消耗掉。对于变频器,如果输出频率降低,电机转速将跟随频率同样降低。这时会产生制动过程. 由制动产生的功率将返回到变频器侧。这些功率可以用电阻发热消耗。在用于提升类负载,在下降时, 能量(势能)也要返回到变频器(或电源)侧,进行制动.这种操作方法被称作"再生制动",而该方法可应用于变频器制动。在减速期间,产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到变频器电源侧的方法叫做"功率返回再生方法"。在实际中,这种应用需要"能量回馈单元"选件。

(2)怎样提高制动能力?

为了用散热来消耗再生功率,需要在变频器侧安装制动电阻。为了改善制动能力,不能期望靠增加变频器的容量来解决问题。请选用"制动电阻"、"制动单元"或"功率再生变换器"等选件来改善变频器的制动容量。

6、当电机的旋转速度改变时,其输出转矩会怎样?

(1):工频电源由电网提供的动力电源(商用电源)

(2):起动电流当电机开始运转时,变频器的输出电流变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动。

我们经常听到下面的说法:"电机在工频电源供电时(*1)时,电机的起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些"。如果用大的电压和频率起动电机,例如使用工频电网直接供电,就会产生一个大的起动冲击(大的起动电流(*2) )。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机产生的转矩要小于工频电网供电的转矩值。所以变频器驱动的电机起动电流要小些。通常,电机产生的转矩要随频率的减小(速度降低)而减些 减小的实际数据在有的变频器手册中会给出说明。通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。当变频器调速到大于60Hz频率时,电机的输出转矩将降低。通常的电机是按

50Hz(60Hz)电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te,P<=Pe) 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。当电机以大于60Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。举例,电机在100Hz时产生的转矩

大约要降低到50Hz时产生转矩的1/2。因此在额定频率之上的调速称为恒功率调速

(P=Ue*Ie)。

PID控制

今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。

目录

概述

这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。

PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。

PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e (t)与输出u (t)的关系为u(t)=kp(e(t)+1/TI∫e(t)dt+TD*de(t)/dt) 式中积分的上下限分别是0和t

因此它的传递函数为:G(s)=U(s)/E(s)=kp(1+1/(TI*s)+TD*s)

其中kp为比例系数;TI为积分时间常数;TD为微分时间常数

编辑本段

它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。

其次,PID参数较易整定。也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。

第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。

在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。PID参数自整定就是为了处理PID参数整定这个问题而产生的。现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。

在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决:如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。闭环工作时,要求在过程中插入一个测试信号。这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。

如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。

因此,许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式。自动整定通常是指根据开环状态确定的简单过程模型自动计算PID参数。

PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用。

虽然有这些缺点,PID控制器是最简单的有时却是最好的控制器

编辑本段

现实意义

目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制

器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet 相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

编辑本段

系统分类

开环控制系统

开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出

没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

闭环控制系统

闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

阶跃响应

阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。

编辑本段

PID控制的原理和特点

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID 调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,

最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

编辑本段

PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出

现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。

对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3

对于流量系统:P(%)40--100,I(分)0.1--1

对于压力系统:P(%)30--70,I(分)0.4--3

对于液位系统:P(%)20--80,I(分)1--5

参数整定找最佳,从小到大顺序查

先是比例后积分,最后再把微分加

曲线振荡很频繁,比例度盘要放大

曲线漂浮绕大湾,比例度盘往小扳

曲线偏离回复慢,积分时间往下降

曲线波动周期长,积分时间再加长

曲线振荡频率快,先把微分降下来

动差大来波动慢。微分时间应加长

理想曲线两个波,前高后低4比1

一看二调多分析,调节质量不会低

编辑本段

PID控制实现

PID 的反馈逻辑

各种变频器的反馈逻辑称谓各不相同,甚至有类似的称谓而含义相反的情形。系统设计时应以所选用变频器的说明书介绍为准。所谓反馈逻辑,是指被控物理量经传感器检测到的反馈信号对变频器输出频率的控制极性。例如中央空调系统中,用回水温度控制调节变频器的输出频率和水泵电机的转速。冬天制热时,如果回水温度偏低,反馈信号减小,说明房间温度低,要求提高变频器输出频率和电机转速,加大热水的流量;而夏天制冷时,如果回水温度偏低,反馈信号减小,说明房间温度过低,可以降低变频器的输出频率和电机转速.减少冷水的流量。由上可见,同样是温度偏低,反馈信号减小,但要求变频器的频率变化方向却是相反的。这就是引入反馈逻辑的原由。几种变频器反馈逻辑的功能选择见表 1 。

打开PID 功能

要实现闭环的PID 控制功能,首先应将PID 功能预置为有效。具体方法有两种:一是通过变频器的功能参数码预置,例如,康沃CVF-G2 系列变频器,将参数H-48 设为O 时,则无PID 功能;设为 1 时为普通PID 控制;设为2 时为恒压供水PID 。二是由变频器的外接多功能端子的状态决定。例如安川CIMR-G 7A 系列变频器,如图 1 所示,在多功能输入端子Sl-S10 中任选一个,将功能码H1-01 ~H1-10( 与端子S1-S10 相对应) 预置为19 ,则该端子即具有决定PI[) 控制是否有效的功能,该端子与公共端子SC “ ON ”时无效,“ OFF ”时有效。应注意的是.大部分变频器兼有上述两种预置方式,但有少数品牌的变频器只有其中的一种方式。

在一些控制要求不十分严格的系统中,有时仅使用PI 控制功能、不启动 D 功能就能满足需要,这样的系统调试过程比较简单。

目标信号与反馈信号

欲使变频系统中的某一个物理量稳定在预期的目标值上,变频器的PID 功能电路将反馈信号与目标信号不断地进行比较,并根据比较结果来实时地调整输出频率和电动机的转速。所以,变频器的PID 控制至少需要两种控制信号:目标信号和反馈信号。这里所说的目标信号是某物理量预期稳定值所对应的电信号,亦称目标值或给定值;而该物理量通过传感器测量到的实际值对应的电信号称为反馈信号,亦称反馈量或当前值。PID 控制的功能示意图见图 2 。图中有一个PID 开关。可通过变频器的功能参数设置使PID 功能有效或无效。PID 功能有效时,由PID 电路决定运行频率;PID 功能无效时,由频率设定信号决定运行频率。PID 开关、动作选择开关和反馈信号切换开关均由功能参数的设置决定其工作状态。

目标值给定

如何将目标值( 目标信号) 的命令信息传送给变频器,各种变频器选择了不同的方法,而归结起来大体上有如下两种方案:一是自动转换法,即变频器预置PID 功能有效时,其开环运行时的频率给定功能自动转为目标值给定.如表2 中的安川CIMR-G 7A 与富士P11S 变频器。二是通道选择法,如表 2 中的康沃CVF-G2 、森兰SB12 和普传P17000 系列变频器。

