当前位置:文档之家› 材料力学课程设计-车床主轴

材料力学课程设计-车床主轴

材料力学课程设计-车床主轴
材料力学课程设计-车床主轴

材料力学课程设计设计计算说明书

设计题目:车床主轴设计

学号:

姓名:

指导教师:

一、设计目的

材料力学课程设计的目的是在于系统的学习材料力学之后,能结合工程中的实际问题,运用材料力学设计的基本原理和计算方法,独立计算工程中的典型零部件,已达到综合运用材料力学的知识解决工程实际问题的能力。同时,可以使我们将材料力学的理论和现代的计算方法及手段融为一体。即从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;即把以前学到的知识综合的运用,又为以后的学习打下了基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。

1.使我们的材料力学知识系统化,完整化。

2.在系统的全面的复习的基础上,运用材料力学的知识解决工程中的实际问题。

3.由于选题力求结合专业实际,因而课程设计可以把材料力学的知识和专业需要结合起来。

4.综合运用以前所学的各门课程知识,是相关学科知识有机的联系起来。

5.初步了解和掌握工程实践中的设计思想和方法,为以后打下基础。

二、设计的任务和要求

1.画出受力分析计算简图和内力图

2.列出理论依据和导出的计算公式

3.独立编制计算机程序,通过计算机给出计算结果

4.完成设计说明书。

三、设计题目

车床主轴设计---

某车床主轴尺寸及受力情况如图1所示。在A、B、C三个支座的中间支座B处,轴承与轴承座之间有间隙 ,正常工作时,B处轴承不起支撑作用,

此时轴处于A 、C 两支座下的静定状态。当B 截面处弯曲变形大于间隙δ时,轴处于A 、B 、C 三支座下的静不定状态。轴截面E 处装有斜齿轮,其法向压力角为α,螺旋角为β,工作处的切削力有Fx 、Fy 、Fz (在进行强度、刚度计算时,可以不计轴向力Fx 的影响,而以弯曲、扭转变形为主)。轴的材料为优质碳素结构钢(45钢),表面磨削加工,氮化处理。其他已知数据见表1。

1、 试按静定梁(A 、C 支撑)的强度、刚度条件设计等截面空心圆轴外

径D(d/D 值可见数据表2),并计算这时轴上B 截面处的实际位移。

2、 在安装齿轮的E 截面处有一铣刀加工的键槽,试校核此截面处的疲

劳强度。规定的安全系数n=3(1-σ=420a MP ,1-τ=240a MP )。

3、 对静不定情况(A 、B 、C 支撑),同时根据强度、刚度条件设计外径

D ,并用疲劳强度理论校核。

表1:

)(?α )(?β m /δ

MPa /][σ m f D /][ m f E /][ rad c /][θ

20

10

0.5410-? 150 3.3410-? 3.5410-? 0.0028

注意:设计中不考虑轴的旋转静定要求和热变形的影响,并且将各轴承视为刚体,且不产生刚体位移,不考虑制造工艺和尺寸链等因素。 表2:(设计计算数据表Ⅰ12)

1l /m

2l /m

3l

/m

a /m

b /m

R /m

θ (

)? n/

(r/min )

P

/kw

D d

y H F /N

Z H F /N

11 0.1

6 0.47

0.15

0.12

0.16

0.12

45 400 5.2 0.6

5

4000 2400

图一:

一、 对主轴静定情况校核

由公式可知Me=9549?min

/}{}{r kw n p = 9549 5.2

400?=124.14N m ?

∴F t =

Me R =124.14

0.12

=1034.48N 由斜齿轮受力分析得: F r =

t tan cos F αβ

=1034.480.3640.985?=382.28N

则有:F y E =F t sin θ-F r cos θ=461.18N F Z E =F t cos θ+F r sin θ=1001.83N

Mdz =F y b= F Hy b=4000?0.16=640N ?m

Mdy =F Z b= F Hz b=2400?0.16=384N ?m

由图1受力分析求支座反力F Ay 、F Az 、F Cy 、F Cz :

)(F M

Cz

∑= F Ay (L 1+L 2)+F Ey a-Mdz - F y L 3=0

∴ F

Ay

=1880.41N

∑)(F

M

Az = F

Cy

(L

1

+L

2

)+ F

Ey

(L

1

+L

2

-a)+Mdz+ F

y

( L

1

+L

2

+L

3

)=0

∴ F

Cy

=-6341.4N

∑)(F

M

Cy = F

Az

(L

1

+L

2

)+ F

Z

E

a+Mdy+ F

Z

L

3

=0

∴F

Az

=-1371.81N

∑)(F

M

Ay = F

Cz

(L

1

+L

2

)+ F

Ez

(L

1

+L

2

-a)-Mdy- F z( L

1

+L

2

+L

3

)=0

∴ F

Cz

=2030.2N

根据已知分别作出Y、Z方向的剪力图与弯矩图,如下图所示:

由剪力图及弯矩图可知c 点为危险点且:

Mc=22

7431240+=1445.6N ?m

Me=124.14N ?m

1.根据第三强度理论校核(忽略剪力): Mc W

σ= Me

2W τ=

W

Me r 223Mc +=

σ][σ≤ 且 )1(3243

απ-=D W 代入数据解得: D 1≥4.93210-?m 2.由刚度对轴进行校核: 利用图乘法∑

=-

-=?n

i ci

i EI

M 1?对各点进行刚度校核:

1)根据D 点刚度计算轴径,在D 点分别沿y 、z 轴加一单位力有扭矩图如下图

=

Dy f 14.0219912.021

121.03295951.0211???+???????EI

EI 3

.52211.015.01880=

??????+

]EI EI f Dz 97.3415.011271.02114.0144312.021

121.03

2

6.69951.0211-=???+???+???????-

=

=

+=

2

2Dz Dy D f f f EI

91

.62m f D 4103.3][-?=≤ E=210Pa 910? I=

44404.0)1(64

D D =-απ

4

9410

3.30

4.01021091

.62-????≥

∴D 22109.6-?≥∴D m 2) 根据E 点刚度计算轴径,在E 点分别沿y 、Z 轴加一单位力有扭矩图如下图

EI

EI f Ey 6.24]12.021*******.03232959097.051.021[1=????+????=

EI

EI f Ez 77.17]3212.0311443097.0216.69932097.051.021[1-=?????+????-

= ][11.302

2E Ez Ey

E f EI

f f f ≤=+= 即:44

9105.304.01021011

.30-?≤??D 解得:D32106.5-?≥m

综上所述:D=max[D 1、D 2、D 3]=6.9210-?m

当D= 6.9210-?m 时,计算B 点的实际位移:(应用图乘法)

]EI 71.3301.0219912.02106.035.0125921

8.030016.021[1=???+???+???=

EI f By

]EI 5.2401.0144212.02106.035.091821

8.021916.021[1=???+???+???=

EI f By =-

m EI f f f Bz By B 4

4

292

21018.2)109.6(04.01021066.4157.30--?=????==

+=

3.疲劳强度校核:

若不计键槽对抗弯截面系数的影响,则危险截面处抗弯截面系数:

3643

1021)1(32

--?=-=

m D απ?

