当前位置:文档之家› 2019-2020学年高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业1 北师大版选修1-1

2019-2020学年高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业1 北师大版选修1-1

2019-2020学年高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业1 北师大版选修1-1
2019-2020学年高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业1 北师大版选修1-1

2.1.1 椭圆及其标准方程

[基础达标]

1.椭圆2x 2

+y 2

=8的焦点坐标是( ) A .(±2,0) B .(0,±2) C .(±23,0) D .(0,±23)

解析:选B.椭圆标准方程为x 24+y 2

8=1,

∴椭圆焦点在y 轴上,且c 2

=8-4=4, ∴焦点坐标为(0,±2).

2.椭圆x 2

25+y 2

m

=1的一个焦点坐标为(3,0),那么m 的值为( )

A .-16

B .-4

C .16

D .4

解析:选C.焦点在x 轴且c =3,由25=m +9,∴m =16.

3.已知方程x 2k +1+y

23-k

=1(k∈R )表示焦点在x 轴上的椭圆,则k 的取值范围是( )

A .k <1或k >3

B .1

C .k >1

D .k <3 解析:选B.由题意知k +1>3-k >0,∴1

4.过点(-3,2)且与x 29+y 2

4=1有相同焦点的椭圆的方程是( )

A.x 215+y 210=1

B.x 2225+y 2100=1

C.

x 2

10+y 2

15

=1 D.

x 2

100+y 2

225

=1 解析:选A.c 2

=9-4=5,由题意可设所求椭圆方程为x 2

b 2+5+y 2b 2=1,代入(-3,2)得9

b 2

+5

+4b 2=1,∴b 2

=10,椭圆方程为x 215+y 210

=1. 5.如图,椭圆x 225

+y

29

=1上的点M 到焦点F 1的距离为2,N 为MF 1的中点,则|ON |(O 为坐标

原点)的值为( )

A .8

B .2

C .4 D.3

2

解析:选C.由椭圆定义知|MF 1|+|MF 2|=2a =10,又|MF 1|=2,∴|MF 2|=8,由于N 为MF 1

的中点,ON 为中位线,∴|ON |=1

2

|MF 2|=4.

6.已知两定点F 1(-1,0),F 2(1,0),且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则动点P 的轨迹方程是________.

解析:由题意得:|PF 1|+|PF 2|=2|F 1F 2|=4>|F 1F 2|=2, ∴动点P 是以F 1、F 2为焦点的椭圆,且a =2,c =1, ∴b 2

=a 2

-c 2

=3,轨迹方程为x 24+y 2

3=1.

答案:x 24+y 2

3

=1

7.已知F 1,F 2为椭圆x 225+y 2

9

=1的两个焦点,过F 1的直线交椭圆于A ,B 两点.若|F 2A |+|F 2B |

=12,则|AB |=________.

解析:由于|AB |+|F 2A |+|F 2B |=4a =20,∴|AB |=20-(|F 2A |+|F 2B |)=20-12=8. 答案:8

8.若方程

x 2

k -2+

y 2

5-k

=1表示椭圆,则实数k 的取值范围是________.

解析:由方程x 2k -2+y 2

5-k

=1表示椭圆,

可得????

?k -2>0,

5-k >0,k -2≠5-k ,

解得2

.

即当2

2

方程

x 2

k -2+

y 2

5-k

=1表示椭圆.

答案:(2,72)∪(7

2

,5)

9.设F 1,F 2为椭圆x 29+y 2

4

=1的两个焦点,P 为椭圆上的一点,(1)PF 1⊥PF 2,且|PF 1|>|PF 2|,

求|PF 1||PF 2|

的值. (2)当∠F 1PF 2为钝角时,|PF 2|的取值范围.

解:(1)∵PF 1⊥PF 2,∴∠F 1PF 2为直角,则|F 1F 2|2=|PF 1|2+|PF 2|2

.

∴?????20=|PF 1|2+|PF 2|2

,|PF 1|+|PF 2|=6,

解得|PF 1|=4,|PF 2|=2,∴|PF 1|

|PF 2|

=2.

(2)设|PF 1|=r 1,|PF 2|=r 2,则r 1+r 2=6. ∵∠F 1PF 2为钝角,∴cos ∠F 1PF 2<0.