以上介绍了目标信号的输入通道,接着要确定目标值的大小。由于目标信号和反馈信号通常不是同一种物理量。难以进行直接比较,所以,大多数变频器的目标信号都用传感器量程的百分数来表示。例如,某储气罐的空气压力要求稳定在 1 .2MPa ,压力传感器的量程为2MPa ,则与 1 .2MPa 对应的百分数为60 %,目标值就是60 %。而有的变频器的参数列表中,有与传感器量程上下限值对应的参数,例如富士P11S 变频器,将参数E40( 显示系数A) 设为 2 ,即压力传感器的量程上限2MPa :参数E41( 显示系数B) 设为0 ,即量程下限为0 ,则目标值为1 .2 。即压力稳定值为1 .2 MPa 。目标值即是预期稳定值的绝对值。

反馈信号的连接

各种变频器都有若干个频率给定输入端,在这些输入端子中,如果已经确定一个为目标信号的输入通道,则其他输入端子均可作为反馈信号的输入端。可通过相应的功能参数码选择其中的一个使用。比较典型的几种变频器反馈信号通道选择见表 3 。

编辑本段

P 、I 、D 参数的预置与调整

比例增益P

变频器的PID 功能是利用目标信号和反馈信号的差值来调节输出频率的,一方面,我们希望目标信号和反馈信号无限接近,即差值很小,从而满足调节的精度:另一方面,我们又希望调节信号具有一定的幅度,以保证调节的灵敏度。解决这一矛盾的方法就是事先将差值信号进行放大。比例增益P 就是用来

设置差值信号的放大系数的。任何一种变频器的参数P 都给出一个可设置的数值范围,一般在初次调试时,P 可按中间偏大值预置.或者暂时默认出厂值,待设备运转时再按实际情况细调。

积分时间

如上所述.比例增益P 越大,调节灵敏度越高,但由于传动系统和控制电路都有惯性,调节结果达到最佳值时不能立即停止,导致“超调”,然后反过来调整,再次超调,形成振荡。为此引入积分环节I ,其效果是,使经过比例增益P 放大后的差值信号在积分时间内逐渐增大( 或减小) ,从而减缓其变化速度,防止振荡。但积分时间I 太长,又会当反馈信号急剧变化时,被控物理量难以迅速恢复。因此,I 的取值与拖动系统的时间常数有关:拖动系统的时间常数较小时,积分时间应短些;拖动系统的时间常数较大时,积分时间应长些。

微分时间 D

微分时间 D 是根据差值信号变化的速率,提前给出一个相应的调节动作,从而缩短了调节时间,克服因积分时间过长而使恢复滞后的缺陷。 D 的取值也与拖动系统的时间常数有关:拖动系统的时间常数较小时,微分时间应短些;反之,拖动系统的时间常数较大时,微分时间应长些。

P 、I 、D 参数的调整原则

P 、I 、D 参数的预置是相辅相成的,运行现场应根据实际情况进行如下细调:被控物理量在目标值附近振荡,首先加大积分时间I ,如仍有振荡,可适当减小比例增益P 。被控物理量在发生变化后难以恢复,首先加大比例增益P ,如果恢复仍较缓慢,可适当减小积分时间I ,还可加大微分时间 D 。

高压电机软启动说明书

TGQ1-3000/10 高压交流电机软起动装置 说明书

在安装、运行、维护高压交流电机软起动装置之前,请仔细阅读本手册。 注意事项 危险事项: 如不按规定操作可能导致危害人生安全的事故。 高压交流电机软起动装置接入电源后,柜内会带高电压。运行中如打开软起动装置的大门,软起动装置将跳闸、报警、停止工作。但即使在电机停止运行状态,其输入端仍带有高电压。必须断开软起动装置的前级输入电源,确认软起动装置从高压隔离后,方可打开软起动装置的前、后大门。在对软起动装置的高压部分进行任何维护、维修之前,必须将软起动装置的高压部分可靠接地。 软起动装置的控制电路板及控制线路带有220V交流电压,接触控制电路板及控制线路的端头有触电的危险。 软起动装置的柜体必须可靠接地。 警告事项: 如不按规定操作可能导致危害设备安全的事故。 无功补偿装置—用于提高电机功率因数的无功补偿装置的接入,可能损坏软起动装置的可控硅元件,用户如需接入无功补偿装置,请务必在订购软起动装置时向厂商说明。 输入输出—软起动装置的输入、输出端不得接反,否则将损坏软起动装置。 连续起动—超过规定的连续起动,将使软起动装置的可控硅元件超温,最终将其损坏。 环境—软起动装置的设计工作环境为室内、常温、无污染及腐蚀,用户有特殊的要求请在订购时向厂商说明。

目录 第一章绪论 (3) 第二章安装 (10) 第三章起动 (12) 第四章维护及故障排除 (16)

第一章 绪论 1.1 概述 软起动装置是用来控制交流电机起动的设备,它的主要构成是接于电源与被控电机间的三相反并联晶闸管组件及其电子控制装置。TGQ1型软起动装置是为高压交流电机的起动而设计的,其型号字母代表的意义如下: 1.2 技术指标和性能 负载种类 三相中压异步电机、同步电机 交流电压 10kV +10%-15% 功率 3000kW 容量 连续:130%控制器标称值 短时:400%控制器标称值/30秒 200%控制器标称值/60秒 连续起动:最大4次/小时,两次启动至少间隔15分钟 频率 50Hz±2Hz 主回路组成 36 SCRS 瞬时过电压保护 复合过电压保护器及dv/dt吸收网络 冷却 空气对流冷却 旁路接触器 具有直接起动容量的接触器。 环境条件 机柜温度0℃— 40℃(32°F——122°F) 海拔0-3300ft(1000米) 5%—95% 相对湿度 控制方式 用户提供2或3线220VAC。