由弯矩M 不变可知该循环为对称循环,则有: MPa Pa W M 51.5610216999596

22min max =?+==-=-σσ MPa Pa W M P X 95.210

421246

max =?==

-τ 查表确定铣加工的键槽危险截面处疲劳强度的影响系数: 60.1=σK 88.1=τK 75.0=σε 73.0=τε 8.1=β 则:27.651.568

.175.060

.1420max

1

=??=

=

-MPa

MPa

K n σβ

εσσσ

σ

87.5695.28

.173.088

.1240max 1

=??=

=

-MPa

MPa

K n τβ

ετττ

τ

323.62

2

>=+=τ

στστσn n n n n 故E 处满足疲劳强度要求。

二、 对超静定情况进行校核

由m f m B 441018.2105.0--?=

By By By By FBy F EI

F F EI f f 00297.0]119.032119.047.021119.032119.016.021[1=????+????=

-=δ 又EI f By

71

.33=; 代入上式有:N EI F By 2.379500297

.071.33=-=

δ

z

z z z z

00297

.0]119.032119.047.021119.032119.016.021[1B B B B FB F EI

F F EI f f =????+????=-=δ

又EI

f Bz 6

.24=

;代入上式有: N EI

F Bz 5.168700297

.06.24=-=

δ

从而求A 、C 点的支反力有:

1223()()6400Cy Ey Ay By y M F F a F L L F L F L ∑=+++--= N

F Ay 2.634-=∴

12112123()()()640()0

Ay

Cy By Ey y M

F F L L F L F L L a F L L L =++++-++++=∑

N F Cy 7622-=∴

1223()()3840Cz Az Bz Ez Z M F F L L F L F a F L =+++++=

N F Az 53.2046-=∴

12112123()()()384()0Az

Cz Bz Ez Z M

F F L L F L F L L a F L L L =++++---++=∑

N F Cz 9.3042-=∴ 做剪力图Qy F 、Qz

F

如下所示:

做弯矩图

M、Mz如下图所示:

y

由上图有:m N M M Mc cz cy

?=+=5.148422 C 点为危险点 1).第三强度理论校核有: ][1

223σ?

σ≤+=

e c r M M 且 )1(32

43απ

?-=

D

代入数据解得:m D 211097.4-?≥ 2).由刚度对轴进行校核: 利用图乘法∑

=-

-=?n

i ci

i EI

M 1?对各点进行刚度校核:

1. 根据D 点的刚度对主轴进行校核,分别沿Y 、Z 轴加一单位力得到如下图所示弯矩图:

EI EI f Dy 38.45]12.04.207915.02115.02.244414.021

04.04.10116.021[1=???+???+???-=

()]EI

EI f Dz 44.2812.015.08052112.014.042143721

1.035.0)473327(2

1

03.032716.021[1-=???+??+?+??++???-

=

则:m f EI

f f f D Dz Dy D 42

2103.3][56

.53-?=≤=

+= 解得:m D 221063.6-?≥ 根据E 点的刚度对轴校核:有静定情况可知23D D ≤ 综上所述:m D D D D 23211063.6],,max[-?== 3)疲劳强度校核:

查机械手册得到:60.1=σK 88.1=τK 75.0=σε 73.0=τε 8.1=β则:

3643

1046.23)1(32

m D W -?=-=

απ;

MPa W M 27.6310

46.235.14846min max =?==

-=-σσ

MPa W M P

X

64.2max ==

τ 6.527

.638

.175.060

.1420

max

1

=??=

=

-σβ

εσσσ

σK n ;

54.6364

.28

.173.088

.1240

max

1=??=

=

-τβ

ετττ

σK n ;

357.52

2

>=+=

τ

στσn n n n n ;故满足强度条件。

三、 循环计算程序

#include #include #define pi 3.141592654 #define ip 0.017453292

floatL1,L2,L3,a,b,A0,n,P,i,Fy,Fz,Fby=0,Fbz=0,Fcy,Fcz,Fey,Fez,Mby,Mbz, Mcy,Mcz,Mey,Mez,,Md,Mc,www,xxx=150,eee=0.21,ddd,fby0,fbz0,fby1,fbz1, Fffe=0.00035,fffd=0.00033,aaac=0.0028,aMb,aMc,aMe,aaaac,fffb=0.00005, Fffbb,big,SM,SN,B1,SD,FFF; void zaihe()

{long double Ft,Fy,An=20.0,Bn=10.0; Ft=30*P*1000/(n*pi*R); Fy=Ft*tan(An*ip)/(cos(Bn*ip); Fey=Ft*sin(A0*ip)-Fy*cos(A0*ip; Fez=Ft*cos(A0*ip)+Fy*sin(A0*ip); Me=Ft*R;Md=-Me;Fdy=Fy;Fdz=-Fz; Mdy=Fdy*b;Mdz=Fdz*b;} void waili()

{Fay=(Fdz*L3+Mdz-Fez*a-Fbz*L2)/(L1+L2);Fcy=(-Fdy*(L1+L2+L3)-Mdy-Fey(L 1+L2-a)/(L1+L2);Faz=(Fdy*L3+Mdy-Fey*a-Fby*L2)/(L1+L2);Fcz=(-Fdz*(L1+L

2+L3)-Mdz-Fez(L1+L2-a) /(L1+L2);

Mby=Fay*L1;Mbz=Faz*L1;

Mey=Fay*(L1+L2-a)+Fby*(L2-a);Mez=Faz*(L1+L2-a)+Fbz*(L2-a); Mcy=Fay*(L1+L2)+Fby*L2+Fey*a;Mcz=Faz*(L1+L2)+Fbz*L2+Fez*a;} void qiangdu()

{long double Xmax,Mmax,Xmax1,Xmax3,Xmax2=0.0;

Mc=sqrt(Mcy*Mcy+Mcz*Mcz);Xmax=Mc/www;Mmax=Me/(2*www);

Xmax3=-Xmax/2-sqrt((Xmax/2)*(Xmax/2)+Mmax*Mmax);