又∵cos ∠F 1PF 2=r 21+r 2

2-202r 1r 2

<0,∴r 21+r 2

2<20,∴r 1r 2>8,∴(6-r 2)r 2>8,

∴2

即|PF 2|的取值范围是(2,4).

10.(1)等腰直角三角形ABC 中,斜边BC 长为42,一个椭圆以C 为其中一个焦点,另一个焦点在线段AB 上,且椭圆经过A ,B 两点,求该椭圆的标准方程.

(2)在△ABC 中, ∠A ,∠B ,∠C 所对的三边分别是a ,b ,c ,且|BC |=2,求满足b ,a ,c 成等差数列且c >a >b 的顶点A 的轨迹.

解:(1)

如图,设椭圆的方程为x 2

a

2+y 2

b

2=1(a >b >0),有|AM |+|AC |=2a ,|BM |+|BC |=2a , 两式相加,得8+42=4a ,

∴a =2+2,|AM |=2a -|AC |=4+22-4=2 2.

在直角三角形AMC 中,∵|MC |2=|AM |2+|AC |2

=8+16=24,

∴c 2=6,b 2

=4 2. 故所求椭圆的标准方程为x 26+42+y 2

42

=1.

(2)

由已知条件可得b +c =2a ,则|AC |+|AB |=2|BC |=4>|BC |,结合椭圆的定义知点A 在以B ,C 为焦点的一个椭圆上,且椭圆的焦距为2.

以BC 所在的直线为x 轴,BC 的中点为原点O ,建立平面直角坐标系,如图所示.

设顶点A 所在的椭圆方程为x 2m 2+y 2n 2=1(m >n >0),则m =2,n 2=22-12

=3,从而椭圆方程为

x 24

+y 2

3

=1.又c >a >b 且A 是△ABC 的顶点,结合图形,易知x >0,y ≠0.

故顶点A 的轨迹是椭圆x 24+y 2

3

=1的右半部分(x >0,y ≠0).

[能力提升]

1.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P

关于y 轴对称,O 为坐标原点,若BP →=2PA →,且OQ →·AB →

=1,则P 点的轨迹方程是( )

A.32x 2+3y 2

=1(x >0,y >0) B.32

x 2-3y 2

=1(x >0,y >0) C .3x 2

-32y 2=1(x >0,y >0)

D .3x 2

+32

y 2=1(x >0,y >0)

解析:选A.由题意Q 坐标为(-x ,y )(x >0,y >0),设A (x 0,0),B (0,y 0), 由BP →=2PA →

得(x ,y -y 0)=2(x 0-x ,-y ),

∴?????x =2x 0-2x

y -y 0=-2y ,即?????y 0=3y x 0=32x . 由OQ →·AB →

=1得(-x ,y )·(-x 0,y 0)=1,

∴x 0x +y 0y =1,把?

????y 0=3y x 0=32x 代入上述得32x 2+3y 2

=1(x >0,y >0).

2.设α∈(0,π2

),方程x 2sin α+y 2

cos α=1表示焦点在y 轴上的椭圆,则α的取值

范围是________.

解析:方程x 2

sin α+y 2

cos α=1可化为

x 2

1sin α

y 2

1cos α

=1.∵椭圆的焦点在y 轴上,

1cos α>1sin α>0.又∵α∈(0,π

2),∴sin α>cos α>0, ∴π4<α<π2

. 答案:(π4,π

2)

3.已知F 1,F 2是椭圆x 2100+y 2

64=1的两个焦点,P 是椭圆上一点.

(1)若∠F 1PF 2=π

3

,求△F 1PF 2的面积;

(2)求|PF 1|·|PF 2|的最大值.

解:(1)设|PF 1|=m ,|PF 2|=n (m >0,n >0). 根据椭圆的定义,得m +n =20. 在△F 1PF 2中,由余弦定理,

得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos∠F 1PF 2=|F 1F 2|2

即m 2+n 2-2mn ·cos π3

=122

∴m 2+n 2-mn =144,即(m +n )2

-3mn =144.

∴202

-3mn =144,即mn =2563

.

又∵S △F 1PF 2=12|PF 1|·|PF 2|·sin∠F 1PF 2=12mn ·sin π

3,

∴S △F 1PF 2=12×2563×32=643

3

.

