当前位置:文档之家› 磁性测量中ZFC和FC数据的获得与解释

磁性测量中ZFC和FC数据的获得与解释

重力数据处理过程

数据处理与异常推断解释 一、数据处理方法的选择 实测的重力异常是地下由浅至深各类地质体的物性差异在地面综合叠加效 应,其中包括界面起伏,岩性不均匀等诸多地质因素在内。为了从实测异常中提取和强化有用信息,压抑干扰噪声,提高重力勘探综合地质解释的能力,故需对 实测资料进行数据处理和综合分析。 1、数据处理目的 通过不同的数据处理手段,达到突出区域重力场信息、突出与强化断裂带异常信息、突出局部重力异常信息,有效地克服或压制不同干扰异常。顺利达到完成区域重力场特征分析、提取剩余异常、断裂构造划分与分析,圈定钾矿成矿有利部位等地质任务。 2、常用的数据处理方法 数据处理采用中国地质调查局发展研究中心推广的多元信息处理系统软件—GeoExpl及中国地质大学MAGS软件进行数据处理。数据处理的目的是在消除各类误差的基础上从叠加场中分离或突出某些目标物的场,并使其信息形式(或信息结构)更易于识别和定量解释。 常用的处理方法有:各种滤波、趋势分析、解析延拓(上延和下延)、导数转换(水平和垂直导数)、圆滑(圆环法和窗口法)、多次切割、差值场法、小波多尺度分析法等方法。 (1)、数据网格化 为空间分析模块及其它数据处理提供数据源。本次采用克里格法,200米×200米,搜索半径1500米。 (2)、异常分离 采用不同滤波因子的正则化滤波、差值场法、小波多尺度分析法、向上延拓等,可分别求取“区域场”和“局部场”,达到异常分离目的。 (3)、延拓处理 向上延拓:压制了浅部小的地质体场的干扰,了解重力异常衰减规律,随着上延高度增加,突出了深部大的地质体的场。区域场反映了测区深部地质环境和

地质构造特征的差异性,为测区地质构造分区划分提供了重要信息;本次向上延拓自100 m、200 m、500 m、1000 m、2000 m,共5个高度。 向下延拓:利用向下延拓可以分离水平叠加异常。密度体埋深大,异常显得宽缓。越接近密度体,异常的范围越接近其边界。本次向下延拓自100 m、200 m、300m、500 m四个高度。 (4)、水平方向导数及水平总梯度 为了准确划分断裂构造,可求取不同方向的水平方向导数、水平总梯度,以及必要时进行“线性增强”处理。 △gu=(Vxz2+Vyz2)1/2。其中Vxz是重力异常沿X方向的一阶导数,Vyz是重力异常沿Y方向的一阶导数。水平总梯度与水平方向导数结合,可以更加准确划分和解释断裂构造。 (5)、垂向导数 垂向导数不仅在局部异常分析中起重要作用,主要突出浅源异常,而且垂向二阶导数的0值区(线)与岩体边界关系密切。 (6)、小波多尺度分析法 把小波多尺度分析方法应用于重磁测资料处理,野外观测值ΔG经一阶小 波分解,得到局部场ΔG 局1和区域场ΔG 区1 ,把ΔG 区1 作二阶小波分解得ΔG 局2 到和ΔG 区2,再把ΔG 区2 作三阶小波分解可得ΔG 局3 和ΔG 区3 ,…,还可以继续分 解下。分解阶数视异常的特征和地质情况来决定,解释时赋于小波逼近部分和各阶的细节明确的地质意义。 根据小波多辩分析的原理,及小波细节的微分特征,实现对位场的多尺度分解及断裂分析。 根据本次1:2.5万重力调查工作的目的任务,重点在于提取可靠的局部重力低值异常,因此,在异常分离上采用多方法进行处理,对比选择抗干扰能力强的方法提取弱局部重力异常。 二、重力异常定性解释 重力异常的解释必需以地层岩石物性资料为基础,注重平面与剖面相结合,定性解释与定量解释相结合,正演与反演相结合。人们对客观事物的认识过程是一个不断实践—认识—再实践的反复过程。同样,对重力资料的处理解释亦是如