Xmax1=-Xmax/2+sqrt((Xmax/2)*(Xmax/2)+Mmax*Mmax);

ddd=sqrt(((Xmax1-Xmax2)*(Xmax1-Xmax2)+(Xmax2-Xmax3)*(Xmax2-Xmax3)+(Xm ax3-Xmax1)*(Xmax3-Xmax1))/2)/xxx;ddd=pow(ddd,0.333333333333333333333) ;ddd=ddd/100;ddd=(float)ddd;}

voidnaodu(){longdoublefffd1,fffdy,fffdz;fffdy=L1*Mby*L1*aMc/(L1+L2)/ 0.147/eee;fffdy+=(L2-a)*(Mby*(2*aMc*L1/(L1+L2)+aMc*(L1+L2-a)/(L1+L2)) +Mey*(2*aMc*(L1+L2-a)/(L1+L2)+aMc*L1/(L1+L2)))/(0.294*eee);fffdy+=a*( Mey*(2*aMc+(L1+L2-a)*aMc/(L1+L2)+aMc)+Mcy*(2*aMc+(L1+L2-a)*aMc/( L1+L 2)))/(0.294*eee);fffdy+=L3*Mac*(Mdy-2*Mcy)/(0.294*eee);fffdz=L1*Mbz*L 1*aMc/(L1+L2)/0.147/eee;fffdz+=(L2-a)*(Mbz*(2*aMc*L1/(L1+L2)+aMc*(L1+ L2-a)/(L1+L2))+Mez*(2*aMc*(L1+L2-a)/(L1+L2)+aMc*L1/(L1+L2)))/(0.294*e ee);

fffdz+=a*(Mez*(2*aMc+(L1+L2-a)*aMc/(L1+L2)+aMc)+Mez*(2*aMc+(L1+L2-a)* aMc/(L1+L2)))/(0.294*eee);

fffdz+=L3*Mac*(Mdz+2*Mcz)/(0.294*eee);

fffd1=pi*sqrt(fffdy*fffdy+fffdz*fffdz)/www/32/fffd;

ddd=pow(fffd1,0.25);ddd=ddd/1000;ddd=(float)ddd;}

void naodue()

{long double fffe1,fffey,fffez;

fffey=L1*Mby*L1*aMe/(L1+L2-a)/0.147/eee;

fffey+=(L2-a)*(Mby*(2*aMe*L1/(L1+L2-a)+aMe)+Mey*(2*aMe*aMe*L1/(L1+L2-

a)))/ 0.294/eee; fffey+=a*aMe*(Mcy+2*Mey)/(0.294*eee);

fffez=L1*Mbz*L1*aMe/(L1+L2-a)/0.147/eee;

fffdz+=(L2-a)*(Mbz*(2*aMe*L1/(L1+L2-a)+aMe)+Mez*(2*aMe*L1/(L1+L2-a))) /(0.294*eee);

fffdz+=a*aMe*(Mcz-2*Mez)/(0.294*eee);

fffe1=pi*sqrt(fffey*fffey+fffez*fffez)/www/32/eee;

ddd=pow(fffe1,0.25);ddd=ddd/1000;ddd=(float)ddd;

void zhuanjiaoc()

{long double aaac1,aaacy,aaacz;

aaacy=L1*Mby*L1*aaac/(L1+L2)/0.147/eee;

aaacy+=(L2-a)*(Mby*(2*aaaac*L1/(L1+L2)+aaaac*(L1+L2-a)/(L1+L2))+Mey*( 2*aaaac*(L1+L2-a)/(L1+L2)+aaaac*L1/(L1+L2)))/(0.294*eee); aaacy+=a*(Mey*(2*(L1+L2-a)*aaaac/(L1+L2)+aaaac)+Mcy*(2*aaaac+(L1+L2-a )/(L1+L2) ))/(0.294*eee);

aaacz=L1*Mbz*L1*aaac/(L1+L2)/0.147/eee;

aaacz+=(L2-a)*(Mbz*(2*aaaac*L1/(L1+L2)+aaaac*(L1+L2-a)/(L1+L2))+Mez*( 2*aaaac*(L1+L2-a)/(L1+L2)+aaaac*L1/(L1+L2)))/(0.294*eee);

aaacz+=a*(Mez*(2*(L1+L2-a)*aaaac/(L1+L2)+aaaac)+Mcz*(2*aaaac+(L1+L2-a )/( L1+L2) ))/(0.294*eee);

aaac1=pi*sqrt(aaacy*aaacy+aaacz*aaacz)/www/32/aaac;

ddd=pow(aaac1,0.25);ddd=ddd/1000;ddd=(float)ddd;}

void fanlib()

{long double fffb1,fffby,fffbz;

fffby=L1*Mby*aMb/0.147/eee;

fffby+=(L1+L2-a)*(Mby*(2*aMb+(L2-a)/L2*aMb)+Mey*(2*(L2-a)/L2*aMb+aMb) )/0.294/eee;

fffby+=a*(L2-a)*aMb*(Mcz+2*Mey)/(0.294*eee);

fffbz=L1*Mbz*aMb/0.147/eee;

fffbz+=(L1+L2-a)*(Mbz*(2*aMb+(L2-a)/L2*aMb)+Mez*(2*(L2-a)/L2*aMb+aMb) )/ (0.294*eee);

fffbz+=a*(L2-a)/L2*aMb*(Mcz+2*Mez)/(0.294*eee);

fby0=fffby;fbz0=fffbz;

fffb1=pi*sqrt(fffby*fffby+fffbz*fffbz)*pi/www/big/big/big/big/640e11; fffbb=(float)fffb1;

printf("B点的实际位移:S=%fm\n",fffbb)

void waili()

{Fby=fffb*SD*SD*SD*SD*(1-i*i*i*i)/FFF*10e12;

Fbz=Fby*fbz0/fby0;}

void xunhuan()

{double AAAA;fkoat big1,big2,big3,big4;

do

waili();

qiangdu();

big1=ddd;big=big1;

naodud();

big2=ddd;if(big

naodue();

big3=ddd;if(big

zhuanjiaoc();

big4=(float)ddd;if(big

SM=SN;SN=BIG;SD=(SN+SM)/2;AAAA=fabs(SD-big);

fanlib();

while(AAAA>=0.0001);

printf("在超静定情况下的直径 :D=%fm\n",big);}

void main()

{float big1,big2,big3,big4;

printf(" 输入原始数据:\n");

材料力学课程设计 单缸柴油机曲轴

材料力学课程设计 班级: 作者: 题目:单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核 指导老师: 2007.11.05

班级 姓名 一、 课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合应用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。 1)使所学的材料力学知识系统化,完整化。让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。 2)综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 3)使我们初步了解和掌握工程实践中的设计思想和设计方法,为后续课程的学习打下基础。 二、 课程设计的任务和要求 要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。 三、 设计题目 某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT450-5)弹性常数为E 、μ,许用应力为[σ],G 处输入转矩为e M ,曲轴颈中点受切向力t F 、径向力r F 的作用,且r F = 2t F 。曲柄臂简化为矩形截面,1.4≤h D ≤1.6,2.5≤h b ≤4, 3l =1.2r,已知数据如下表:

车床主轴箱设计说明书

中北大学 课程设计任务书 15/16 学年第一学期 学院:机械工程与自动化学院 专业:机械设计制造及其自动化 学生姓名:王前学号:1202014233 课程设计题目:《金属切削机床》课程设计 (车床主轴箱设计) 起迄日期:12 月21 日~12 月27 日课程设计地点:机械工程与自动化学院 指导教师:马维金讲师 系主任:王彪 下达任务书日期: 2012年12月21日

课程设计任务书

课程设计任务书

目录 1.机床总体设计 (5) 2. 主传动系统运动设计 (5) 2.1拟定结构式 (5) 2.2结构网或结构式各种方案的选择 (6) 2.2.1 传动副的极限传动比和传动组的极限变速范围 (6) 2.2.2 基本组和扩大组的排列顺序 (6) 2.3绘制转速图 (7)

2.5确定带轮直径 (8) 2.6验算主轴转速误差 (8) 2.7 绘制传动系统图 (8) 3.估算传动件参数确定其结构尺寸 (10) 3.1确定传动见件计算转速 (10) 3.2确定主轴支承轴颈尺寸 (10) 3.3估算传动轴直径 (10) 3.4估算传动齿轮模数 (10) 3.5普通V带的选择和计算 (11) 4.结构设计 (12) 4.1带轮设计 (12) 4.2齿轮块设计 (12) 4.3轴承的选择 (13) 4.4主轴主件 (13) 4.5操纵机构、滑系统设计、封装置设计 (13) 4.6主轴箱体设计 (13) 4.7主轴换向与制动结构设计 (13) 5.传动件验算 (14) 5.1齿轮的验算 (14) 5.2传动轴的验算 (16) 5.3花键键侧压溃应力验算 (19)

车床主轴箱课程设计12级转速

目录 一、机床总体设计---------------------------------------------------------------------2 1、机床布局--------------------------------------------------------------------------------------------2 2、绘制转速图-----------------------------------------------------------------------------------------4 3、防止各种碰撞和干涉-----------------------------------------------------------------------------5 4、确定带轮直径--------------------------------------------------------------------------------------5 5、验算主轴转速误差--------------------------------------------------------------------------------5 6、绘制传动系统图-----------------------------------------------------------------------------------6 二、估算传动件参数确定其结构尺寸-------------------------------------------7 1、确定传动见件计算转速--------------------------------------------------------------------------7 2、确定主轴支承轴颈尺寸--------------------------------------------------------------------------7 3、估算传动轴直径-----------------------------------------------------------------------------------7 4、估算传动齿轮模数--------------------------------------------------------------------------------8 5、普通V带的选择和计算-------------------------------------------------------------------------8 三、机构设计--------------------------------------------------------------------------10 1、带轮设计-------------------------------------------------------------------------------------------10 2、齿轮块设计----------------------------------------------------------------------------------------10 3、轴承的选择----------------------------------------------------------------------------------------10 4、主轴主件-------------------------------------------------------------------------------------------10 5、操纵机构-------------------------------------------------------------------------------------------10 6、滑系统设计----------------------------------------------------------------------------------------10 7、封装置设计----------------------------------------------------------------------------------------10 8、主轴箱体设计-------------------------------------------------------------------------------------11 9、主轴换向与制动结构设计----------------------------------------------------------------------11 四、传动件验算-----------------------------------------------------------------------11 1、齿轮的验算----------------------------------------------------------------------------------------11 2、传动轴的验算-------------------------------------------------------------------------------------13 五、设计感想--------------------------------------------------------------------------15 六、参考文献--------------------------------------------------------------------------16

机床主轴箱设计说明书

机床主轴箱设计说明书 一、机床的型号及用途 1、规格 选用型号 CA6140、规格 Φ320×1000 2、用途 CA6140型卧式车床万能性大,适用于加工各种轴类、套筒类、轮盘类零件上的回转表面。可车削外圆柱面、车削端面、切槽和切断、钻中心孔、钻孔、镗孔、铰孔、车削各种螺纹、车削外圆锥面、车削特型面、滚花和盘绕弹簧等。加工围广、结构复杂、自动化程度不高,所以一般用于单件、小批生产。 二、 机床的主参数和其他主要技术要求 1、主参数和基本参数 1) 主参数 机床主参数系列通常是等比数列。普通车床和升降台铣床的主参数均采用公比为1.41的数列,该系列符合国际ISO 标准中的优先系列。 普通车床的主参数D 的系列是:250、320、400、500、630、800、1000、1250mm 。 2) 基本参数 除主参数外,机床的基本是指与被加工工件主要尺寸有关的及与工、夹、量具标准有关的一些参数,这些主参数列入机床的参数标准,作为设计时依据。 3)普通车床的基本参数 普通车床的基本参数应符合《普通车床参数国家标准》见参考文献 【一】中表2的规定,有下列几项数; 刀架上最大工件回转直径1D (mm ) 由于刀架组件刚性一般较弱,为了提高生产效率,国外车床刀架溜板厚度有所增加,在不增加中心高时,1D 值减少的趋势。我国作为参数标准的1D 值,基本上取12D D >/,这样给设计留一定的余地,设计时,在刀架刚度允许的条件下能保证使用要求,可以取较大的1D 值。所以查参考文献【一】(表2)得1D =160mm 。 主轴通孔直径d ﹙mm ﹚

普通车床主轴通孔径主要用于棒料加工。在机床结构允许的条件下,通孔直径尽量取大些。参数标准规定了通孔直径d的最小值。所以由参考文献 【一】(表二)d=36mm。 主轴头号 普通车床采用短锥法兰式主轴头,这种形式的主轴头精度高,装卸方便。 主轴端部及其结构合面得型式和基本尺寸要符合《法兰式车床主轴端部尺寸部标注》的规定。根据机床主参数值大小采用不同号数的主轴头(4~15号),号值数等于法兰直径的1/25.4而取其整数值。所以由参考文献【一】(表2)可知主轴头号取4.5 装刀基面至主轴中心距离h(mm) 为了使用户,提高刀具的标准化程度,根据机械工业部工具研究所的刀 具杆标准,规定了h=22mm。 最大工件长度L (mm) 最大工件长度L是指尾座在床身处于最后位置,尾座顶尖套退入尾座孔时容纳的工件长度。为了有利组织生产,采用分段等差的长度数列。所以由参考文献【一】(表2)得L=1000mm。 2、主传动的设计 1)主轴极限的确定 由课程设计任务书中给出的条件可知: Z=40 r/min min Z=1800 r/min max 2)公比的确定 主轴极限转速的确定后,根据机床的使用性能和结构要求,选择主轴转速数列的公比值,因为中型通用机床,常用的公比为1.26或是1.41,再根据极限转速,按参考文献【一】中表2—1选出标准转速数列公比 =1.41。 3)主轴转速级数的确定 按任务书要求Z=12 按标准转速数列为40、56、80、115、160、225、315、445、625、880、1250、1800r/min 4)主传动电动机功率的确定 电动机的额定功率为: N =4kW 额