(2)∵a =10,∴根据椭圆的定义,得|PF 1|+|PF 2|=20.∵|PF 1|+|PF 2|≥2|PF 1|·|PF 2|,

∴|PF 1|·|PF 2|≤? ????|PF 1|+|PF 2|22=? ??

??2022=100, 当且仅当|PF 1|=|PF 2|时,等号成立, ∴|PF 1|·|PF 2|的最大值是100.

4.(2014·玉溪一中高二期末)已知F 1,F 2为椭圆C :x 2a 2+y 2

b

2=1(a >b >0)的左、右焦点,O 是

坐标原点,过F 2作垂直于x 轴的直线MF 2交椭圆于M ,设|MF 2|=d .

(1)证明:d ,b ,a 成等比数列;

(2)若M 的坐标为()2,1,求椭圆C 的方程;

(3)在(2)的椭圆中,过F 1的直线l 与椭圆C 交于A 、B 两点,若OA →·OB →

=0,求直线l 的方程.

解:(1)证明:由条件知M 点的坐标为()c ,y 0,其中|y 0|=d ,

∴c 2a 2+d 2

b

2=1,d =b ·1-c 2a 2=b 2a ,∴d b =b

a

,即d ,b ,a 成等比数列. (2)由条件知c =2,d =1,∴?

??

??b 2=a ·1

a 2

=b 2

+2,∴??

?a =2b =2

∴椭圆方程为x 24+y 2

2

=1.

(3)设点A (x 1,y 1)、B (x 2,y 2),

当l ⊥x 轴时,A (-2,-1)、B (-2,1),所以OA →·OB →

≠0. 设直线l 的方程为y =k (x +2),

代入椭圆方程得(1+2k 2)x 2+42k 2x +4k 2

-4=0.

所以?

????x 1+x 2=-42k

2

1+2k 2,

x 1·x 2=4k 2

-4

1+2k

2,

由OA →·OB →

=0得x 1·x 2+y 1·y 2=0, x 1·x 2+k 2(x 1+2)(x 2+2)=(1+k 2)x 1·x 2+2k 2(x 1+x 2)+2k 2=0,

代入得(1+k 2)(4k 2-4)1+2k 2-42k 2·2k 2

1+2k

2

+2k 2

=0,解得k =± 2. 所以直线l 的方程为y =±2(x +2).

第二章 圆锥曲线与方程(复习)

第二章 圆锥曲线与方程(复习) 校对人:聂格娇 审核人:徐立朝 1.掌握椭圆、双曲线、抛物线的定义及标准方程; 2.掌握椭圆、双曲线、抛物线的几何性质; 3.能解决直线与圆锥曲线的一些问题. 7881,找出疑惑之处) 复习2: ① 若椭圆221x my +=,则它的长半轴长为__________; ②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程为 ; ③以椭圆22 12516 x y +=的右焦点为焦点的抛物线方程为 .

二、新课导学 ※ 典型例题 例1 当α从0到180变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 变式:若曲线22 11x y k k +=+表示椭圆,则k 的取值范围是 . 小结:掌握好每类标准方程的形式. 例2设1F ,2F 分别为椭圆C :22 22x y a b + =1(0)a b >>的左、右两个焦点. ⑴若椭圆C 上的点A (1,32 )到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标; ⑵设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 变式:双曲线与椭圆22 12736 x y +=有相同焦点,且经过点,求双曲线的方程.

※动手试试 练1.已知ABC ?的两个顶点A,B坐标分别是(5,0) -,(5,0),且AC,BC 所在直线的斜率之积等于m(0) m≠,试探求顶点C的轨迹. 练2.斜率为2的直线l与双曲线 22 1 32 x y -=交于A,B两点,且4 AB=, 求直线l的方程. 三、总结提升 ※学习小结 1.椭圆、双曲线、抛物线的定义及标准方程; 2.椭圆、双曲线、抛物线的几何性质; 3.直线与圆锥曲线. ※知识拓展 圆锥曲线具有统一性: ⑴它们都是平面截圆锥得到的截口曲线; ⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线; ⑶它们的方程都是关于x,y的二次方程.