磁性材料

磁性材料复习提纲 一、名词解释: 1、磁导率和起始磁导率: 磁导率:u=1+χ=B/(Hu )是表征磁体的磁性、导磁性及磁化难易难度的一 个磁学量;起始磁导率:u i =(lim B/H)/u 是磁中性状态下磁导率的极限值。 2.退磁场和退磁场能量: 退磁场——当一个有限大小的样品被外磁场磁化时,在它两端出现的自由磁极将产生一个与磁化强度方向相反的磁场,起减退磁场的作用,该磁场叫做退磁场。H d =-NM 退磁场能量——磁体在其自身产生的退磁场中具有一定的位能,即为退磁场能, F d ==0.5u NM2,只与磁体的几何形状有关,是一种形状各向异性能。 3.静磁场能:任何磁体被置于外磁场(稳恒磁场or交变磁场)中将处于磁化 状态,此时磁体具有静磁能量,F d =-u M?H=-u MHcosθ。 4.磁化曲线:表示磁感应强度B、磁化强度M与磁场强度H之间的非线性关系。磁化理论常用M-H关系,工程技术多采用B-H关系。 5.剩余磁化强度M r :当材料磁化到饱和以后,逐渐减小外磁场,M或B值也随之减小,但并不沿着初始磁化曲线返回,当外部磁场减小到零时,材料仍保留一定大小的磁化强度或磁感应强度。 6.内禀矫顽力 M H? C :在反方向增加磁场时达到一定数值时,满足M=0或B=0, 那么该磁场强度就称为矫顽力。表征磁性材料磁化后保持磁化状态的能力。 7.退磁曲线:磁滞回线在第二象限的部分称为退磁曲线。 8.磁能积和最大磁能积:退磁曲线上每一点的B和H得乘积(BH)称为磁能 积,是表征永磁材料中能量大小的物理量。磁能积的最大值称为最大磁能积。9.抗磁性:在外磁场的作用下,原子系统获得与外磁场方向反向的磁矩的现象。 11、亚铁磁性:在很小的磁场作用下就能被磁化到饱和,磁化率比铁磁性低一 些,仅为100~103数量级。 12、磁晶各向异性能:自发磁化强度矢量在铁磁体中所取不同方向时,随方向 改变的量。 13、磁滞伸缩现象:磁性材料由于磁化状态的改变,其长度和体积都要发生微 小的变化,这种现象称为磁致伸缩。 14、磁畴壁:磁畴壁是相邻两磁畴间磁矩按一定规律逐渐改变方向的过渡层。 15.技术磁化:铁磁体在外场作用下通过磁畴转动和畴壁位移实现宏观磁化 的过程称为技术磁化。

磁法勘探-重磁异常的地质解释与应用

第十一章重磁异常的地质解释与应用 一、重磁异常的地质解释 1、地质解释的主要内容 1)重磁资料的预分析: 使资料的解释建立在资料完整、可靠、便于解释的基础上。 →→有用异常是否得到明显反映。 2)数据处理 将有意义的异常从叠加异常中分离出来,去掉与任务无关的异常。 其他:延拓,化极,求导等。 3)定性解释 ⅰ:初步解释引起磁异常的地质原因。 ⅱ:大体判定异常源的形态、分布范围、异常界面的起伏变化等。 4)定量解释 得到异常源的形状大小,界面深度等几何参数。 5)地质结论和图示 2、重磁异常的多解性: 1)不同岩石的同一物性参数。可以具有同一数量级,可能在地表引起相同的异常。 2)地表观测的异常分布不是全部空间场值的分布。

二、重力和磁法勘探的主要应用: 1、重力勘探的主要应用: ①研究地壳深部结构和划分大地构造单元。 ②研究区域地质构造:基岩顶界面的深度起伏变化。 ③查明沉积岩内部的局部构造和岩相变化: ④圈定隐伏的岩浆岩体: ⑤探明矿井下和地下浅部的某些地质问题:岩溶、采空区、破 碎带、老窑等 ⑥金属矿床。 2、磁法勘探的主要作用: ①研究结晶基底的起伏变化:预测含煤远景区。 ②圈定不同类型岩石的分布范围: ③确定断层构造。 ④研究褶皱构造。 ⑤煤层燃烧带。 三、实例 1) 圈定含煤岩系的岩浆岩体 我国许多煤田不同程度的受到岩浆岩侵入体的影响。目前,主要是应用磁法勘探来解决岩浆岩的圈定问题。1980年,中国矿业大学物探教研室曾在甘肃窑街煤田进行过圈定超基性岩的磁测工作,目前是研究该区煤矿开采过程中二氧化碳气体突然涌出的原因。同时,磁测结果还提供了断裂构造和烧变岩石的边界位置等资料。 窖街煤田是中生代山间盆地性煤田,盆地基底是弱磁性的前震旦系变质岩,含煤岩系为侏罗纪

重磁数据处理大报告-陈亮

中国地质大学(武汉)地空学院 姓名:陈亮 班级: 061132 学号: 480 指导老师:杨宇山

目录 一、地质任务3 二、工区概况3 三、数据整理4 一、重力资料数据整理4 二、磁场资料数据整理6 四、材料图4 五、研究区重磁异常分析10 六、重磁资料数据处理13 1、重力场延拓13 2、磁场化极处理 16 3、重力场的分离 17 4、磁场的分离18 5、重磁资料导数换算处理20 七、局部重磁异常分析25 八、学习总结25

一、地质任务 (1)将布格重力异常Δg和磁异常ΔT整理出来,计算布格重力异常和磁异常的总精度。 (2)利用surfer绘制测点点位图(即实际材料图),布格重力异常平面图,磁异常ΔT平面图。 (3)根据密度统计表分析研究区的物性特征。 (4)分析研究区重磁异常特征。 (5)对重磁资料进行处理(化极、延拓、导数换算等并绘制结果图件),并进行断裂构造分析。 (6)提取与矿有关的局部重磁异常(绘制结果图件),并进行对应分析,区分矿与非矿异常、磁铁矿与磁铁矿的可能分布范围。 (7)撰写报告。 二、工区概况 研究区位于我国中东部地区,地理坐标为东经°—°,北纬°—°,处在我国非常重要的铁多金属矿成矿带西段。在以往地质、物探工作基础上,2015年3月人们在研究区中部完成了面积为5km2(×2km,线距50m,点距20m,测向方位角0度)的1:5000地面重磁扫面工作。 此次重力施工设计精度为50μGal,磁测施工设计精度为5nT,共完成了3116个测点,检查点159个,重力观测误差为μGal,磁测观测误差为;重力近区地改范围0~20m,在野外完成,采用差分GPS(RTK)进行8方位方形域测量,检查点59个,误差为μGal。点位测量采用RTK差分GPS进行测量,检查313个点,高程测量误差为,平面位置测量误差为。 研究区铁矿赋存于燕山期早的中酸性岩与三叠系地层的接触部位,研究区经历了后期的构造变动,断裂构造发育,浅表磁铁矿经历了风化和淋滤作用后,形