材料力学课程设计-车床主轴

教学号:答辩成绩: 设计成绩: 材料力学课程设计 设计计算说明书 设计题目:车床主轴设计 题号: 7—8—Ⅰ—12 教学号: 姓名: 指导教师: 完成时间:

目录 一、材料力学课程设计的目的 --------------------------------------------------3 二、材料力学课程设计的任务和要求 --------------------------------------------------3 三、设计题目 --------------------------------------------------3 四、对主轴静定情况校核 --------------------------------------------------5 1.根据第三强度理论校核 ---- ----------------------------------------7 2.根据刚度进行校核 ---------------------------------------------8 3.疲劳强度校核 ------------------------------------------- 12 五、对主轴超静定情况校核 -------------------------------------------------13 1.根据第三强度理论校核 ---------------------------------------------15 2.根据刚度进行校核 ---------------------------------------------16 3.疲劳强度校核 ----------------------------------------------19 六、循环计算程序 ---------------------------------------------------19 七、课程设计总结 ----------------------------------------------------26

《金属切削机床》课程设计--C616型车床主轴箱设计(全套图纸)

目录 全套图纸加174320523 各专业都有 1.概述和机床参数确定 (1) 1.1机床运动参数的确定 (1) 1.2机床动力参数的确定 (1) 1.3机床布局 (1) 2.主传动系统运动设计 (2) 2.1确定变速组传动副数目 (2) 2.2确定变速组的扩大顺序 (2) 2.3绘制转速图 (3) 2.4确定齿轮齿数 (3) 2.5确定带轮直径 (3) 2.6验算主轴转速误差 (4) 2.7绘制传动系统图 (4) 3.估算传动件参数确定其结构尺寸 (5) 3.1确定传动转速 (5) 3.2确定主轴支承轴颈尺寸 (6) 3.3估算传动轴直径 (6) 3.4估算传动齿轮模数 (6) 3.5普通V带的选择和计算 (7) 4.结构设计 (8) 4.1带轮设计 (8) 4.2齿轮块设计 (8) 4.3轴承的选择 (9) 4.4主轴组件 (9) 4.5操纵机构、滑系统设计、封装置设计 (9) 4.6主轴箱体设计 (9)

4.7主轴换向与制动结构设计 (9) 5.传动件验算 (10) 5.1齿轮的验算 (10) 5.2传动轴的刚度验算 (12) 5.3花键键侧压溃应力验算 (16) 5.4滚动轴承的验算 (16) 5.5主轴组件验算 (17) 6. 主轴位置及传动示意图 (20) 7.总结 (20) 8.参考文献 (21) 1.概述 1机床课程设计的目的 机床课程设计,是在金属切削机床课程之后进行的实践性教学环节。其目的在于通过机床运动机械变速传动系统的结构设计,使学生在拟定传动和变速的结构的结构方案过程中,得到设计构思,方案分析,结构工艺性,机械制图,零件计算,编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并培养学生具有初步的结构分析,结构设计和计算能力。轻型车床是根据机械加工业发展需要而设计的一种适应性强,工艺范围广,结构简单,制造成本低的万能型车床。它被广泛地应用在各种机械加工车间,维修车间。它能完成多种加工工序;车削内圆柱面,圆锥面,成形回转面,环形槽,端面及内外螺纹,它可以用来钻孔,扩孔,铰孔等加工。 1.1 机床运动参数的确定 (1)确定公比φ及Rn 已知最低转速n min =45rpm,最高转速n max =1980rpm,变速级数Z=12,则公比: φ= (n max /n min )1/(Z-1) =(1980rpm/45rpm)1/(12-1)≈1.41 转速 调整范围: Rn=n max /n min =44 (2)求出转速系列 根据最低转速45r/min,最高转速max n=1980r/min,公比φ=1.41,按《金属切屑机床》(戴曙编)表7-1选出标准转速数列: 2000 1400 1000 710 500 355 250 180 125 90 63 45 1.2机床动力参数的确定 已知电动机功率为N=4kw,根据《金属切削机床简明手册》(范云涨、陈兆年编)表11-32选择主电动机为Y112M-4,其主要技术数据见下表1: 表1 Y90L-4技术参数

车床主轴箱设计---参考.

中北大学 信息商务学院 课程设计说明书 学生姓名:学号: 系:机械自动化系 专业:机械设计制造及其自动化 题目:机床课程设计 ——车床主轴箱设计 指导教师:马维金职称: 教授 黄晓斌职称: 副教授 2013年12月28日

目录 一、传动设计 1.1电机的选择 1.2运动参数 1.3拟定结构式 1.3.1 确定变速组传动副数目 1.3.2确定变速组扩大顺序 1.4拟定转速图验算传动组变速范围 1.5确定齿轮齿数 1.6确定带轮直径 1.6.1确定计算功率Pca 1 .6.2选择V带类型 1.6.3确定带轮直径基准并验算带速V 1.7验算主轴转速误差 1.8绘制传动系统图 二、估算主要传动件,确定其结构尺寸 2.1确定传动件计算转速 2.1.1主轴计算转速 2.1.2各传动轴计算转速 2.1.3各齿轮计算转速 2.2初估轴直径 2.2.1确定主轴支承轴颈直径 2.2.2初估传动轴直径 2.3估算传动齿轮模数 2.4片式摩擦离合器的选择及计算 d 2.4.1决定外摩擦片的内径 2.4.2选择摩擦片尺寸 2.4.3计算摩擦面对数Z 2.4.4计算摩擦片片数 2.4.5计算轴向压力Q 2.5V带的选择及计算 a 2.5.1初定中心距 L 2.5.2确定V带计算长度L及内周长 N

2.5.3验算V带的挠曲次数 2.5.4确定中心距a 2.5.5验算小带轮包角 α 1 2.5.6计算单根V带的额定功率 P r 2.5.7计算V带的根数 三、结构设计 3.1带轮的设计 3.2主轴换向机构的设计 3.3制动机构的设计 3.4齿轮块的设计 3.5轴承的选择 3.6主轴组件的设计 3.6.1各部分尺寸的选择 3.6.1.1主轴通孔直径 3.6.1.2轴颈直径 3.6.1.3前锥孔尺寸 3.6.1.4头部尺寸的选择 3.6.1.5支承跨距及悬伸长度 3.6.2主轴轴承的选择 3.7润滑系统的设计 3.8密封装置的设计 四、传动件的验算 4.1传动轴的验算 4.2键的验算 4.2.1花键的验算 4.2.2平键的验算 4.3齿轮模数的验算 4.4轴承寿命的验算 五、设计小结 六、参考文献