QJR 软启动说明书

QJR系列 矿用隔爆兼本质安全型软起动器 使 用 说 明 书 上海佳洲防爆电器有限公司

使用前请认真阅读本说明书 本说明书根据GB9969.1《工业产品使用说明书总则》;GB9969.2《机电产品使用说明书编写规定》的有关规定要求和内容进行编制。 产品执行Q/JZ001-2011、MT/T943-2005和GB3836-2000等标准。 一、概述 1、产品特点 矿用隔爆兼本质安全型软起动器(以下简称软起动器)是机电一体化的新技术产品,该产品适用于交流380V、660V、1140V的电压异步电动机重负荷软起动,在正常运转状态下对电机进行各种保护。它具有起动电流小,起动速度平稳可靠,保护功能齐全,是我公司自行设计、开发的高技术产品。在矿用隔爆兼本质安全型真空电磁起动器的基础上,改直接起动或停止为软起动或软停止,降低了起动电流(由4Ie-7Ie改善为0.5Ie-4Ie可调),减少了起动时冲击电流对电网及负载的冲击。它用软件控制方式来平滑起动电机,一方面以软件控强电,另一方面使电动机转速由慢到快逐渐上升到额定转速,有效解决了直接起动或自耦降压起动、Y/Δ转换、降压起动造成的起动时瞬时电流尖峰冲击,起动二次冲击电流对负载产生冲击转距,当电网电压下降可能造成电机堵转等诸多问题,是传统的矿用隔爆本质安全型真空电磁起器的理想替代产品。 该产品采用全中文宽屏显示、并具有漏电闭锁、断相、过压、欠压、、过载、三相不平衡、短路等保护功能,并能储存相应的故障信息,以及运行电流,电压故障等工作状态信息。 2、主要用途及适用范围 本起动器主要用于有甲烷和煤尘爆炸环境的煤矿井下、露天煤矿、冶金矿山、港口码头、选煤厂、发电厂等对重负荷的运输设备实行软起动。 起动器可以就地、远距离起动、停止控制,及联机控制等多种方式;额定电压为1140V、660V、380V,频率是50Hz,额定电流在400A范围内的三相异步电机,起动方式可以是软起动,也可以像普通的磁力起动器一样直接带负荷起动。机壳外有隔离换向开关手柄,可以对电机的转向进行选择,必要时按下急停按钮,转动隔离换向手柄至分位置,直接分断电动机。 3、规格 电压等级:1140V、660V、380V。 电流等级:400A以下。 4、型号的组成及代表意义 Q J R-□/□ 额定电压:V 额定电流:A 软起动 隔爆兼本质安全型 起动器 5、软起动器的防爆型式与标志为:矿用隔爆兼本质安全型

雷诺尔JJR软起说明书

JJR系列软起动器用户手册

目录 安全注意事项………………………………………………………………………………………安装准备……………………………………………………………………………………………使用及环境条件……………………………………………………………………………………1.概述……………………………………………………………………………………………… 典型应用简介…………………………………………………………………………………… JJR系列软起动功能……………………………………………………………………………2.购入检查…………………………………………………………………………………………3.安装………………………………………………………………………………………………4.电路连接………………………………………………………………………………………… 4.1主回路……………………………………………………………………………………… 4.2控制端子…………………………………………………………………………………… 4.3控制电路端子连接………………………………………………………………………… 4.4主回路连接………………………………………………………………………………… 4.5基本电路框图和端子………………………………………………………………………5.键盘及显示说明…………………………………………………………………………………6.数据的设定………………………………………………………………………………………7.通电运行…………………………………………………………………………………………8.保护显示说明……………………………………………………………………………………9.软起动控制模式………………………………………………………………………………… 9.1限流型……………………………………………………………………………………… 9.2电压控制型………………………………………………………………………………… 9.3软停车曲线………………………………………………………………………………… 9.4不同起动方式的电流波形比较……………………………………………………………10.结构特点………………………………………………………………………………………附表一应用场合……………………………………………………………………………………JJR1000系列二次接线图……………………………………………………………………………JJR2000系列二次接线图……………………………………………………………………………

10KV高压软启动(可控硅)技术手册

120中段10KV高压软启动柜 可控硅(晶闸管)及触发单元检修指南 编制: 杨栋 审批: 张彩青 编制单位:前河金矿一采区设备部编制日期:2015 年9月10日

一.前言 二.基本检测 三.可控硅检测四.通电前的准备工作五.触发测试 六.低压测试 七.高压测试 八.注意事项

一、前言 嵩县前河矿业有限公司,120中段水泵房三台高压水泵,电机280KW,电压10KV,使用上海索肯和平电气有限公司生产的软启动柜,型号:HPMV-DN,为了能更好的服务生产,提高设备的运转能率,降低故障率,编写此手册,查找故障、维修更加方便。

二、基本检测 1、检查主线路连接是否正确连接: 1)进出线是否正确连接。 2)出线端绝对不允许连接功率补偿装置。 3)紧固螺丝是否全部拧紧(使用扳手将柜内螺丝紧固)。 4)接地线与柜体及柜内接地连接是否良好。 检查工具: 扳手。 检查方法: 1)目测。 2)重新拧紧螺丝。 注意事项: 1)进线端如果连接有功功率补偿装置,必须在软起动全压运行后方可投入使用,调试期间尽量不使用功率补偿装置。 2)如果使用发电机供电,进线端不建议连接功率补偿装置。 2、检查控制回路是否正确连接。 1)用户端子是否正确可靠连接。 2)用户外部控制信号(急停信号、起动/停止信号、测试/复位信号、外部故障1、外部故障2)连接电缆(线)是否过长,有没有使用屏蔽电缆屏蔽外部干扰。 3)控制电源连接是否正确可靠。 4)内部连线是否可靠。 5)主控部分(DNC)接地是否可靠接地。 检查工具: 扳手、螺丝刀、尖嘴钳、万用表。 检查方法: 1)目测。 2)重新拧紧螺丝。 3)万用表测量。 注意事项 1)如果用户外部控制连接电缆(线)过长,应考虑在每路用户控制 加辅助继电器在线圈上并上阻容吸收或大阻值电阻。 2)如果用户外部控制连接电缆(线)未和动力电缆分层走线,应考 控制信号输入端增加辅助继电器在线圈上并上阻容吸收或大阻值。 3)控制电源L、N线是否正确。 4)必须保证主控部分(DNC)可靠接地

西驰CMC-L软启动器使用说明

目录 前言 (2) 1.产品简介 (3) 2.产品型号及收货检查 (4) 3.安装 (5) 4.接线 (6) &4.1 主回路接线 (6) &4.2 控制回路接线 (6) &4.3 控制端子说明 (7) 5.显示 (9) &5.1 功能特点 (9) &5.2 键盘说明 (10) &5.3 显示状态说明 (10) 6.设定及操作 (11) &6.1 编程操作 (11) &6.2 参数设定及说明 (11) 7.维护 (12) 8.故障分析 (13) 9.技术参数 (15) &9.1 一般参数 (15) &9.2 基本接线图 (16) 10.不同应用的基本设置 (17)

安全注意事项 警告!主回路电源得电后即存在危险电压。 !电机停止后,主回路上依然存在危险电压,须在软起动器断电后,再打开前面板。 !CMC—L软起动器停止后,继电器端子上(6、 7、8、9)依然存在危险电压。 !不允许软起动器输出端(2L1、4L2、6L3)接补偿电容器或压敏电阻。 !电机综合保护器应接于软起动器输入端(1L1、3L2、5L3),不允许接于输出端。 !软起动器与变频器混用时,二者输出端要彼此隔离。 !不要试图修理损坏的器件,请与供货商联系。 !散热器的温度可能较高(在线运行方式下)。 !严禁在软起动输出端反送电。 !软起动器在起动或停止状态时,输出侧都存在高压。