高级中学数学公式定理汇总

高中数学公式结论大全 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。 (2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是 。

(3) 在给定区间 的子区间上含参数的不等式(为参数)的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数)有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有个 小于 不小于 至多有个 至少有 个 对所有,成立 存在某,不成立 或 且 对任何,不成立 存在某,成立 且 或 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假

最新初高中数学公式大全

初中数学公式表

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

高考数学圆锥曲线与方程总结题型详解

高考数学圆锥曲线与方程章总结题型详解 圆锥曲线与方程 题型一 定义运用 1..(2017·湖南高考模拟(理))已知抛物线2 2x y = 上一点P 到焦点F 的距离为1,,M N 是直线2 y =上的两点,且2MN =,MNP ?的周长是6,则sin MPN ∠=( ) A . 4 5 B . 25 C . 23 D . 13 【答案】A 【解析】由题意,22p = ,则 122p = ,故抛物线22x y = 的焦点坐标是10,2?? ??? ,由抛物线的定义得,点P 到准线1 2y =- 的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ??=---= ??? . 设 点P 在直线MN 上的射影为P' ,则3 '2 PP = . 当点,M N 在P'的同一侧(不与点P'重合)时,35 2=622 PM PN MN ++> ++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由 2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去, 综上,M N 在两点中一定有一点与点P'重合,所以 24552 sin MPN <= = ,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2 :8C y x =相交于A ,B 两点, F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( ) A .6 B .5 C .4 D .3 【答案】A 【解析】由题意得,设抛物线2 8y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-, 如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB ,

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

初中高中数学定理公式大全(超全)

》 初中高中数学定理公式大全(超全) 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 ~ 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 ? 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 @ 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合

高中数学人教A版选修1-1 第二章圆锥曲线与方程 11

学业分层测评 (建议用时:45分钟) [学业达标] 一、选择题 1.抛物线的焦点是? ?? ??-14,0,则其标准方程为( ) A .x 2=-y B .x 2=y C .y 2=x D .y 2=-x 【解析】 易知-p 2=-14,∴p =12,焦点在x 轴上,开口向左, 其方程应为y 2=-x . 【答案】 D 2.(2014·安徽高考)抛物线y =14x 2的准线方程是( ) A .y =-1 B .y =-2 C .x =-1 D .x =-2 【解析】 ∵y =14x 2,∴x 2=4y .∴准线方程为y =-1. 【答案】 A 3.经过点(2,4)的抛物线的标准方程为( ) A .y 2=8x B .x 2=y C .y 2=8x 或x 2=y D .无法确定 【解析】 由题设知抛物线开口向右或开口向上,设其方程为y 2 =2px (p >0)或x 2=2py (p >0),将点(2,4)代入可得p =4或p =12,所以 所求抛物线的标准方程为y 2=8x 或x 2=y ,故选C. 【答案】 C

4.若抛物线y 2=ax 的焦点到准线的距离为4,则此抛物线的焦点坐标为( ) A .(-2,0) B .(2,0) C .(2,0)或(-2,0) D .(4,0) 【解析】 由抛物线的定义得,焦点到准线的距离为???? ??a 2=4,解得a =±8.当a =8时,焦点坐标为(2,0);当a =-8时,焦点坐标为(-2,0).故选C. 【答案】 C 5.若抛物线y 2 =2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( ) A .-2 B .2 C .-4 D .4 【解析】 易知椭圆的右焦点为(2,0),∴p 2=2,即p =4. 【答案】 D 二、填空题 6.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =________. 【解析】 由题意知圆的标准方程为(x -3)2+y 2=16,圆心为(3,0), 半径为4,抛物线的准线为x =-p 2,由题意知3+p 2=4,∴p =2. 【答案】 2 7.动点P 到点F (2,0)的距离与它到直线x +2=0的距离相等,则P 的轨迹方程是________. 【解析】 由题意知,P 的轨迹是以点F (2,0)为焦点,直线x +2

高中二年级数学 第二章 圆锥曲线与方程(A)

第二章 圆锥曲线与方程(A) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12 ,则此椭圆的方程为( ) A.x 212+y 216=1 B.x 216+y 212 =1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( ) A.x 236-y 2108=1 B.x 29-y 227 =1 C.x 2108-y 236=1 D.x 227-y 29 =1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b 2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( ) A .1 B .a 2 C .b 2 D .c 2 5.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( ) A.x 24-y 24=1 B.y 24-x 24 =1 C.y 24-x 28=1 D.x 28-y 24 =1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2 =1的离心率e 的取值范围是( ) A .(2,2) B .(2,5) C .(2,5) D .(2,5) 7. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( ) A .直线 B .圆 C .双曲线 D .抛物线 8.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FA +FB +FC =0,则|FA |+|FB |+|FC |等于( )