重磁勘探复习资料

重磁勘探复习资料

————————————————————————————————作者:————————————————————————————————日期:

一.地球重力场 1.重力C F G ,其中引力R R m Gm F 3 21;惯性离心力r m C 2 2.mGal u g s m 5 6210.10/1 3.试绘出图1.1中A 、B 、C 各点的引力、惯性离心力和重力的方向。 地球质量对它产生的引力为F,方向大致指向地心。物体A 随地球自转而 引起的惯性离心力为C 。引力与惯性离心力的合力G 就是重力。 4.将地球近似看成半径为6370km 的均匀球体,若极地处重力值为 9.8m /s 3 ,试估算地球的总质量为多少? 在极地处的重力只沿自转轴方向有分量,可近似为2 /GM R g 则 Kg G g R M 2411 62210965.510667.68.9106370 二.重力异常 1.由正常重力位推算得到的在正常椭球面(水准椭球面)上的重力公式称为正常重力公式。基本形式如下: ;β 8 18 1 ; g ;g )(φ g )2sin sin 1(21p e 212为地球扁率为地球的力学扁率为两极重力值为赤道重力值处的正常重力值 ;为计算点的地理经纬度 e e p e g g g g g 正常重力公式:2 2 2 m/s ) 2φ000005sin 0. -φ0053024sin 0. + 1 780327( 9. = g 2.重力异常基本公式 重力异常就是剩余质量的引力位沿Z 方向的导数,即 v z z y x d d d z G V z V g 2/3222])()()[()( 当剩余密度是均匀的时,则可提到积分符号之外,即有 d d z x z G z x g S 2 2)()() (2),( 1.水准面:平静的海洋面是一个重力等位面, 称为大地水准面 2角灵敏度:单位重力的变化所能引起的平衡体偏角的大小。(偏角越大,则表示仪器 越灵敏) 3.布格异常:包含了壳内各种偏离正常密 度分布的矿体与构造的影响, 也包括了地壳下界面起伏而在横向上相对上地幔质量的巨大亏损(山区)或盈余(海洋)的影响。 4.地磁台:连续地测定地磁要素绝对值及随时间变化场值, 其有固定的测点, 称为地磁台 5.地磁脉动:是一种地磁场的微扰变化, 它具有准周期结构的特点。 6.磁化强度:均匀无限磁介质受到外部磁场 H 的作用, 衡量物质被磁化的程度 7.混合改正:由于日变温度及零点掉格三 者混在一起反映在观测数据中, 也可以把 三项影响并成一种综合影响, 一次消除称 为混合改正。 8.二度体:即沿走向为无限长的物体 9.区域性异常:往往与大的区域构造或火 成岩分布等因素有关 10.解析延拓:根据观测平面或剖面上的重力异常值计算高于(或低于)它的平面或剖面上异常值的过程称为向上(或向下)延 拓。

误差理论及数据处理-复习题及答案

《误差理论与数据处理》 一、填空题(每空1分,共20分) 1.测量误差按性质分为_____误差、_____误差和_____误差,相应的处理手段为_____、_____和_____。 答案:系统,粗大,随机,消除或减小,剔除,统计的手段 2.随机误差的统计特性为________、________、________和________。 答案:对称性、单峰性、有界性、抵偿性 3. 用测角仪测得某矩形的四个角内角和为360°00′04″,则测量的绝对误差为________,相对误差________。 答案:04″,3.1*10-5 4.在实际测量中通常以被测量的、、 作为约定真值。 答案:高一等级精度的标准给出值、最佳估计值、参考值 5.测量结果的重复性条件包括:、、 、、。 测量人员,测量仪器、测量方法、测量材料、测量环境 6. 一个标称值为5g的砝码,经高一等标准砝码检定,知其误差为0.1mg,问该砝码的实际质量是________。 5g-0.1mg 7.置信度是表征测量数据或结果可信赖程度的一个参数,可用_________和

_________来表示。 标准差 极限误差 8.指针式仪表的准确度等级是根据_______误差划分的。 引用 9.对某电阻进行无系差等精度重复测量,所得测量列的平均值为100.2Ω,标准偏差为0.2Ω,测量次数15次,则平均值的标准差为_______Ω,当置信因子K =3时,测量结果的置信区间为_______________。 0.2/sqrt(15),3*0.2/sqrt(15) 10.在等精度重复测量中,测量列的最佳可信赖值是_________ 。 平均值 11.替代法的作用是_________,特点是_________。 消除恒定系统误差,不改变测量条件 12.对某电压做无系统误差等精度独立测量,测量值服从正态分布。已知被测电压的真值U 0 =79.83 V ,标准差σ(U )= 0.02V ,按99%(置信因子 k = 2.58)可能性估计测量值出现的范围: ___________________________________。 79.830.02 V*2.58 13.R 1 =150 , R 1 = 0.75 ;R 2 =100 , R 2 = 0.4 ,则两电阻并联后总电阻的绝对误差为_________________。 36.0)100150(150)(16.0)100150(100)(222212122 2 221221=+=+=??=+=+=??R R R R R R R R R R R=R1*R2/(R1+R2), R=264.04.0*36.075.0*16.022 11±=+=???+???R R R R R R

