当前位置:文档之家› 单容水箱液位控制系统与仪表设计任务书

单容水箱液位控制系统与仪表设计任务书

单容水箱液位控制系统与仪表设计任务书
单容水箱液位控制系统与仪表设计任务书

专业方向课程设计课程设计任务书

学生姓名:专业班级:

指导教师:工作单位:信息工程系

题目:单容水箱液位控制系统与仪表设计

初始条件:

1.给定用于设计单容水箱控制系统的各种仪表。

2.给出仪表的详细资料。

3.给出单容水箱液位定值控制系统的设计思路与整定方法。

要求完成的主要任务:

一.设计任务

1.给出单容水箱液位控制的原理图,并阐述原理。

2.对涉及的液位检测与控制仪表进行选型,并用图文方式阐述其工作原理。3.对控制器的正反作用进行选择,并详细阐述其选择依据。

4.对控制器的控制规律机械选择,并说明其原理与选择依据。

5.设计其计算机监控界面,要求设计内容包括:项目建立过程、静态界面设计、数据词典建立、设备连接、动画连接。

6.对设计内容进行总结,完成设计报告,答辩。

二.说明书撰写要求

1. 纸张格式:要求统一用A4纸打印,页面设置上空

2.5cm,下空2.0cm,左空2.5cm,右空2.0cm):

2. 正文层次:正文内容层次序号为:1、1.1、1.1.1……,其中

⑴.正文标题;一级标题1.(黑体小2号加粗),二级标题1.1(黑体小三号),三极标题1.1.1(黑体小四号)。

⑵.正文内容格式:宋体五号,1.25倍行距。

3. 正文内容

一般包括:

⑴.选题背景:说明本课题应解决的主要问题及应达到的技术要求;简述本设计的指导思想。(设计目的中已有阐述)

⑵.方案论证:说明设计原理并进行方案选择,阐明为什么要选择这个设计方案以及所采用方案的特点。

⑶.设计内容:对设计工作的详细表述。要求层次分明、表达确切。

⑷.结果分析:对研究过程总所获得的主要的数据、现象进行定性或定量分析,得出结论和推论。

⑸.结论或总结:对整个研究工作进行归纳和综合。

⑹.参考文献:不少于5个,并应按文献号、作者、文献题名、出版地:出版社和出版年等顺序书写。如:[1] 陈夕松,汪木兰. 过程控制系统(第二版). 北京:科学出版社,2001.1.

4. 图纸(或其它)要求

⑴.图纸要求:图面整洁,布局合理,线条粗细均匀,圆弧连接光滑,尺寸标注规范,要求使用计算机绘图。

⑵.曲线图表要求:

①.所有曲线、图表、线路图、流程图、程序框图、示意图等不准徒手画,必须按国家规定标准或工程要求绘制(采用计算机辅助绘图)。

②.课程设计说明书(报告)中图表、公式一律采用采用阿拉伯数字连续编号。图序及图名置于图的下方;表序及表名置于表的上方;说明书(报告)中的公式编号,用括号括起来写在右边行末,其间不加虚线。

三. 时间安排:

2016年12月2日

1 设计任务与目的

1.1选题背景

微电子技术和计算机技术的不断发展,引起了仪表结构的根本性变革,以微型计算机(单片机)为主体,将计算机技术和检测技术有机结合,组成新一代“智能化仪表”,在测量过程自动化、测量数据处理及功能多样化方面与传统仪表的常规测量电路相比较,取得了巨大进展。智能仪表不仅能解决传统仪表不易或不能解决的问题,还能简化仪表电路,提高仪表的可靠性,更容易实现高精度、高性能、多功能的目的。

可编程控制器(Programmable Logic Controller---PLC)是一种应用广泛非常的自动控制装置,它将传统的继电器控制技术、计算机技术和通讯技术融为一体,具有控制能力强、操作灵活方便、可靠性高、适宜长期连续工作的特点,非常适合液位控制的要求。

这次课程设计基于智能仪表、可编程控制器(PLC)、组态软件的液位控制系统的设计方案。系统采用PID算法,实现液位的自动控制。

1.2设计目的

通过组态软件,结合实验室已有的设备,按照定值系统的控制要求,根据较快较稳的性能要求,采用单闭环控制结构和PID调节规律,设计一个具有美观组态画面和较完善组态控制程序的液位单回路过程控制系统。