普通车床主轴箱课程设计

课程设计 课程名称:金属切削机床 学院:机械工程学院 专业:机械设计制造及其自动化姓名:学号: 年级:任课教师: 2011年 1月15 日 贵州大学机械工程学院

目录 目录 (2) 一、绪论 (4) 二、设计计算 (5) 1机床课程设计的目的 (5) 2机床主参数和基本参数 (5) 3操作性能要求 (5) 三、主动参数的拟定 (6) 1确定传动公比 (6) 2主电动机的选择 (6) 四、变速结构的设计 (6) 1主变速方案拟定 (6) 2变速结构式、结构网的选择 (7) 1. 确定变速组及各变速组中变速副的数目 (7) 2. 变速式的拟定 (7) 3. 结构式的拟定 (7) 4. 结构网的拟定 (8) 5. 结构式的拟定 (8) 6. 结构式的拟定 (9) 7. 确定各变速组变速副齿数 (10) 8. 绘制变速系统图 (11) 五、结构设计 (12) 1.结构设计的内容、技术要求和方案 (12) 2.展开图及其布置 (12) 3.I轴(输入轴)的设计 (12) 4.传动轴的设计 (13) 5.主轴组件设计 (14) 1. 内孔直径d (14) 2. 轴径直径 (15) 3. 前锥孔直径 (15) 4. 主轴悬伸量a和跨距 (15) 5. 主轴轴承 (15) 6. 主轴和齿轮的联接 (16) 7. 润滑和密封 (16) 8. 其它问题 (16) 六、传动件的设计 (17) 1带轮的设计 (17)

2传动轴直径的估算 (20) 1 确定各轴计算转速 (20) 2传动轴直径的估算 (21) 3各变速组齿轮模数的确定 (22) 4片式摩擦离合器的选择和计算 (25) 七、本文工作总结 (27) 参考文献 (28) 致谢 (29)

CA6140机床主轴箱的设计

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 目录 第一章引言 第二章机床的规格和用途 第三章机床主要参数的确定 第四章传动放案和传动系统图的拟定 第五章主要设计零件的计算和验算 第六章结论 第七章参考资料编目

第一章引言 普通车床是车床中应用最广泛的一种,约占车床类总数的65%,因其主轴以水平方式放置故称为卧式车床。 CA6140型普通车床的主要组成部件有:主轴箱、进给箱、溜板箱、刀架、尾架、光杠、丝杠和床身。 主轴箱:又称床头箱,它的主要任务是将主电机传来的旋转运动经过一系列的变速机构使主轴得到所需的正反两种转向的不同转速,同时主轴箱分出部分动力将运动传给进给箱。主轴箱中等主轴是车床的关键零件。主轴在轴承上运转的平稳性直接影响工件的加工质量,一旦主轴的旋转精度降低,则机床的使用价值就会降低。 进给箱:又称走刀箱,进给箱中装有进给运动的变速机构,调整其变速机构,可得到所需的进给量或螺距,通过光杠或丝杠将运动传至刀架以进行切削。 丝杠与光杠:用以联接进给箱与溜板箱,并把进给箱的运动和动力传给溜板箱,使溜板箱获得纵向直线运动。丝杠是专门用来车削各种螺纹而设置的,在进行工件的其他表面车削时,只用光杠,不用丝杠。同学们要结合溜板箱的内容区分光杠与丝杠的区别。 溜板箱:是车床进给运动的操纵箱,内装有将光杠和丝杠的旋转运动变成刀架直线运动的机构,通过光杠传动实现刀架的纵向进给运动、横向进给运动和快速移动,通过丝杠带动刀架作纵向直线运动,以便车削螺纹。 第二章机床的规格和用途 CA6140机床可进行各种车削工作,并可加工公制、英制、模数和径节螺纹。 主轴三支撑均采用滚动轴承;进给系统用双轴滑移共用齿轮机构;纵向与横向进给由十字手柄操纵,并附有快速电机。该机床刚性好、功率大、操作方便。 第三章主要技术参数 工件最大回转直径: 在床面上………………………………………………………-----……………400毫米在床鞍上…………………………………………………………-----…………210毫米工件最大长度(四种规格)……………………………----…750、1000、1500、2000毫米主轴孔径…………………………………………………-----……………………… 48毫米主轴前端孔锥度…………………………………………-----…………………… 400毫米主轴转速范围: 正传(24级)…………………………………………----…………… 10~1400转/分反传(12级)……………………………………---…-……………… 14~1580转/分加工螺纹范围:

材料力学课程设计--曲柄轴的强度设计及变形计算

材料力学课程设计--曲柄轴的强度设计及变形计算

(导师好,课程设计是我这两天赶工的,质量不怎么好,你帮我改改,其中1.2,4.2,4.3没有完成,不知道怎么写,您帮我看看想一下,3.1的第三强度公式我感觉有点不会,您也帮着看一下。。。幸好有您这个导师,嘻嘻,感谢呀。。。祝勇哥圣诞元旦双节快乐,新春快乐假期美好。。———学生:东禹 材料力学课程设计 题目:曲柄轴的强度设计及变形计算 单位:理学院

班级:力学 11-1 姓名:宫东禹 指导教师:宋志勇 目录 一、绪论 二、力学模型与内力分析 三、强度分析。 四、变形计算与刚度分析。 五、总结。

一、绪论 1.1、课程设计目的意义: 材料力学课程设计是材料力学课程的重要实践性环节。 通过结合工程实际,自行设计结构形式,并对杆件结构进行内力、应力变形位移计算等,校核杆件结构的强度和刚度、稳定性,并对结构进行改进。进一步巩固和加深材料力学课程中的基本理论知识,初步掌握对材料力学中分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力、通过自由设计结构、锻炼创新思维能力。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力;既是对以前所学知识的综合运用,又为后续课程的学习打下基础,并初步掌握工程设计思想和设计方法,使实际工作能力有所提高。具体有以下几方面: 1、对之前学过的相关力学知识的全面复习,使学生的力学知识系统化、完整化; 2、综合运用力学理论知识解决工程中的实际问题。 3、本课程设计是在系统学完材料力学课程之后,结合工程实际中的问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以 达到综合运用材料力学知识解决工程实际问题的目的。 4、由于选题力求结合专业实际,因而课程设计可以为学生后续的毕业设计打下基础,进行提前锻炼。 5、初步了解和掌握工程实践中的分析思想和计算方法。 1.2、结构的工程应用背景简介: (简单的介绍你所设计的结构在工程的使用,比如哪些领域,有何作