2013-总复习题磁性材料要点

一、填空题(共10分,每空0.5分) 1. 产生磁场的方式有_电流法_和铁磁性材料法。 2. SI制中H的单位是_安培/米_,CGS 单位制中是_奥斯特__ 。 3. 特斯拉是的磁感应强度B _单位,1特斯拉等于__104___高斯。 5. 按照磁体磁化时的磁化率的大小和符号,可以将物质的磁性分为五种:________、 ________、________、________和________ 。 (抗磁性、顺磁性、反铁磁性,铁磁性、亚铁磁性) 6. 磁化曲线随晶轴方向的不同而有所差别,即磁性随晶轴方向显示各向异性,这种现象称为________,它存在于所有铁磁性晶体中,在________中不存在。 (磁晶各向异性、非晶磁性材料) 7. 一般来讲,技术磁化过程存在两种磁化机制,分别为________ 和________ 。 (磁畴壁的位移运动、磁畴转动) 8. 磁性材料材料在交变磁场中产生能量损耗,称为________。磁损耗包括三个方面 ________、________和________。 (磁损耗、涡流损耗、磁滞损耗、剩余损耗) 9. 感生磁各向异性按产生的种类,主要有________、________、________、________。 (磁场或应力热处理感生磁各向异性、轧制感生磁各向异性、生长感生磁各向异性、交换各向异性) 10. 磁性材料在被磁化时,随磁化状态的改变而发生弹性形变的现象,称为________。 磁致伸缩效应 11. 设尖晶石铁氧体的分子式为AxnABynBCznCO4其中A、B、C、为金属元素,x、y、z为相应的金属离子数,nA 、nB、nC为相应的金属离子化学价。则该多元铁氧体的离子数总合与化学价总合应满足:________、________ x+y+z =3、x×nA+y×nB + z×nC=8 1 / 16

误差理论与数据处理实验报告要点

误差理论与数据处理 实验报告 姓名:黄大洲 学号:3111002350 班级:11级计测1班 指导老师:陈益民

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有:1 n i i v ==∑0 1)残余误差代数和应符合:

当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1 n i i v =∑为零; 当 1n i i l =∑>nx ,求得的x 为凑整的非准确数时,1 n i i v =∑为正;其大小为求x 时 的余数。 当 1n i i l =∑

测量数据处理与计量专业实务

一级计量师考试(测量数据处理与计量专业实务)复习要点:测量误差的处理1 各种估计方法的比较 贝塞尔公式法是一种基本的方法,但n很小时其估计的不确定度较大,例如n=9时,由这种方法获得的标准偏差估计值的标准不确定度为25%,而n=3时标准偏差估计值的标准不确定度达50%,因此它适合于测量次数较多的情况: 极差法使用起来比较简便,但当数据的概率分布偏离正态分布较大时,应当以贝塞尔公式法的结果为准。在测量次数较少时常采用极差法: 较差法更适用于频率稳定度测量或天文观测等领域。 一级计量师考试(测量数据处理与计量专业实务)复习要点:异常值的判别和剔除什么是异常值 异常值(abnormal value)又称离群值(outlier),指在对一个被测量的重复观测中所获的若干观测结果中,出现了与其他值偏离较远且不符合统计规律的个别值,它们可能属于来自不同的总体,或属于意外的、偶然的测量错误。也称为存在着“粗大误差”。例如:震动、冲击、电源变化、电磁干扰等意外的条件变化、人为的读数或记录错误,仪器内部的偶发故障等,可能是造成异常值的原因。 如果一系列测量值中混有异常值,必然会歪曲测量的结果。这时若能将该值剔除不用,就使结果更符合客观情况。在有些情况下,一组正确测得值的分散性,本来是客观地反映了实际测量的随机波动特性,但若人为地丢掉了一些偏离较远但不属于异常值的数据,由此得到的所谓分散性很小,实际上是虚假的。因为以后在相同条件下再次测量时原有正常的分散性还会显现出来,所以必须正确地判别和剔除异常值。 在测量过程中,记错、读错、仪器突然跳动、突然震动等异常情况引起的已知原因的异常值,应该随时发现,随时剔除,这就是物理判别法。有时,仅仅是怀疑某个值,对于不能确定哪个是异常值时,可采用统计判别法进行判别。 一级计量师考试(测量数据处理与计量专业实务)复习要点:测量误差的处理2 算术平均值的应用 由于算术平均值是数学期望的最佳估计值,所以通常用算术平均值作为测量结果。当用算术平均值作为被测量的估计值时,算术平均值的实验标准偏差就是测量结果的A类标准不确定度。 一级计量师考试(测量数据处理与计量专业实务)复习要点:最大允许误差的表示形式1 计量器具又称测量仪器。(测量仪器的)最大允许误差(maIilnn permLsibl eerrors)是由给定测量仪器的规程或规范所允许的示值误差的极限值。它是生产厂规定的测量仪器的技术指标,又称允许误差极限或允许误差限。最大允许误差有上限和下限,通常为对称限,表示时要加±号。 最大允许误差可以用绝对误差、相对误差、引用误差或它们的组合形式表示。 1.用绝对误差表示的最大允许误差 例如,标称值为1Ω的标准电阻,说明书指出其最大允许误差为±0.01Ω。即示值误差的上限为+0.01Ω,示值误差的下限为-0.01Ω,表明该电阻器的阻值允许在0.99Ω~1.01Ω范围内。一级计量师考试(测量数据处理与计量专业实务)复习要点:测量复现性的评定测量复现性是指在改变了的测量条件下,同一被测量的测量结果之间的一致性。改变了的测量条件可以是:测量原理、测量方法、观测者、测量仪器、计量标准、测量地点、环境及使用条件、测量时间。改变的可以是这些条件中的一个或多个。因此,给出复现性时,应明确说明所改变条件的详细情况。 例如在实验室内为了考察计量人员的实际操作能力.实验室主任请每一位计量人员在同样的条件下对同一件被测件进行测量,将测量结果按式(3-13)计算测量结果的复现性。此时