前言 感谢您选用西安西驰电气有限责任公司生产的CMC-L系列电动机软起动器。为了充分发挥软起动器的功能,请您按规程正确操作和使用,并确保操作者的安全,在使用前请详细阅读本《用户手册》。当您在使用中发现疑难问题而本手册无法提供解答时,请与西安西驰电气有限责任公司或各地代理、经销商联系,我们将竭诚为您服务。 注:产品出厂后依据保修卡对产品实行保修。请您在收到货物后,认真填写保修卡并将保修卡寄回西安西驰电气有限责任公司或供货单位。

软启动器控制

软启动器的控制 在工业工程设计中,通常电动机容量≥45KW时,就会采用软启动方式,那么,软启动究竟是怎么回事呢?它又是如何运用在电气上的呢? 一、软起动控制原理及过程 软启动SIMADYN D数字控制系统应用矢量原理,并通过系统的开环和闭环控制来实现对软启动过程的控制,采用失量控制方式的目的,主要是为了提高变频器的动态性能。根据交流电动机的动态数学模型,利用坐标变换的手段,将交流电动机的定子电流分解成磁场分量(电流)和转矩分量(电流),并分别加以控制,即模仿自然解耦的直流电动机的控制方式,即对磁场分量和转矩分量分别控制,以获得类似于直流电机调速的动态性能。 在矢量控制方式中,磁场电流实际值和转矩电流实际值可以根据测定的电机定子电压、和电流的实际值经变换计算求得。磁场电流和转矩电流的实际值与之相应的设定值进行比较和调节。 开环控制包括:电机速度≤5%额定转速时控制;开、合短路器的控制;压力、温度、各种保护连锁之间的逻辑控制。 闭环控制包括:电流控制与速度控制;系统的设计成带电流闭环控制的速度环控制,即双闭环系统;通过控制电源侧的整流器,电机流过相应的电流,以获得保持电机转矩所需的力矩。 电机定子通过逆变器流入方波电流。电机转子中通过磁场电流,由于转子的旋转,产生空间变化的磁场,在电机定子中产生感应电势。在低转速时,励磁电流保持不变,定子电压只与转速成正比。为了确定定子电流的顺序(逆变器晶闸管触发的顺序),定子电压被测量(绝对值、相角),然后产生逆变器的触发脉冲,逆变器自然换相,换相电压由同步机提供。在0~5%额定转速时,电机电压很低,不能实现自然换相,为保证逆变器可靠的换相,采用直流脉动技术。周期地将直流环节电流降低到零,逆变器晶闸管按设定值周期地触发,带动转子旋转。当电机电压较高时,就可以实现自然换相。逆变器的晶闸管从一相到另外一相的触发信号由同步电压获得。同步电机电压过零点被测量,并作为电机侧逆变器的触发信号。这样也保证了电机侧逆变器的晶闸管触发永远与电机电压同步,以使同步机始终保持同步。当电机的实际速度小于设定的速度时,速度检测器将输出信号到电流控制器,电流控制器改变整流器晶闸管的触发角,增大输出直流电流,电机转矩增加,电机速度增加,直到电机的电磁力矩与负荷力矩平衡。当电机转速达到准同步转速时给同步器信号,同步器开始进行检测,比较、当满足同步条件时,由同步器发出指令合上断路器,同步电机并网,软启动器退出,完成软启动过程。 软启动开闭环控制都在SIMADYN D控制系统实现。全部控制功能文件安装在八个处理器中,每个处理器执行特定任务的功能包,功能包的功能用参数和STRUC G图来定义。 二、功能包 SIMADYN D系统中还包括建立处理器与外围设备通讯@—FP功能包。 (1) 模块SE21.2:处理器PS16与电机侧晶闸管的接口模块,用来测量实际值与检测值及晶闸管的状态;

高压软起动技术规格书(含配置明细表)

高压软起动技术规格书 1 适用范围 本规格书是为山东龙港化工有限公司年产14.5万吨异丁烯项目的电气工程中10电机固态软启动器设计、结构、检查及试验的最基本的要求。 2 卖方的责任 2.1 本规格书与相关法规、标准、数据表、图纸、询价书等之间的任何矛盾应由买方负责澄清。 2.2 不允许用假设来掩盖数据的不足。卖方有责任由买方或其它渠道获取可靠数据。 2.3 为确保设备正确的安装、操作及维修,卖方应提供所有必须的或附加的设备,专用工具和附件的清单,即使这些设备在图纸、规格书或数据表中未列出。 2.4 卖方应列出并充分描述与本规格书和相关法规的不同点。 3 规范和标准 3.1 描述 电气设计工程的规范标准都应依照最新的版本,包括规范标准中的附录以及补充、修订的内容。 本项目的原则是:国内设计和采购的设备材料应满足中国相关的国家()和工业标 准规范;国外设计和采购的设备材料应满足相关的国际()和国外标准规范。当不同的标准规范发生冲突时,应统一满足最严格的规范标准要求。 供货商应根据国际标准9000的程序及国家电力电子产品质量监督检测中心出具的检验报告,要求对产品的所有硬件设备和软件程序质量提供证明和保证。除了另外特别说明以外,电气设备的设计、设备组装、材料和安装必须满足相关最新版本标准规范的最低要求。 3.2 标准规范 3906-91 3~35 交流金属封闭开关设备 11022-89 高压开关设备通用技术条件 1208-98 电流互感器 298 额定电压1以上至52的金属封闭交流开关设备和控制设备/T2423.4-1993 电工电子产品基本环境试验规程试验:交变湿热试验方法