数控机床主轴箱设计

第一章概述 1.1设计目的 (2) 1.2主轴箱的概述 (2) 第2章主传动的设计 (2) 2.1驱动源的选择 (2) 2.2转速图的拟定 (2) 2.3传动轴的估算 (4) 2.4齿轮模数的估算 (3) 2.5V带的选择 (4) 第3章主轴箱展开图的设计 (7) 3.1各零件结构尺寸的设计 (7) 3.1.1 设计内容和步骤 (7) 3.1.2有关零件结构和尺寸的设计 (7) 3.1.3各轴结构的设计 (9) 3.1.4主轴组件的刚度和刚度损失的计算 (10) 3.1.5轴承的校核 (13) 3.2装配图的设计的概述 (13) 总结 (19) 参考文献 (20)

第一章概述 1-1设计目的 数控机床的课程设计,是在数控机床设计课程之后进行的实践性教学环节。其目的在于通过数控机床伺服进给系统的结构设计,使我们在拟定进给传动及变速等的结构方案过程中得到设计构思、方案分析、结构工艺性、CAD制图、设计计算、编写技术文件、查阅技术资料等方面的综合训练,建立正确的设计思想,掌握基本的设计方法,培养我们初步的结构设计和计算能力。 1-2 主轴箱的概述 主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。 第二章2主传动设计 2-1驱动源的选择 机床上常用的无级变速机构是直流或交流调速电动机,直流电动机从额定转速nd向上至最高转速nmax是调节磁场电流的方法来调速的,属于恒功率,从额定转速nd向下至最低转速nmin时调节电枢电压的方法来调速的属于恒转矩;交流调速电动机是靠调节供电频率的方法调速。由于交流调速电动机的体积小,转动惯量小,动态响应快,没有电刷,能达到的最高转速比同功率的直流调速电动机高,磨损和故障也少,所以在中小功率领域,交流调速电动机占有较大的优势,鉴于此,本设计选用交流调速电动机。 根据主轴要求的最高转速4000r/min,最大切削功率5kw,选择北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。 2-2 转速图的拟定 根据交流主轴电动机的最高转速和基本转速可以求得交流主轴电动机的恒功率转速范围Rdp=nmax/nd=3 而主轴要求的恒功率转速范围Rnp=3,远大于交流主轴电动机所能提供的恒功率

材料力学课程设计--五种传动轴的静强度、变形及疲劳强度的计算

材料力学课程设计设计题目五种传动轴的静强度、变形及疲劳强度的计算

1.课程设计的目的 本课程设计的目的是在于系统学完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合运用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。 1.使所学的材料力学知识系统化、完整化。让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。 2.综合运用了以前所学的各门课程的知识(高数、制图、理力、算法语言、计算机等)使相关学科的知识有机地联系起来。 3.使我们初步了解和掌握工程实践中的设计思想和设计方法,为后继课程的教学打下基础。 2.课程设计的任务和要求 要求参加设计者,要系统地复习材料力学的全部基本理论和方法,独立分析、判断、设计题目的已知条件和所求问题。画出受力分析计算简图和内力图,列出理论依据和导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。 3.课程设计的题目 传动轴的强度、变形及疲劳强度计算 6-1 设计题目 传动轴的材料为优质碳素结构钢(牌号45),许用应力[σ]=80MPa,经高频淬火处理,其σb=650MPa,σ-1=300MPa,τ-1=155MPa,磨削轴的表面,键槽均为端铣加工,阶梯轴过渡圆弧r均为2,疲劳安全系数n=2,要求: 1)绘出传动轴的受力简图; 2)作扭矩图及弯矩图; 3)根据强度条件设计等直轴的直径; 4)计算齿轮处轴的挠度;(按直径Φ1的等直杆计算) 5)对阶梯传动轴进行疲劳强度计算;(若不满足,采取改进措施使其满足疲劳强度); 6)对所取数据的理论根据作必要的说明。 说明: a) 坐标的选取均按下图6—1所示; b) 齿轮上的力F与节圆相切; c) 数据表中P为直径D的皮带轮传递的功率, P为直径为D1的皮带轮传递的功率。 1

材料力学课程设计

目录 一、 关于材料力学课程设计 (2) 二、 设计题目 (2) 三、 设计内容 (3) 3.1 柴油机曲轴的受力分析 (3) 3.2 设计曲轴颈直径d ,主轴颈直径D (6) 3.3 设计h 和b,校核曲柄臂强度 (6) 3. 4 校核主轴颈H —H 截面处的疲劳强度,取疲劳安全系数n=2。键 槽为端铣加工,主轴颈表面为车削加工 (6) 3.5 用能量法计算A —A 截面的转角y θ,x θ (7) 3.6对计算过程的几点必要说明 (9) 3.7 改进方案 (10) 四、 计算机程序设计 (10) 4.1程序框图 (10) 4.2计算机程序 (11) 4.3输出结果 (12) 五、 设计体会 (12) 六、 参考书目 (12) 一、 关于材料力学课程设计 1.材料力学课程设计的目的 本课程设计的目的是在于系统学完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体,既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力;既把以前所学的知识(高等数学、工程图学、理论力

学、算法语言、计算机和材料力学等)综合运用,又为后继课程(机械设计、专业课等)打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。具体的有以下六项: (1)使学生的材料力学知识系统化、完整化; (2)在系统全面复习的基础上.运用材料力学知识解决工程中的实际问题; (3)由于选题力求结合专业实际.因而课程设计可以把材料力学知识和专业需要结 合起来; (4)综合运用了以前所学的多门课程的知识(高数、制图、理力、算法语言、计算 机等等)使相关学科的知识有机地联系起来; (5)初步了解和掌握工程实践中的设计思想和设计方法; (6)为后继课程的教学打下基础 2.材料力学课程设计的任务和要求 参加设计者要系统地复习材料力学的全部基本理论和方法.独立分析、判断、设计题目的已知条件和所求问题.画出受力分析计算简图和内力图.列出理论依据和导出计算公式.独立编制计算程序.通过计算机给出计算结果.并完成设计计算说明书. 3.材料力学课程设计的一般过程 材料力学课程设计与工程中的一般设计过程相似.从分析设计方案开始到进行必要的计算并对结构的合理性进行分析.最后得出结论.材料力学设计过程可大致分为以下几个阶段: (1)设计准备阶段:认真阅读材料力学课程设计指导书.明确设计要求.结合设计题目复习材料力学课程设计的有关理论知识.制定设计步骤、方法以及时间分配方案等; (2)从外力变形分析入手,分析及算内力、应力及变形,绘制各种内力图及位移、转角曲线; (3)建立强度和刚度条件.并进行相应的设计计算及必要的公式推导; (4)编制计算机程序并调试; (5)上机计算,记录计算结果; (6)整理数据,按照要求制作出设计计算说明书; (7)分析讨论设计及计算的合理性和优缺点,以及相应的改进意见和措施; 二、设计题目 某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT450—5),弹性常数为E 、μ,许用应力[σ],G 处输入转矩为e M ,曲轴颈中点受切向力t F 、径向力r F 的作用,且2t r F F = 。曲柄臂简化为矩形截面,1.4≤h D ≤1.6,2.5≤h b ≤4,3l =1.2r ,有关数据如下表:

机床主轴箱课程设计18级转速 参考资料

1.概述 (4) 1.1机床主轴箱课程设计的目的 (4) 1.2设计任务和主要技术要求 (4) 1.3操作性能要求 (4) 2.参数的拟定 (5) 2.1确定极限转速 (5) 2.2主电机选择 (5) 3.传动设计 (6) 3.1主传动方案拟定 (6) 3.2传动结构式、结构网的选择 (6) 3.2.1确定传动组及各传动组中传动副的数目 (6) 3.2.2传动式的拟定 (7) 3.2.3结构式的拟定 (7) 4.传动件的估算 (8) 4.1三角带传动的计算 (8) 4.2传动轴的估算 (11) 4.2.1主轴的计算转速 (11) 4.2.2各传动轴的计算转速 (12) 4.2.3各轴直径的估算 (12) 4.3齿轮齿数的确定和模数的计算 (13) 4.3.1齿轮齿数的确定 (13) 4.3.2齿轮模数的计算 (15) 4.3.4齿宽确定 (20) 4.3.5齿轮结构设计 (21)

4.4带轮结构设计 (21) 4.5传动轴间的中心距 (21) 4.6轴承的选择 (22) 4.7片式摩擦离合器的选择和计算 (23) 4.7.1摩擦片的径向尺寸 (23) 4.7.2按扭矩选择摩擦片结合面的数目 (23) 4.7.3离合器的轴向拉紧力 (2424) 4.7.4反转摩擦片数 (24) 5.动力设计 (25) 5.1传动轴的验算 (25) 5.1.1Ⅰ轴的强度计算 (26) 5.1.2作用在齿轮上的力的计算 (26) 5.1.3主轴抗震性的验算 (28) 5.2齿轮校验 (31) 5.3轴承的校验 (32) 6.结构设计及说明 (33) 6.1结构设计的内容、技术要求和方案 (33) 6.2展开图及其布置 (34) 6.3I轴(输入轴)的设计 (34) 6.4齿轮块设计 (35) 6.4.1其他问题 (36) 6.5传动轴的设计 (36) 6.6主轴组件设计 (38) 6.6.1各部分尺寸的选择 (38) 6.6.2主轴轴承 (38)

吉林大学材料力学课程设计76_(b)__第二组数据轴设计说明

设计题目 传动轴的材料均为优质碳素结构钢(牌号45),许用应力[σ]=80MPa ,经高频淬火处理, 650b MPa σ=,1300MPa σ-=,1155MPa τ-=。磨削轴的表面,键槽均为端铣加工,阶梯轴 过渡圆弧r 均为2mm ,疲劳安全系数n=2。 要求: 1. 绘出传动轴的受力简图。 2. 做扭矩图及弯矩图。 3. 根据强度条件设计等直轴的直径。 4. 计算齿轮处轴的挠度(均按直径1φ的等直杆计算)。 5. 对阶梯传动轴进行疲劳强度计算。(若不满足,采取改进措施使其满足疲劳强度要求)。 6. 对所取数据的理论根据做必要的说明。 说明: (1) 坐标的选取均按图所示。 (2) 齿轮上的力F 与节圆相切。 (3) 表中P 为直径为D 的带轮传递的功率,1P 为直径为1D 的带轮传递的功率。1G 为小 带轮的重量,2G 为大带轮的重量。 (4) 1φ为静强度条件所确定的轴径,以mm 为单位,并取偶数。 设 312 243 1.1φφφφφφ=== 设计计算数据

传动轴零件图 设计计算数据表 设计过程 1.传动轴受力简图 首先对传动轴进行受力分析,轴共受 7 个力作用,分别为皮带轮 D 对传动轴的力2和,皮带轮1对传动轴的力1和 21,齿轮2对传动轴的力 F,还有皮带轮 D 的 重力2和皮带轮1的重力G 1,且M1与M2方向相反, P/kW 1P/kW n/(r/min ) D/mm 1 D/mm 2 D/mm 2 G/N 1 G/N a/mm a(o ) 6.6 2.9 150 700 350 100 800 400 500 30

受力简图如下图所示 列公式求得: M 1=184.61NM M 2=420.16NM M= M 2- M 1=235.55NM 2.弯矩图及扭矩图 1)在 XOY 面上传动轴受力简图如下: 2)在 XOZ 面上传动轴受力简图如下: F AY

车床主轴箱课程设计12级转速

目录 一、................................................... 机床总体设计 2 1、机床布局------------------------------------------------------------ 2 2、绘制转速图------------------------------------------------------------ 4 3、防止各种碰撞和干涉--------------------------------------------------- 5 4、确定带轮直径---------------------------------------------------------- 5 5、验算主轴转速误差----------------------------------------------------- 5 6、绘制传动系统图-------------------------------------------------------- 6 二、估算传动件参数................... 确定其结构尺寸 7 1、确定传动见件计算转速-------------------------------------------------- 7 2、确定主轴支承轴颈尺寸-------------------------------------------------- 7 3、估算传动轴直径-------------------------------------------------------- 7 4、估算传动齿轮模数----------------------------------------------------- 8 5、普通V带的选择和计算------------------------------------------------- 8 三、....................................................... 机构设计 10 1、带轮设计------------------------------------------------------------- 10 2、齿轮块设计----------------------------------------------------------- 10 3、轴承的选择----------------------------------------------------------- 10 4、主轴主件------------------------------------------------------------- 10 5、操纵机构------------------------------------------------------------- 10 6、滑系统设计----------------------------------------------------------- 10 7、封装置设计----------------------------------------------------------- 10 &主轴箱体设计---------------------------------------------------------- 11 9、主轴换向与制动结构设计---------------------------------------------- 11 四、.................................................... 传动件验算 11 1、齿轮的验算----------------------------------------------------------- 11 2、传动轴的验算--------------------------------------------------------- 13 五、...................................................... 设计感想 15

相关主题
文本预览
相关文档 最新文档