电磁铁磁学名词解释

什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系 理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场---关于退磁场的概念,见9 Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J之和。由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B: B=?0H+J (SI单位制)(1-1) B=H+4?M (CGS单位制) 磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。 对于非铁磁性介质如空气、水、铜、铝等,其磁极化强度J、磁化强度M 几乎等于0,故在这些介质中磁场强度H与磁感应强度B相等。 由于磁现象可以形象地用磁力线来表示,故磁感应强度B又可定义为磁力线通量的密度,磁感应强度B和磁通密度B在概念上可以通用。 金属磁性材料分为几大类,它们是如何划分的 金属磁性材料分为永磁材料、软磁材料二大类。通常将内禀矫顽力大于0.8kA/m的材料称为永磁材料,将内禀矫顽力小于0.8kA/m的材料称为软磁材料。 什么叫磁能积(BH)m 在永磁材料的B退磁曲线上(二象限),不同的点对应着磁体处在不同的工作状态,B退磁曲线上的某一点所对应的Bm和Hm(横坐标和纵坐标)分别代表磁体在该状态下,磁体内部的磁感应强度和磁场的大小,Bm和Hm的绝对值的乘积(BmHm)代表磁体在该状态下对外做功的能力,等同于磁体所贮存的磁能量,称为磁能积。在B退磁曲线上的Br点和bHc点,磁体的(BmHm)=0,表示此时磁体对外做功的能力为0,即磁能积为0;磁体在某一状态下(BmHm)

吉林大学重磁数据处理与解释报告

地球探测科学与技术学院 沈阳及其附近地区重磁数据处理与解释 报告 姓名:李雪垒 学号: 班级:四班 专业:勘查技术与工程(应用地球物理) 指导教师:吴燕冈教授 目录 前言 (2)

第一章重磁数据处理基本原理与方法 (3) 一、重力场与磁场的波谱介绍 (3) 二、数据处理的基本方法 (3) 三、Surfer、Grapher简介 (3) 第二章地质概况 (5) 一、东北及其附近地区地质概况 (5) 二、实验区内的地质概况 (5) 第三章区内重磁异常综合解释 (8) 一、重力数据异常处理与解释 (8) 二、磁异常数据异常处理与解释 (12) 三、重磁异常场综合分析 (15) 第四章本次实验的初步结论 (16) 主要参考文献 (16)

前言 重力勘探是测量与围岩有密度差异的地质体在其周围引起的重力异常﹐以确定这些地质体存在的空间位置﹑大小和形状,从而对工作地区的地质构造和矿产分布情况作出判断的一种地球物理勘探方法。磁法勘探是通过观测和分析由岩石、矿石(或其他探测对象)磁性差异所引起的磁异常,进而研究地质构造和矿产资源(或其他探测对象)的分布规律的一种地球物理勘探方法。二者有广泛的应用,如研究地壳深部构造;研究区域地质构造,划分成矿远景区;掩盖区的地质填图,包括圈定断裂﹑断块构造﹑侵入体等;广泛用于普查与勘探可燃性矿床(石油﹑天然气﹑煤);查明区域构造,确定基底起伏,发现盐丘﹑背斜等局部构造;普查与勘探金属矿床(铁﹑铬﹑铜﹑多金属及其他),主要用于查明与成矿有关的构造和岩体,进行间接找矿;也常用于寻找大的﹑近地表的高密度矿体,并计算矿体的储量;工程地质调查;如探测岩溶,追索断裂破碎带等。 随著电子技术的发展和微处理机的广泛应用,测量磁场3个分量及其梯度的高精度航空磁力仪已经制成。加上高精度的导航和数据处理,绘图和资料解释推断的自动化,今后航空磁法勘探将代替部分地面磁法勘探,并在工作过程中自动作出解释,绘出磁性体空间分布图。利用这些图件,再结合其他资料,能可靠地对工作地区的地质构造作出推断,供找矿﹑找地下水﹑工程建设和地震预报等方面应用。我国在改革开放以后,随着科学技术的飞速发展,在重磁勘探领域取得了令人瞩目的成就,在测量精度方面大大提高。 由于重磁法勘探应用广泛,成本不高,因此在勘探领域一般是其他勘探方法之前的首选方法。由于地球区域复杂,通常要对所采集的数据进行各种处理,以去除各种无关影响,提取所要的结果。同时根据处理结果对其进行解释,其中解释又分为定性解释与定量解释,其处理方法与解释方法在本次实验中均有所简单涉及。 在本次课程中,我们主要学习了重磁异常的空间域处理与转换,重磁异常的波数域处理,重磁异常的反演方法以及重磁资料的地质解释和在勘探中的应用等。 基于本学期学习的内容及理论知识,结合自己的理解对东北地区的重磁异常做初步的处理及解释。本次实验作图工具使用的为Surfer和Grapher,同时也参考了一些前人的研究成果,以此作为基本出发点,进而得出一些初步的结论。