晶闸管软起动的原理及应用

晶闸管软起动的原理及应用 林燕 一、引言 1977年美国航空航天局(NASA)FrankNole工程师获得了一项节电器专利,初期称为“功率因数控制器”,此后又有许多公司和个人开发了十几种节电器。1982年FrankNole又作了二点改进,一是省掉取样电阻而改为监视晶闸管两端电压,二是采取了反馈控制技术,使空载时电动机电压进一步减小,节电率大大提高,正式定名为“节电器”(POWERSAVER)。我国也开发了节电器,但实际使用效果不佳,未能广泛推广使用。1983年后,上海市相继引进了一系列的节电器产品,在对引进的节电器消化吸收的基础上,上海,西安等地研制出了新型节电器,其性能达到并超过引进的同类产品,为进一步推广节电器创造了条件,国内市场上从上世纪90年代开始把软启动器作为电机节能的首选产品。 晶闸管软起动产品问世不过30年左右的时间。它是当今电力电子器件长足进步的结果。10年前,电气工程界就有人指出,晶闸管软起动将引发软起动行业的一场革命。晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;1957年美国通用电器公司开发出世界上第一晶闸管产品,并于1958年使其商业化。它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。 二、晶闸管软起动的原理 晶闸管软起动通过控制单元发出PWM波来控制晶闸管触发脉冲,以控制晶闸管的导通,从而实现对电机起动的控制。 在分析软起动原理之前先强调以下几个术语: (1)触发角α:指从晶闸管正向电压起到加触发脉冲为止的这一期间对应的电角度。 (2)导通角θ:指晶闸管在一个周期内导通的时间所对应的角度。 (3)续流角φ:感性负载电流滞后于它所对应的相电压的相角。 (4)关断角δ:指从电流达到零的时刻起到该相晶闸管再次开通为止这段时间所对应的角度。

高压软启动器工作原理及操作流程

高压软启动器工作原理及操作流程 一、接线及检查 1、接线前,请保证所有开关处于断开位置。 2、请按照中高压柜相关标准对软起动柜进行安装。 3、主回路连接:端子R-S-T连接电源端。 端子U-V-W连接电机端。 4、控制端子连接:由用户提供AC220V/50HZ,接至低压仓用户端子的相应位置上。 5、接地:将接地电缆接在柜体的地排(GND)上。请检查主回路电压和控制回路电压是否与软起动装置的电压等级匹配。软起动装置将部分信号预留在外控接线端子上,用户可根据需要接线。 二、送电及操作 1、将控制电源(AC220V)微型断路器置于闭合位置,此时软起动面板上的LCD人机界面显示“STOP”、停止指示灯点亮(绿色)、三相数显电压/电流表分别被点亮。 2、将上端主电源断路器置于闭合位置,此时软起动面板上的带电显示器发光二极管被点亮(表示三相主电源带电),数显电压表显示三相主电源电压。 3、在待机情况下,浏览软起动装置内部设置参数,确保参数设置与

实际负载相匹配。 4、请确保当前三相电源正常的情况下,方可进行操作。 三、控制方式 1、本装置具有本控/远控/dcs控制三种起停控制方式,用户可通过面板上的转换开关进行转换(禁止在装置运行过程中切换)。 2、本装置起动控制分为“软起/直起”两种方式软起方式:将“软起/直起”钥匙开关选择“软起”位置,按起动按钮(绿色),电机开始起动。用户可通过本装置上的三相数显电流表,观察电机起动过程及运行过程中的电流。电机起动完成后,自动切换到旁路运行状态,装置上的运行指示灯被点亮(红色)。起动或运行过程中按下面板上的红色停止按钮,则电机停机且面板停止指示灯亮(绿色)。 当装置检测到故障后,面板上的故障指示灯(黄色)亮,且电机自动停止运行。故障必须被清除后才能进行下一次操作(用户可通过切断外部控制AC220V电源的方式清除面板上的故障显示)。 直起方式:将“软起/直起”钥匙开关选择“直起”位置,按起动按钮(绿色),真空接触器吸合。用户可通过本装置上的三相数显电流表,观察电机起动过程及运行过程中的电流。电机通过真空接触器直接运行,运行指示灯被亮(红色)。起动或运行过程中按下面板上的红色停止按钮,则电机停机且面板停止指示灯亮(绿色)。当装置检测到故障后,面板上的故障指示灯(黄色)亮,且电机自动停止运行。故障必须被清除后才能进行下一次操作(用户可通过切断外部控制AC220V电源的方式清除面板上的故障显示)。起动或运行过程中发生

软启动工作原理

软启动工作原理 软启动器电动机的应用 1、软启动器工作原理与主电路图 软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路,主电路图见图1。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。软启动与软停车的电压曲线见图2,3。 2 软启动器的选用 (1)选型:目前市场上常见的软启动器有旁路型、无旁路型、节能型等。根据负载性质选择不同型号的软启动器。 旁路型:在电动机达到额定转数时,用旁路接触器取代已完成任务的软启动器,降低晶闸管的热损耗,提高其工作效率。也可以用一台软启动器去启动多台电动机。 无旁路型:晶闸管处于全导通状态,电动机工作于全压方式,忽略电压谐波分量,经常用于短时重复工作的电动机。 节能型:当电动机负荷较轻时,软启动器自动降低施加于电动机定子上的电压,减少电动机电流励磁分量,提高电动机功率因数。 (2)选规格:根据电动机的标称功率,电流负载性质选择启动器,一般软启动器容量稍大于电动机工作电流,还应考虑保护功能是否完备,例如:缺相保护、短路保护、过载保护、逆序保护、过压保护、欠压保护等。 3、Alt48软启动器的特点 Alt48软启动器启动时采用专利技术的转矩控制。转矩斜坡上升更快速,损耗更低。具有电动机和软启动器综合保护功能,能全时连续检测电机电流,提供电机可靠和完整保护,这种保护功能在启动结束后旁路仍能起作用,这是其它软启动器都不具备的。 Alt48在保持加速力矩的同时,实时计算定子和转子的功率。在整个加速周期连续计算电机功率因数和定子损耗,通过检测电压和电流来计算功率因数,并扣除定子损耗,得到实际的转子功率和电机力矩。 4 Alt48软启动器的应用 设计采用一拖二方案,见图4,即一台软启动器带两台水泵,可以依次启动,停止两台水泵。一拖二方案主要特点是节约一台软启动器,减少了投资,充分体现了方案的经济性,实用性。