1.3设计任务

1. 给出单容水箱液位控制的原理图,并阐述原理。

2. 对涉及的液位检测与控制仪表进行选型,并用图文方式阐述其工作原理。

3. 对控制器的正反作用进行选择,并详细阐述其选择依据。

4. 对控制器的控制规律机械选择,并说明其原理与选择依据。

5. 设计其计算机监控界面,要求设计内容包括:项目建立过程、静态界面设计、数据词典建立、设备连接、动画连接。

2 系统结构设计及原理

2.1控制仪表的选型

智能仪表的工作过程如下:输入信号要经过开关量输入电路或模拟量输入电路进行变换、放大、整形、补偿等处理。对于模拟量信号,需经A/D 转换器转换成数字信号,再通过接口送入微控制器。由CPU 对输入数据进行加工处理、计算分析等一系列工作,通过接口送至显示器或打印机,也可输出开关量信号或经模拟量输出电路的D/A 转换器转换成模拟量输出信号。还可通过串行接口实现数据通信,完成更复杂的测量和控制任务。所以这次课程设计我们选择了智能仪表。

智能仪表由硬件和软件两大部分组成。硬件部分包括微控制器及其接口电路、模拟量输入输出电路、开关量输入输出电路、数据通信接口电路、人机交互通道,以及其他外围设备。 智能仪表的软件,包括监控程序、中断服务程序以及实现各种算法的功能模块。

图1 仪表的模块接线图

本次设计是采用智能调节仪的PID 控制原理进行液位PID 闭环控制,采用痛过液位变送器采集实验水箱液位值,送入智能调节仪与设定值进行比较,控制智能仪表的模拟量输出,来控制水泵电压,达到控制液位的目的。

图2 控制系统框图

如图2所示,根据因为控制阀、被控对象和测量元件变送器均为正作用,所以控制器必须为反作用。这样才能达到单闭环负反馈系统的控制效果。

2.2可编程控制器

PLC即可编程逻辑控制器,英文全称是Programmable Logic Controller,是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。

PLC以其可靠性高、抗干扰能力强、编程简单、功能强大、性价比高、体积小、能耗低等显著特点广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。PLC专为工业现场应用而设计,采用了典型的计算机结构,主要由中央处理器(CPU)、存储器(RAM、ROM)、输入输出单元(I/O接口)、电源及编程器等几大部分组成。

2.3控制器的选择及原理

PID控制技术是在反馈思想被实际应用以后在工业应中发展起来的。PID控制器早在一百年前就已经出现,经过长时间发展,已经有许许多多改进形式的PID控制器出现,但到目前为止没有一个PID控制器能够适用于所有控制场合。PID控制器具有结构简单,鲁棒性强等特点,因此,今天它己经成为应用最广泛的控制技术,在石化,化工,造纸等工业领域,甚至有97%的常规控制器都是PID控制器。

工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

实验时,可痛过设置P、I、D三个参数来选择不同的控制过程,(如:P调节、PI调节、PID调节)寻找最佳的控制方案及参数。

PID控制原理基于下面的公式,输出式比例项、积分项和微分项的函数M(t)=kc*e+kci∫edt+mintal+kc*del/dt

输出=比例项+积分项+微分项

M(t) PID回路的输出是时间函数

K(c) PID回路的增益

e PID回路的偏差

Mintial PID回路输出的初始值

2.3.1比例(P)控制及调节过程

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

在人工调节的实践中,如果能使阀门的开度与被调参数偏差成比例的话,就有可能使输出量等于输入量,从而使被调参数趋于稳定,达到平衡状态。这种阀门开度与被调参数的偏差成比例的调节规律,称为比例调节。

比例调节规律及其特点:比例调节作用,一般用字母P来表示。放大倍数是可调的,所以比例调节器实际上是一个放大倍数可调的放大器。比例调节作用虽然及时、作用强,但是有余差存在,被调参数不能完全回复到给定值,调节精度不高,所以有时称比例调节为“粗调”。纯比例调节只能用于干扰较小、滞后较小,而时间常数又不太小的对象。

2.3.2积分(I)控制及调节过程

在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

对于工艺条件要求较高余差不允许存在的情况下,比例作用调节器不能满足要求了,克服余差的办法是引入积分调节。因为单纯的积分作用使过程缓慢,并带来一定程度的振荡,所以积分调节很少单独使用,一般都和比例作用组合在一起,构成比例积分调节器,简称PI调节器,而且比例度不仅影响比例部分,也影响积分部分,使总的输出既具有调节及时、克服偏差有力的特点,又具有克服余差的性能。

积分调节规律及其特点:由于它是在比例调节(粗调)的基础上,有加上一个积分调(细调),所以又称再调调节或重定调节。但是,积分时间太小,积分作用就太强,过程振荡剧烈,稳定程度低;积分时间太大,积分作用不明显,余差消除就很慢。如果把积分时间放到最大,PI调节器就丧失了积分作用,成了一个纯比例调节器。