初中数学学与高中数学的区别

一.初中你可以刷题,运气好你可以刷到和中考很像的题,过程方法老师都帮你总结好了一套模板你就用吧,错不到哪去 高中你还想刷到高考的题?基本上没什么可能,固定过程模板套路是没有的,每道题都有区别,方法你得自己总结,它也是因人而异的。必须跳出自己的思维定势你才能在高中活下去 二、知识的差异初中数学知识少、浅、难度容易。高中数学知识广,难度大,是对初中的数学知识推广和引伸,也是对初中数学知识的完善——例如函数,将会陆续学到指数函数、对数函数、幂函数、三角函数,甚至抽象函数等;例如几何,将由初中的平面几何推广到立体几何。 1.抽象与具体的差异——高中知识抽象程度完爆初中!高中学生普遍感到数学公式枯燥难记忆、数学符号抽象难想象、数学习题晦涩难理解,以函数的概念为例,初中的“变量说”是以生活中的事例为依托通过文字的叙述给出的,抽象程度较低,而高中教材采用了抽象程度更高的“函数映射说”通过引进函数符号f(x),使得函数的众多性质可以通过形式化加以定义和证明。初高中课本的函数定义的对比:初中的定义:高中的定义:你觉得这样的定义抽象么?而且数学研究对象的抽象性还有逐层递进的特点,如果不能理解抽象程度较低的知识,学习抽象程度较高的知识就会有困难。有一个问题没听懂,后面不懂的就越来越多,致使学生丧失学习的激情,失去学习的兴趣,从而形成数学学习的恶性循环。 2.动态与静态的差异——变才是唯一不变的!在初中阶段往往习惯于“静态”思维,而高中数学无论从思维的广度和深度上都有很大的提高.所以,为了更好地感知高初中数学的区别,我们先复习圆的以下五个定理.从运动的观点看P点,如果我们允许P点可以在一条弦上自由运动,当P点运动到使圆中两弦垂直,且其中一条为直径时,其线段间的关系为定理(1),若P点运动到圆外,则两弦变成割线,即为定理(3),若其中一条割线变成切线的位置,即为定理(4) ,若另一条割线也变成切线,则成定理(5)了.尽管它们表述的容不一,但都有△APC∽△DPB这一统一关系式.辩证唯物论告诉我们,一切事物都是运动的.在解高中的有关问题时,要学会运用运动思想,善于处理动与静之间的关系. 三、知识学习过程的差异新教材高中数学体现了“螺旋式上升过程”的理念,将同一模块的知识分成片,每一片知识安排在的不同的学时或学年,例如函数,在必修1、必修4、选修2-2,分别是在高一和高二学年学习。这样的学习,要求学生循序渐进的掌握知识,提升能力。但在学习的过程中,在讲授某一知识的进阶容时,学生经常忘记之前的学习的容,这就要求在学习知识的过程中,尤其是第一次的学习时,一定要及时解决问题,不遗留问题,要不断的进行巩固。知识网络较初中知识更加复杂,需要注重知识结构的在联系。 四、学习方式的差异 1.学习时间上的差异:初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取同学全面理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九门课学生同时学习),每天至少上六门课,这样分配到各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,而高中数学难度广度又上了一个台阶。时间就像海绵里的水,挤一挤总是会有的——能多挤出时间学习数学,你就可以比他人获得更高的成绩。 2.解题方式的区别:初中学生更多是模仿式的做题,他们模仿老师思维推理或者甚至是机械的记忆,而到了高中,随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察(尤其是全国卷),旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿和机械的训练使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。高中的试题,往往涉及到的知识点较初中更多,要求对高中数学知识网络之间有着整体的把握,要求对基础知识掌握的牢固,才能产生知识点与知识点之间的连节点。 3.学生自学能力的差异:①可以自学么?初中的容比较简单直观,看书一般就能够理解,基本上可以自学。但高中的数学知识,过于抽象,难度提升,需要老师的必要的讲解与指导。②是否需要自学?大部分初中考试中所用的解题方法和数学思想,老师会不断的进行整理归纳,学生也进行反复大量的训练,学生基本上不需自学,甚至一部分学生已经养成了饭来口的习惯,只要掌握好老师归纳总结的,基本成绩都不会太差。但高中的知识面广,要全部要训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,课后还需要通过自学归纳对课堂上的容进行整理。高中生学习数学时差异程度大,还要根据自身实际情况进行适度练习。学好数学,很大程度上要靠学生本身的自觉学习。 五、对思维习惯提出更高的要求初中学生由于学习数学知识的围小,知识层次低,知识面窄,对实际问题的思维受到了局限。举几何的例子来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格