误差理论与数据处理试题整理

误差分析与数据处理 一.填空题 1. ______(3S或莱以特)准则是最常用也是最简单的判别粗大误差的准则。 2. 随机误差的合成可按标准差和______(极限误差)两种方式进行。 3. 在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性称为______(重复)性。 4. 在改变了的测量条件下,同一被测量的测量结果之间的一致性称为______(重现)性。 5. 测量准确度是指测量结果与被测量______(真值)之间的一致程度。 6. 根据测量条件是否发生变化分类,可分为等权测量和______(不等权)测量。 7. 根据被测量对象在测量过程中所处的状态分分类,可分为静态测量和_____(动态)测量。 8. 根据对测量结果的要求分类,可分为工程测量和_____(精密)测量。 9. 真值可分为理论真值和____(约定)真值。 10. 反正弦分布的特点是该随机误差与某一角度成_____(正弦)关系。 11. 在相同条件下,对同一物理量进行多次测量时,误差的大小和正负总保持不变,或按一定的规律变化,或是有规律地重复。这种误差称为______(系统误差)。 12. 在相同条件下,对某一物理量进行多次测量时,每次测量的结果有差异,其差异的大小和符号以不可预定的方式变化着。这种误差称为______(偶然误差或随机误差)。 13. 系统误差主要来自仪器误差、________(方法误差)、人员误差三方面。 14. 仪器误差主要包括_________(示值误差)、零值误差、仪器机构和附件误差。 15. 方法误差是由于实验理论、实验方法或_________(实验条件)不合要求而引起的误差。 16. 精密度高是指在多次测量中,数据的离散性小,_________(随机)误差小。 17. 准确度高是指多次测量中,数据的平均值偏离真值的程度小,_________(系统)误差小。 18. 精确度高是指在多次测量中,数据比较集中,且逼近真值,即测量结果中的_________(系统)误差和_________(随机)误差都比较小。 19. 用代数方法与未修正测量结果相加,以补偿其系统误差的值称为_____(修正值)。 20. 标准偏差的大小表征了随机误差的_____(分散)程度。

水深测量数据采集与处理系统技术规定

水深测量数据采集与处理技术要求 Technical requirement for the bathymetric data collection and processing JT/T 701 —2007 1范围本标准规定了水深测量的系统配置、测前准备、数据采集、数据处理、资料的检查 验收和资料汇交等技术要求。 本标准适用于采用水深数据自动化采集系统进行的沿海港口航道水深测量。本标准不包括多波束测深设备的测量技术要求。 2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期 的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然 而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的 引用文件,其最新版本适用于本标准。 GB 12319 中国海图图式 GB 12327 海道测量规范《沿海港口、航道测绘产品质量检查验收办法及质量评定标 准》(交通部海事局) 3总则 3.1平面坐标采用国家统一规定的坐标系,其与地心坐标系的关系采用国家统一使用的转 换参数或满足 GB 12327精度要求的区域性转换参数。 3.2高程采用国家统一规定的国家高程基准,远离大陆的岛、礁,其高程基准可采用当地 平均海面。 3.3深度基准面采用理论最低潮面,深度基准面从当地平均海面起算;一般情况下,它应与 国家高程基准进行联测。深度基准面一经确定并正式采用,一般不得变动。 3.4测图采用高斯 -克吕格投影,大于 1:5,000 比例尺测图采用 1.5 °带投影,大于(含) 1:10,000 比例尺测图采用 3°带投影,小于 1:10,000 比例尺测图采用 6°带投 影,小于(含) 1:50,000 比例尺测图可采用墨卡托投影,并以测区的中央纬度作为基准纬线。 3.5直接用于沿海港口航道水深测量的最低平面控制基础应采用 GPSE 级点,或等同于该等 级点的控制点。 3.6工作水准点与主要水准点之间的高差, 按四等水准测量要求,工作前后各测定一次。验 潮站的 水尺至工作水准点之间的高差可用等外水准测定。 3.7水深测量定位中误差:大于 1:5,000 比例尺测图时,应不大于图上 1.5mm;小于 (含) 1:5,000 大于(含) 1:100,000 比例尺测图时,应不大于图上 1.0mm;小于 1:100,000 比例尺测图时,应不大于实地 100m。 3.8图式符号按 GB 12319 执行。 3.9水深测量的标准图幅尺寸为:

磁学常用名词解释

磁学常用名词解释 磁学量常用单位换算 磁概念 永磁材料:永磁材料被外加磁场磁化后磁性不消失,可对外部空间提供稳定磁场。钕 铁硼永磁体常用的衡量指标有以下四种: 剩磁(Br )单位为特斯拉(T )和高斯(Gs ) 1Gs =0.0001T 将一个磁体在闭路环境下被外磁场充磁到技术饱和后撤消外磁场,此时磁体表现的磁 感应强度我们称之为剩磁。它表示磁体所能提供的最大的磁通值。从退磁曲线上可见,它 对应于气隙为零时的情况,故在实际磁路中磁体的磁感应强度都小于剩磁。钕铁硼是现今 发现的Br 最高的实用永磁材料。 磁感矫顽力(Hcb )单位是安/米(A/m)和奥斯特(Oe )或1 Oe≈79.6A/m 处于技 术饱和磁化后的磁体在被反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为 磁感矫顽力(Hcb )。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁 化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定 的磁性能。钕铁硼的矫顽力一般是11000Oe 以上。 内禀矫顽力(Hcj )单位是安/米(A/m)和奥斯特(Oe )1 Oe≈79.6A/m 使磁体的 磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁 体抗退磁能力的一个物理量,如果外加的磁场等于磁体的内禀矫顽力,磁体的磁性将会基 本消除。钕铁硼的Hcj 会随着温度的升高而降低所以需要工作在高温环境下时应该选择高Hcj 的牌号。 磁能积(BH)单位为焦/米3(J/m3)或高?奥(GOe )1 MGOe≈7. 96k J/m3 退磁曲 线上任何一点的B 和H 的乘积既BH 我们称为磁能积, 而B×H 的最大值称之为最大磁能 积(BH)max。磁能积是恒量磁体所储存能量大小的重要参数之一,(BH)max越大说明磁体蕴含的磁能量越大。设计磁路时要尽可能使磁体的工作点处在最大磁能积所对应的B 和H 附近。各向同性磁体:任何方向磁性能都相同的磁体。 各向异性磁体:不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得 磁性能最高的磁体。烧结钕铁硼永磁体是各向异性磁体。 取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。也称作 “取向轴”,“易磁化轴”。 磁场强度:指空间某处磁场的大小,用H 表示,它的单位是安/米(A/m)。磁化强度:指材料内部单位体积的磁矩矢量和,用M 表示,单位是安/米(A/m)。磁感应强度:磁感应强度B 的定义是:B=μ0(H+M),其中H 和M 分别是磁化强度和磁场强度,而μ0

测量数据处理

目录 一、MATLAB简介 二、角度与弧度互换 1.角度转换为弧度 2.弧度转换为角度 三、坐标正反计算 1.坐标正算 2.坐标反算 四、交会定点 1.前方交会 2.后方交会 五、假设检验 1.单个正态总体均值差的检验 2.两个正态总体均值差的检验 3.Χ2检验 4. F检验 六、多元线性回归 七、成绩评定

(一)MATLAB简介 MATLAB是matrix和laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的 编辑模式,代表了当今国际科学计算软件的先进水平。 Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以 后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。20世纪70年代,美国新墨西哥大学计算机科学系主任Cleve Moler为了减轻学生编程的负担,用FORTRAN编写了最早的MATLAB。1984年由Little、Moler、Steve Bangert合作成立了的MathWorks公司正式把MATLAB推向市场。到20世纪90年代,MATLAB已成为国际控制界的标准计算软件。MATLAB:统一了用于一维、二维与三维数值积分的函数并提升了基本数学和内插函数的性能MATLAB Compiler:可以下载 MATLAB Compiler Runtime (MCR),简化编译后的程序和组件的分发Image Processing Toolbox:通过亮度指标优化进行自动 图像配准Statistics Toolbox:增强了使用线性、广义线性和非线性回归进行 拟合、预测和绘图的界面system Identification Toolbox:识别连续时间传递函数。 MATLAB由一系列工具组成。这些工具方便用户使用MATLAB的函数和文件,其中许多工具采用的是图形用户界面。包括MATLAB桌面和命令窗口、历史命令窗口、编辑器和调试器、路径搜索和用于用户浏览帮助、工作空间、文件的浏览器。随着MATLAB的商业化以及软件本身的不断升级,MATLAB的用户界面也越来越精致,更加接近Windows的标准界面,人机交互性更强,操作更简单。而且新版本的MATLAB提供了完整的联机查询、帮助系统,极大的方便了用户的使用。简单的编程环境提供了比较完备的调试系统,程序不必经过编译就可以直接运行,而且能够及时地报告出现的错误及进行出错原因分析 Matlab是一个高级的矩阵/阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M文件)后再一起运行。新版本的MATLAB语言是基于最为流行的C++语言基础上的,因此语法特征与C++ 语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强,这也是MATLAB能够深入到科学研究及工程计算各个领域的重要原因。