2.3.3微分(D)控制及调节过程

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态性能。

所以综合这三种控制的控制规律,我选择了PID控制。

2.4组态控制

目前的很多自动控制系统中,常常选用PLC作为的控制设备,用于数据采集、状态判别和输出控制;而在可编程序控制器与计算机通讯的基础上,通过组态软件可以对可编程序控制器的当前工作状态进行全方位的监控,进一步通过组态软件可以对实验控制对象的工作过程进行全程模拟,实现远程控制。这种控制系统充分利用了计算机和PLC的特点,实现了优势互补,得到了广泛应用。

组态软件的基本功能:过程可视化、可维护性强、操作简便、功能完善。

2.5 系统总原理图

水泵

图3 系统总原理图

3 系统组态设计

使用组态王,用户可以方便的构造适应自己所需要的“数据采集和监控系统”。在任何需要的时候,把生产现场的信息处理和判断决策的控制信号传向现场实施有效的生产控制。

组态王的网络功能使企业的基层和其他部门建立起联系,现场操作人员和工厂管理人员都可以看到各种数据,管理人员可以不深入现场就可以得到各种实时或历史数据。优化控制现场,提高生产效率和产品质量。

组态王易于学习和使用,拥有丰富的工具箱、图库和操作向导,既可以节约大量的时间又可以提高系统性能。

3.1 新建一个工程

点击桌面上的组态王软件,进入后,在点击画面中的工程,点击右键,选择新建一个工程后,出现如下图所示的对话框。点击下一步。

图4

点击下一步后,出现下图所示的对话框,点击浏览,选择工程所在路径。完成后,点击下一步。

图5

点击下一步后,出现如下图所示的对话框,给工程输入一个工程名,工程名最好与自己所要完成的内容相关,便于以后辨别和使用。

图6

上一步完成后,点击完成这个按钮,会出现下面这个对话框,表示已经新建了一个工程。然后在双击这个工程,进行组态画面的完成。

图7

完成后的组态画面如下图所示,完成组态画面后要对每个变量进行定义,要在数据词典中完成。

图8

3.2 数据词典的新建

点击工程,然后选择如下所示的dangrongshuixiang这个工程,在点击树形图中的数据

词典。进行新建。定义相关变量。根据PLC的梯形图定义相关触点。

图9

在数据词典中定义相关变量之前先要新建一个设备。步骤如下所示,先双击左边树形图中

的设备,然后右边对话框中双击新建这个图标。然后出现如下所示的对话框。点开PLC这个

选项,选择这个选项里的西门子系列。

图10

选择西门子后,选择s7-200系列中的PPI通信,完成后点击下一步。

图11

点击下一步后出现如下所示的对话框,给你新建的设备取一个名字,取完后点击下一步。

图12

点击下一步后,出现如下框图,选择com口,右键点击桌面上的我的电脑,选择设备管理,找到所连接的是那个com口,而我连接的是com1口,所以选择com1口。完成后,点击一下步。

图13

点击下一步后,出现如下对话框,选择设备地址,这个我们不知道,选择地址帮助,系统默认为2,完成后,然后点击下一步。

图14

点击下一步后出现如下对话框,而通信参数这些我们都不需要去改,我们直接点击下一步就可以了。点击下一步后会出现如图n所示对话框,点击完成新设备就建好了,就可以在数据词典中定义相关变量了。

图15

图16

以上步骤完成后,在数据词典中的相关变量定义如下所示。

图17

数据词典变量定义完成后,我们如果要实现组态王画面中的动态效果,需要在应用程序中写下如图所示的程序,这是让图中的水柱实现循环闪烁,以达到流动的视觉效果。

图18

3.3 动画连接

在进行动画连接之前,我们必须先找到左边中的设置运行系统,然后选择其中的设置运行系统,如下图所示,不然的话,我们即便点击切换到view,也不会出现动画连接。

图19

所有步骤完成后,点击软件中view按钮,动画连接如下所示。

图20

3.4结果分析

做完课程设计,经过动画连接,PID调节的图形可以得出以下结论:

1.只有P调节时,系统永远存在误差,但系统能比较快的达到稳定。超调量也不是很大。

2.加入积分调节时,系统没有稳态误差存在,可见加入积分可以消除稳态误差,但加入积分后系统的超调量变大,调节时间变长。即系统的稳态性能变差。

3.加入微分后,系统的超调减小,调节时间变短。所以加入微分可以使系统的动态性能变好。但是微分环节不适用于外界干扰大的场所。

总结

在这次课程设计中遇到了很多的问题,因为长时间没有去接触这些东西,导致以前所学的东西都生疏了,这次的课程设计让我更熟练的掌握了组态王的用法。在课程设计过程中我也遇到了很多问题,最开始把动画连接图画好后,点切换到view,始终没有画面出现。最后问了老师才知道是我漏了一个步骤。才导致没有动画连接出现。