QBRG型矿用高压隔爆软起动器

QBRG矿用隔爆型高压软起动 一、高压软起动技术介绍. 低压软起动早在十年前就面世于国内并很快普及于各行业大量使用,近几年在煤矿井下皮带运输机、水泵上也大量采用了低压软起动并显示出其很大的优越性巳为大家所认识。高压软起动引入国内不过五年时间,在近三年才逐渐被应用于煤矿井下,由于用户对其技术认识不足,往往在选型时无从适手,本章就此目的向用户作一高压软起动技术介绍。 高压软起动是集控制、光电、电力电子、高压技术等为一体的高技术产品,在国外也只少数几个国家在生产,其品牌也不多国内基本空白。当今世界知名三大品牌高压软起源于美国BENSHAW(本秀)、MOTORTNICS(摩托托尼)及以色列的索肯;另外有美国ROCKWELL(罗克韦尔) A-B公司生产的软起动器;本秀和摩托托尼是美国高低压软起动最专业的制造商,特别是本秀的产品非常有理念其专业技术已达到了顶峰, 其开发的专利Tru Torque转矩斜坡起动方式,可使电机在起动中接近额定转速时不会造成对机械设备产生冲出,另其较高的过载能力也体现出其很高的可靠性;不愧是世界上最先进的中高压软起动控制器。BENSHAW公司早在1988年研制成功世界第一台高压软起动,又于1996年成为世界第一个取得UL认证的中高压软起动制造商,直到当今仍是中高压软起动控制技术的先驱。在全世界有着众多跨国用户:carrier、Ford、GE、Martin-Marietta、Siemens、Chrysler、H.J.Heinz、GM、IBM、3M、Vulcan等几十个国家和地区。1998年中国武钢引用了本秀10(6)KV5000KW高压软起动,中石油、中海油、中冶集团均大量采用了本秀10(6)KV高压软起动。MOTORTNICS(摩托托尼)及以色列的索肯目前国内应用较少。ROCKWELL(罗克韦尔)公司的主营业务是通讯和航空电子产品,凭借其在工业应用方面的优势是最早进入中国市场,目前在国内煤矿井下使用的主要是以本秀和A-B产品为主流的机芯。 高压软起动的起动控制部份与低压软起动相似,但晶闸管触发部份体现了很高的技术含量同时也是卖价的亮点,各品牌的先进技术亮点也在于此。高压软起动为适应各电网的峰值电压,对于10(6)KV软起动其峰值相电压比率必须达19.5KV,线电压达39KV;由于目前晶闸管的制造水平最高峰值电压是6500V,为满足要求采用每相6对管子串联(每对二只反并联))三相共18对计36只晶闸管,为使用中确保串联中每对管子承受均等电压,在电路中还需有静态均压、动态均压、dv/dt吸收等技术措施来保证晶闸管的安全。在高压晶闸管触发中必须严格保证串联中三对晶闸管触发导通时间绝对一致,都采取强脉冲触发方式,要求脉冲前沿上升时间≤1uS,脉冲幅值要足够高并具足够的触发电流,因此为保护价格昂贵的高压晶闸管串联组,都采用了非常专业的高可靠触发技术,然而在低压软起动中由于触发要求低以及成本限止都采用了简单的普通触发电路,所以相比之下高压软起动可靠性要比低压软起动高得多,在正常使用中一般不会轻易损坏。 在触发电路中由CPU控制器产生控制时序脉冲信号,在脉冲信号送往高压触发电路传输中采用光纤来进行信号传递和高低压间的绝缘隔离,信号传输中具有很高的抗干扰性能确保脉冲信号高度完整和不失真。 高压触发电路技术是体现出制造商对高压触发技术的专业程度,不同的制造商在该技术上会有较大差距,罗克韦尔A-B公司的产品高压触发取能采用大功率电阻在高压上降压的方法,其优点是取能电路简单,缺点是大功率电阻体积大、发热量大、效率低功耗大,必须给足够的空间去散热,特别是当电网电压低于额定电压时会造成触发功率下降。本秀公司在其产品中采取了非常专业和独特的在低压电源上取能然后变频成高频,通过高频变压器来对高低压间绝缘隔离后再向高压触发系统供能的方法,缺点是取能电路复杂、制造难度大、成本较高,优点是体积小、高可靠、高效率、无发热、对电网电压适应宽从而保证触发电流恒定,大大提高了触发可靠性,另不同之处是本秀产品把高压晶闸管串联组及高压触发电路和取能电路组合成积木化一体,体积小巧接线简单使组装简单化(见附图),由于本秀产品综合技术非常先进可靠所以很适合煤矿井下使用。 目前我公司生产的QBRG-400/10(6)K隔爆型高压软起动是由我公司高压软起动专业工程师为主组成的高压软起动研发组,经对世界上各公司高压软起动产品技术进行大量深层次对比后,最终选用美国BENSHAW公司原装技术精心组装的产品,隔爆外壳是我公司独立开发的新颖快开门结构,同时把下腔主杌设计成手车,使整机工艺结构,简单、合理、美观、安全可靠。 我公司研制成功的新型QBRG-400/10(6)K型10(6)KV矿用隔爆型高压软起动控制器,这种新型高压软起动控制器采用了当今世界上顶级高压晶闸管触发技术。由于晶闸管一旦触发导通后,即使去掉控制门极信号,器件仍维持导通不变,晶闸管所特有的性质叫擎住特性。导通之后,只要流过

软启动器的作用

电机直接启动的时候,电流可能会达到额定电流的6-7倍,会给工厂的其他用电设备带来问题。采用软启动时启动电流大概是额定电流的2-3倍。对于水泵来说,还有软停止,让水慢慢回落,消除水锤效果。简单的说就是缓缓启动,缓缓停止。这个缓缓的时间可以调节,大概是1-60秒。 软启动器以体积小,转矩可以调节、启动平稳冲击小并具有软停机功能等优点得到了越来越多的应用,大有取代传统的自耦减压、星-角等启动器的趋势。由于软启动器是近年来新发展起来的启动设备,在设计、安装、调试和使用方面还缺少指导性的规范与规程。我们在软启动器的安装、调试工作中也遇到了一些实际技术问题。例如:不同启动负载软启动器的选型、软启动冲击电流与过流保护定值的配合、软启动设备容量与变压器容量的关系等问题。 1、软启动器简介 目前,市场上常见的软启动器主要有电子式、磁控式和自动液体电阻式等类型。电子式以晶闸管调压式为多数。变频器在某种意义上也是一种软启动器,而且是能够真正地实现软启动的启动器,只是造价要高些。 晶闸管式软启动器是串接在电源与电动机之间的三组正反向并联的晶闸管,通过微电脑控制触发导通角实现交流调压。晶闸管式软启动器的启动方式有斜坡电压型、突跳加斜坡电压型和限流型等可供选择。

磁控式软启动器是利用磁放大器原理制造的串联在电源和电动机之间的三相饱和电抗器构成的软启动装置。启动时通过数字控制板调节磁放大器控制绕组的激磁电流,改变饱和电抗器的电抗值调节启动电压降,实现电动机软启动。不论晶闸管式软启动器还是磁控式软启动器在启动时只能调节输出电压,达到控制启动时的电压降、限制启动电流的目的。一般的软启动器不能调节电源频率,也就不能象变频器那样从零频零压开始启动电动机,实现无冲击启动。实际上软启动器在启动设备时还是要产生一定的冲击电流的;斜坡电压型控制软启动器的启动时的电压、电流变化曲线见图1所示。晶闸管式软启动器采用斜坡电压启动时,开始时要使软启动器输出一个初始电压(初始电压在80~280V之间可以调节),使电 动机产生足以克服机械设备的静摩擦的初始转矩,拖动设备开始转动,启动电流为Is。在微电脑的控制下,继续增加输出电压使电动机加速。当软启动器的输出电压接近额定电压时,电动机就已达到额定转速,Is降为负荷电流In。启动时间t1结束时,软启动器输出额定电压并发出旁路信号,使旁路接触器闭合,软启动器停止输出电压,电动机转入正常运行。软启动的初始转矩可以通过给定初始电压和启动时间进行调节,控制启动电流在2--4.5倍电动机额定电流以内。 低压软启动器的停车方式主要有自由停车,软停车,制动停车三种。传统的电动机停车方式常用自由停车,但有许多应用场合,自由停车会产生很大问题,如高层建筑的水泵系统,如果采用自由

德力西新程序 CDJ1系列数字式电机软起动器说明书..