磁性物理复习

磁性物理 一、名词解释 1.元磁偶极子:指强度相等,极性相反并且其距离无限接近的一对“磁荷”。 2.磁场强度H:为单位点电荷在该处所受的磁场力的大小,方向与正磁荷在该处所受磁场力方向 一致。 3.磁矩:磁偶极子磁性大小方向可以用磁矩来表示,磁矩定义为磁偶极子等效的平面回路的电流 和回路面积的乘积,即 4.磁化强度(M):是描述宏观磁体强弱程度的物理量。 5.磁感应强度:描述磁场强度和方向的物理量,是矢量。 6.磁化曲线:表示物质中的磁场强度H与所感应的磁感应强度B之间的关系。 7.磁滞回线:在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作 周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。 8.磁化率:表征磁介质属性的物理量。 9.磁导率:又称导磁系数,是衡量物质的导磁性能的一个物理量,可通过测取同一点的B、H值 确定。 10.退磁场:有限几何尺寸的磁体在外磁场中被磁化后,表面将产生磁极,从而使磁体内部存在与 磁化强度M方向相反的一种磁场,起减退磁化的作用,称为退磁场H d。 11.交换能(F ex):电子自旋间的交换相互作用产生的能量。 12.磁晶各向异性能(F k):铁磁体内晶体场对轨道电子间的作用、电子的轨道磁矩与自旋磁矩间 的耦合效应所产生的能量。 13.磁应力能(Fδ):铁磁体内磁性和弹性(形变)相互作用所引起的能量(又称为磁弹性应力能)。 14.退磁场能(F d):铁磁体与其自身所产生的退磁场之间的相互作用能。 15.静磁能(F H):铁磁体与外磁场之间的相互作用产生的能量。 16.磁致伸缩现象:铁磁晶体由于磁化状态的改变,其长度或体积都要发生微小的变化,这种现象 叫磁致伸缩现象。 17.磁畴:指铁磁体材料在自发磁化的过程中为降低静磁能而产生分化的方向各异的小型磁化区 域。 18.自发磁化:磁有序物质在无外加磁场的情况下,由于近邻原子间电子的交换作用或其他相互作 用,使物质中各原子的磁矩在一定空间范围内呈现有序排列而达到的磁化,称为自发磁化19.技术磁化:技术磁化阐述的是关于铁磁质在整个磁化过程中磁化行为的机理,即阐明了在外 磁场作用下,磁畴是通过何种机制逐渐趋向外磁场方向的。 20.畴壁:各个磁畴之间的交界处称为畴壁。 21.畴壁位移:在有外场作用下,自发磁化方向接近于H方向的磁畴长大,而与H方向偏离较大 的近邻磁畴相应缩小,从而使畴壁发生位置变化,这个磁化过程称为畴壁位移 22.磁泡:在消磁状态下,若外加向上的磁场,随着磁场强度增加,向下的磁畴逐渐减小,从达 到某一磁场强度开始出现圆柱状磁畴,由于其形状有如泡状,故称其为磁泡。 23.Neel壁:磁矩平行于薄膜表面逐渐过渡。特点:畴壁面上无自由磁极出现,保证了在畴壁上不

应用地球物理重磁报告

应用地球物理—重磁电 读书报告 姓名:*** 学号:*************** 攻读专业:固体地球物理学 课程成绩:

前言 重力勘探是测量与围岩有密度差异的地质体在其周围引起的重力异常﹐以确定这些地质体存在的空间位置﹑大小和形状,从而对工作地区的地质构造和矿产分布情况作出判断的一种地球物理勘探方法。磁法勘探是通过观测和分析由岩石、矿石(或其他探测对象)磁性差异所引起的磁异常,进而研究地质构造和矿产资源(或其他探测对象)的分布规律的一种地球物理勘探方法。二者有广泛的应用,如研究地壳深部构造;研究区域地质构造,划分成矿远景区;掩盖区的地质填图,包括圈定断裂﹑断块构造﹑侵入体等;广泛用于普查与勘探可燃性矿床(石油﹑天然气﹑煤);查明区域构造,确定基底起伏,发现盐丘﹑背斜等局部构造;普查与勘探金属矿床(铁﹑铬﹑铜﹑多金属及其他),主要用于查明与成矿有关的构造和岩体,进行间接找矿;也常用于寻找大的﹑近地表的高密度矿体,并计算矿体的储量;工程地质调查;如探测岩溶,追索断裂破碎带等。 随著电子技术的发展和微处理机的广泛应用,测量磁场3个分量及其梯度的高精度航空磁力仪已经制成。加上高精度的导航和数据处理,绘图和资料解释推断的自动化,今后航空磁法勘探将代替部分地面磁法勘探,并在工作过程中自动作出解释,绘出磁性体空间分布图。利用这些图件,再结合其他资料,能可靠地对工作地区的地质构造作出推断,供找矿﹑找地下水﹑工程建设和地震预报等方面应用。我国在改革开放以后,随着科学技术的飞速发展,在重磁勘探领域取得了令人瞩目的成就,在测量精度方面大大提高。 由于重磁法勘探应用广泛,成本不高,因此在勘探领域一般是其他勘探方法之前的首选方法。由于地球区域复杂,通常要对所采集的数据进行各种处理,以去除各种无关影响,提取所要的结果。同时根据处理结果对其进行解释,其中解释又分为定性解释与定量解释。 在本次课程中,重力和磁法方面,我们主要学习了重磁方法的基本理论知识,重磁异常的反演方法以及重磁资料的地质解释和在勘探中的应用等。本文结合应用地球物理—重磁电这门课程的学习内容,主要介绍了重磁数据处理基本原理与方法,并结合自己的研究方向,做了几个简单的正演模型,结合所学知识对正演模型进行了初步的解释,为在实际中的应用提供参考。

相关主题
文本预览
相关文档 最新文档