(完整word)19圆锥曲线与方程(中职数学春季高考练习题)

学校______________班级______________专业______________考试号______________姓名______________ 数学试题 圆锥曲线与方程 . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟, 考试结束后,将本试卷和答题卡一并交回. . 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 第Ⅰ卷(选择题,共60分) 30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项 . 设12F F 、 为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆 B .直线 C .圆 D .线段 . 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2 12y x = B .2 12y x =- C .2 6y x = D .2 6y x =- . 已知椭圆方程为 22 1916 x y +=,那么它的焦距是 A .10 B .5 C .7 D .27 . 抛物线2 6y x =-的焦点到准线的距离为 A .2 B .3 C .4 D .6 . 若椭圆满足4a =,焦点为()()0303-,,, ,则椭圆方程为 A . 22 1167 x y += B . 22 1169x y += C . 22 1167y x += D . 22 1169 y x += . 抛物线2 40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7 B .6 C .7- D .6- . 一椭圆的长轴是短轴的2倍,则其离心率为 A .34 B . 32 C . 22 D .12 8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是 A . 12 B . 32 C . 2 D . 14 9. 椭圆 22 1164 x y +=在y 轴上的顶点坐标是 A .()20±, B .()40±, C .()04±, D .()02±, 10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3 4 y x =± ,则双曲线的离心率为 A . 54 B . 53 C . 7 D . 7 11. 椭圆 22 1169 x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于 A .5 B .7 C . 5 D .4 12. 如果椭圆22 221x y a b +=经过两点()()4003A B ,、,,则椭圆的标准方程是 A . 221259 x y += B . 22 1163x y += C . 22 1169x y += D . 22 1916 x y += 13. 双曲线2 2 44x y -=的顶点坐标是 A .()()2020-,、, B .()()0202-,、, C .()()1010-,、, D .()()0101-,、, 14. 若双曲线22 221x y a b -=的两条渐近线互相垂直,则该双曲线的离心率是 A .2 B . 3 C . 2 D .32 15. 双曲线 22 1169 x y -=的焦点坐标为 A .()40±, B .()30±, C .()50±, D .()

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

初中数学公式大全(绝对经典)

初中数学公式大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

人教版高中数学圆锥曲线与方程教案

基础巩固强化 一、选择题 1.椭圆2x 2+3y 2=12的两焦点之间的距离是( ) A .210 B.10 C. 2 D .2 2 [答案] D [解析] 椭圆方程2x 2 +3y 2 =12可化为:x 26+y 2 4=1, a 2=6, b 2=4, c 2=6-4=2,∴2c =2 2. 2.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 的值为( ) A .-1 B .1 C. 5 D .- 5 [答案] B [解析] 椭圆方程5x 2+ky 2=5可化为:x 2+y 25k =1, 又∵焦点是(0,2),∴a 2 =5k ,b 2=1,c 2 =5k -1=4, ∴k =1. 3.已知方程x 225-m +y 2 m +9=1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .-98 [答案] B

[解析] 由题意得???? ? m +9>025-m >0 m +9>25-m ,解得8

圆锥曲线与方程复习资料

高中数学选修2-1 第二章 圆锥曲线与方程 知识点: 一、曲线的方程 求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ①建立适当的直角坐标系; (),M x y 及其他的点; ③找出满足限制条件的等式; ④将点的坐标代入等式; ⑤化简方程,并验证(查漏除杂)。 二、椭圆 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12 F F )的点的轨迹称为椭圆。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。()12222MF MF a a c +=> 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 第一定义 到两定点21F F 、 的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 第二定义 到一定点的距离和到一定直线的距离之比为常数e ,即 (01)MF e e d =<< 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c

3、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则121 2 F F e d d M M ==。 常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标和离心率. 【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。

高中初中数学公式大全

数学公式,是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。 如一些基本公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上bx再加上c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

相关主题
文本预览
相关文档 最新文档