CDJ1系列数字式电机软起动器 用户手册 2013年6月(第三版)

安全注意事项: 使用前请仔细阅读CDJ1安装说明书。如果不认真阅读有关说明,违反有关安全规定,有可能影响软起动器的正常使用。 安装前的准备 安装CDJ1请准备以下工具:螺丝刀、剥线钳、板钳等。 1、安装之前,请务必阅读“安全注意事项”。 2、只有专业技术人员允许安装CDJ1。 3、必须保证电动机与CDJ1匹配合适,安装时,请务必按用户手册章程 操作。 4、不允许将输入端(L1、L2、L3)接到输出端(U、V、W)。 5、不允许软起动器输出端U、V、W线接电容器,否则会损坏起动器。 6、CDJ1安装后将输入和输出端的铜线鼻用绝缘胶带包好。 7、远程控制时必须锁定键盘控制。 8、软起动器外壳请牢固接地。 9、维修设备时,必须断开进线电源。 使用及环境条件 【进线电源】交流380V 50H z±10% 【适用电机】鼠笼式三相异步电动机 【起动频度】每小时不超过12次 【使用湿度】90%无霜结 【使用温度】-30℃~+55℃ 【使用场所】室内无腐蚀性气体无导电尘埃且通风良好 【振动标准】海拔在3000米以下,振动力装置0.5G以下 【使用类别】AC-53b 提醒用户 如长途运输软起动器,在使用前,请用户仔细检查主电路、控制电路接线螺丝有无松动须紧固。 CDJ1-S型75kW以下壁挂式,需用户自配断路器。

目录 一、概述 ..................................................................................................... - 1 - 二、购入检查 ............................................................................................. - 2 - 三、安装 ..................................................................................................... - 3 - 四、基本接线图 ......................................................................................... - 4 - 五、软起动器的工作原理 ......................................................................... - 8 - 六、键盘及显示说明 ................................................................................. - 8 - 七、结构尺寸 ........................................................................................... - 21 - 八、故障排除 ........................................................................................... - 24 - 九、二次接线图 ....................................................................................... - 25 - 十、附表 ................................................................................................... - 26 - 附录一:MODBUS通信协议 ................................................................. - 27 -

高压磁控式软起动器技术与应用

高压磁控式软起动器技术与应用 陈吉林 天津二十冶有限公司电装分公司调试中心(300350) 【摘要】高压磁控式绕组电机软启动器又简称磁控软启动器用磁控限幅调压原理取代液阻和晶闸管的斩波调压方案,有效抑制电压波形畸变和高次谐波对电网的污染,从而简化了机组的结构,减少了调试的时间和难度,同时也大大的节省了维护成本,该新技术近些年来得到了广泛的应用,本文将根据在天津轧三高炉工程BPRT机组中的实际应用对该新形式启动器的原理、结构和应用调试进行介绍。 关键词:磁控软起、电抗、磁饱和、调试 正文 1. 高压磁控软起的优越性 目前常用的几种软起动装置有变频(即晶闸管)软起动、液阻软起动和磁控软起和磁控软起动。变频(即晶闸管)软起动变频调速软起动可以在限制交流电流的同时,实现大起动转矩的软起动,但是因为变频调速装置的售价太昂贵,控制复杂,调试需专门人员方能胜任,而且变频调速装置从来都是着眼于调速,对于单一的软起动用途来说有点大马拉小车,性价比不高。液阻软起动装置体积太大,占地面积大,电解液夏天高温容易挥发(例如在广东汕头国鑫钢厂调试期间就因天气炎热水分蒸发严重导致运行一段时间后重新配置过电阻液)、冬天温度低可能结冰等问题,因此维护起来麻烦但是售价便宜。而近些年出现的磁控软起能较好的解决上述问题,占地面积小,控制简单,调试和操作方便,在软起动过程中,限流器件无明显发热,饱和电抗产生的谐波比晶闸管小,特别是当起动对象为大容量相当电动机时,不存在SCR串联引起的静态、动态均压问题,性价比较高,因此得到了很好的应用。 2.高压磁控软起的结构 2.1磁控软起的组成:三相饱和电抗器,断路器,直流励磁微控制系统(包括三相可控硅桥式整流装置、直流励磁微控制器、励磁用三相整流变压器、电流互感器等),其核心部件是三相磁饱和电抗器和直流励磁微控制器。但是在实际的应用中有两种实现形式,其结构如图一和图二。

西安西普软启动说明书2

5.基本接线及外接端子 图5-1给出了STR电动机软起动器的全部外接线接口,具体说明见表5-1外接端子说明。STR软起动器的基本接线图 表5-1

★表示外控有两种接线方式,详见基本接线图5-1。 STR系列A型软起动器(7.5KW-75KW)K22和 K24 厂家已占用,用户不能使用. 上述图5-1及表5-1给出了STR电动机软起动器所有的外接端子及说明,在接线时,注意以 下事项: 主电路接线 — STRA型产品主电路有6个接线端子,即R.S.T(接进线电源) U.V.W(接电动机),详 请参见图6-1。 —STRB型产品主电路有9个接线端子,除上述6个相同外,还有 3个接旁路接触器 专用接线端子 U1.V1.W1,其接线参见图6-2。

控制电路 STR 软起动器共有16位外部控制端子,为用户实现外部信号控制、远程控制及系统控制提供方便,这16位端子安装在软起动器的主控板上。在软起动内部有端子引出,可直接接线。在使用过程中,如用户采用本机键盘操作,而不需远控或外部信号控制,则相应的端子不用接线,其接线排列顺序如下图5-2。 R U N J O G 起动点动 停机公共端复位起动完成输出故障输出旁路控制4-20m A 1234567891011121314 1516 图5-2 —— 其中RUN (起动端子)、STOP (停止端子)、JOG (点动端子)在使用时应进行相应 的参数设置,详见表9-1“参数设置及修改”中第11项。其接线请参见图6-1、图6-2、图6-3。 —— OC (起动完成输出)、I0(4~20mA )输出为有源输出。 —— K14、K11、K12(故障输出)及K24、K21、K22(旁路输出)均为无源输出端子, 其接线请参见图6-2、图6-3。 6.STR 软起动器典型应用接线图 STR 系列A型软起动装置典型应用接线图

高压软启动装置

考察报告 2008年8月29日,河南省济源市矿用电器有限责任市场营销人员来我单位做关于10(6)KV矿用隔爆型交流高压软起动控制器产品介绍,随后原煤提运中心邀请该公司于9月2日派专业技术人员来我单位做详细的技术交流,并于9月4日一行四人赴河南济源开关厂家进行现场调研,在调研期间到潞安矿务局常村矿井下现场调查该产品使用情况。 一、关于6KV矿用隔爆型交流高压软起动控制器在潞安矿务局常村矿的使用情况 河南济源矿用电器有限责任生产的6KV矿用隔爆型交流高压软起动控制器(产品型号:QBRG-400/6K)在潞安矿务局常村矿应用于井下两条主运皮带,一条为2×500KW,一对一拖动,另一条3×500KW,一个一拖一,一个一拖二,四套电气软启动装臵2007年11月运行至今,管理人员及现场操作人员反映未发生任何故障,一直运行平稳正常,现场考察发现开关表面堆积大量灰尘,说明已经很久没动过该设备了。 存在的问题:无法解决多电机运行功率平衡问题 二、高压软启动装臵功能、工作原理 高压软启动装臵功能: 高压软启动装臵其功能相当于高压磁力启动器+液力耦合器或独立变频器的功能,该产品主要应用于井下运输皮带或大功率水泵的软起动和软停止。该产品目前在平朔矿区暂无应用案例,在市场营销领域运行有三年历史。 高压软启动装臵工作原理: 1.三相主回路电源从电源接线箱引入,经隔爆端子引入内腔,接晶闸管组件的上端,下端出线经隔爆端子、电缆引出装臵输出到负载。控制回路100V电源从外部由引入装臵引入。

图1 主回路原理图 图2 系统控制方框图 2.QBRG系列软起动控制器,在高压主回路与控制系统间采用了国际先进的光纤技术,控制器还采用了基于DSP 控制和单片机管理的双CPU系统,如图2所示。DSP为32位数字信号处 理器,指令流水线操作,响应速度快, 执行核心控制。单片机对

晶闸管软起动的移相原理

晶闸管软起动的移相原理 摘要:本文介绍了通用晶闸管软起动控制器的工作原理,该工作原理即移相原理,移相原理是目前所有晶闸管软起起动器共同采用的控制方式,其控制方式下起动的电机起动电流较小,起动平稳且能够满足多种负载。 关键词:晶闸管触发电流功率因数角 1、引言 三相交流异步电动机由于结构简单、价格低廉、运行可靠,所以在各个行业得到广泛应用。但其在直接起动时,会产生过大的起动电流,特别是大功率电机,大起动电流严重冲击电网,引起电网供电质量下降,并影响其他设备的正常运行,并且起动转矩造成的机械冲击会降低电动机的寿命。所以起动过程中需要在电机和电源之间串入软起动来解决此问题。 随着电力电子技术的飞速发展,晶闸管软起动装置应运而生。由于其体积小、结构紧凑,免维护,安全可靠。全智能控制,功能齐全,菜单丰富。起动重复性好,保护周全。所以其正逐步取代传统的软起动方式,成为软起动领域新的领军人物。 本文首先阐述晶闸管软起动的目前最普遍采用的移相起动方式。 2、系统概述 利用晶闸管的开关特性,通过晶闸管的触发角来改变晶闸管的导通时间,从而控制到晶闸管电机端的输出电压,达到控制电机的起动特性。当晶闸管的电机端电压和输入端相同的时候即电机起动过程完毕后,就让交流接触器(或断路器)吸合(如图1所示意,即QF2吸合),短路所有的晶闸管,这时电动机将直接连到电网上。 在图1中,QS为高压隔离开关,QF1、QF2为真空断路器(当电流小的时候,QF2有时候也采用接触器),SCR为(普通)晶闸管,M为中压电动机。QF1伺职主电路的通断,QF2伺职电力器件的旁路。在SCR软起动装置里,SCR共6组,每组含(根据电压的高低和可控硅的耐压值来确定m的值)个相串的SCR。 3、工作原理 3.1功率因数角 由于电机为感性负载,所以电流滞后电压。当电压过零的时候,电流并未过零,要延迟一段时间后才过零,只有在电流过零的时候晶闸管才关断。我们把电压过零点和电流过零点之间的这个角度称为功率因数角φ。 3.2导通角和触发角 (1)导通角和触发角

ASTAT_XT软起动器键盘操作说明书

软启动器说明书 1软启动工作原理 软启动器电动机的应用 1软启动器工作原理与主电路 软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路,主电路图见图1。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。软启动与软停车的电压曲线见2软启动器的选用(1)选型:目前市场上常见的软启动器有旁路型、无旁路型、节能型等。根据负载性质选择不同型号的软启动器。旁路型:在电动机达到额定转数时,用旁路接触器取代已完成任务的软启动器,降低晶闸管的热损耗,提高其工作效率。也可以用一台软启动器去启动多台电动机。无旁路型:晶闸管处于全导通状态,电动机工作于全压方式,忽略电压谐波分量,经常用于短时重复

工作的电动机。节能型:当电动机负荷较轻时,软启动器自动降低施加于电动机定子上的电压,减少电动机电流励磁分量,提高电动机功率因数。(2)选规格:根据电动机的标称功率,电流负载性质选择启动器,一般软启动器容量稍大于电动机工作电流,还应考虑保护功能是否完备,例如:缺相保护、短路保护、过载保护、逆序保护、过压保护、欠压保护等。3Alt48软启动器的特点Alt48软启动器启动时采用专利技术的转矩控制。转矩斜坡上升更快速,损耗更低。具有电动机和软启动器综合保护功能,能全时连续检测电机电流,提供电机可靠和完整保护,这种保护功能在启动结束旁路后仍能起作用,这是其它软启动器都不具备的。Alt48在保持加速力矩的同时,实时计算定子和转子的功率。在整个加速周期连续计算电机功率因数和定子损耗,通过检测电压和电流来计算功率因数,并扣除定子损耗,得到实际的转子功率和电机力矩。4Alt48软启动器的应用 设计采用一拖二方案,见图4,即一台软启动器带两台水泵,可以依次启动,停止两台水泵。一拖二方案主要特点是节约一台软启动器,减少了投资,充分体现了方案的经济性,实用性。(1)启动过程:首先选择一台电动机在软启动器拖动下按所选定的启动方式逐渐提升输出电压,达到工频电压后,旁路接触器接通。然后,软启动器从该回路中切除,去启

相关主题
文本预览
相关文档 最新文档