在智能仪表、可编程控制器(PLC)和组态软件的基础上,我设计出的液位控制系统是结合MCGS组态软件系统变得美观易懂,操作更加简单快捷。但是整个液位控制系统运行效果我并没有进行联机实验,我不知道我的设计是否成功,做设计,是对以前学习的知识的挑战与突破。通过这次设计,对于办公软件的应用有了进一步的提高(如word文档)。同时在对搜集的材料进行整核,结合所学理论知识,以及实际应用操作的情况下,提高了实际操作和独立解决问题的能力。

通过这次设计,让我更熟练的掌握了三菱的PLC软件的简单编程方法,对于PLC的工作原理和使用方法也有了更深刻的理解。也对MCGS组态软件有了更进一步的理解与学习,同时也看清了自己身上的许多不足之处,平时缺乏主动学习和动手操作的积极性。今后要改掉不好的习惯,把理论知识更好的运用到实际的生活当中去。古人说:三人行必有我师、思而不学则殆。所以说学习要善于向别人请教,学思结合。

设计是做完了,可是我的学习之路还没有完,我明白了人这一辈子不能仅仅局限于那一点点满足感,要放眼望去,通过去参与各种实践,提升自己的动手能力,创造属于自己的未来。

参考文献

[1] 陈夕松,汪木兰. 过程控制系统(第二版). 北京:科学出版社,2001.1.

[2] 熊新民. 工业过程控制课程设计指导书. 2008.

[3] 邵裕森. 过程控制工程[M]. 北京:机械工业出版社,2000.

[4] 姜重然. 工业软件组态王简明教程[M]. 哈尔滨:哈尔滨工业大学出版社,2007.

[5] 刘巨良. 过程控制仪表. 北京:化学工业出版社,1998.

[6] 方康玲. 过程控制系统. 武汉:武汉理工大学出版社,2002.6.

武汉华夏理工学院课程设计报告书

题目:单容水箱液位控制系统与仪表设计系名:信息工程系

专业班级:

姓名:

学号:

指导教师:

2016 年12 月19 日

目录

1 设计任务与目的 (1)

1.1选题背景 (1)

1.2设计目的 (1)

1.3设计任务 (1)

2 系统结构设计及原理 (2)

2.1控制仪表的选型 (2)

2.2可编程控制器 (3)

2.3控制器的选择及原理 (3)

2.3.1比例(P)控制及调节过程 (4)

2.3.2积分(I)控制及调节过程 (4)

2.3.3微分(D)控制及调节过程 (4)

2.4组态控制 (5)

2.5 系统总原理图 (5)

3 系统组态设计 (6)

3.1 新建一个工程 (6)

3.2 数据词典的新建 (8)

3.3 动画连接 (13)

3.4结果分析 (14)

总结 (15)

参考文献 (15)

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

单容水箱液位控制报告

湖南工程学院 系统综合训练报告 目录 概述 二硬件介绍说明 (4)

2.1电动调节阀 (4) 2.2扩散硅压力液位变送器 (5) 2.2扩散硅压力液位变送器 (5) 2.4远程数据采集模块ICP-7017、ICP-7024面板 (5) 三.软件介绍说明 (7) 3.1工艺流程 (7) 3.2制作总体回路 (8) 3.2制作总体回路 (9) 四.调试结果与调试说明 (11) 4.1调试说明: (11) 4.2调试结果 (12) 五.实训心得12

第1 章系统总体方案 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽内的液位需维持在给定值上下,或在某一小范围内变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。单容水箱是个比较简单的控制系统,因为在该设计中,只要控制一个液位的高度,初步设计采用水泵恒定抽水,改变电动调节阀的开度来控制水的流量从而控制水箱液位的高度。本设计选用压力传感器对液位高度进行测量,将测量的值与系统的给定值进行比较,来确定阀的开度。 1.1被控参数的选择 根据设计要求可知,水箱的液位要求保持在一恒定值。所以,可以直接选取水箱的液位作为被控参数。 1.2控制参数的选择 影响水箱液位有两个量,一是流入水箱的流量。二是流出水箱的流量。调节这两个流量的大小都可以改变液位高低,这样构成液位控制系统就有两种控制方案。 对两种控制方案进行比较,假如系统在停电或者失去控制作用时,第一种通过控制水箱的流入量的方案将出现的情况是:水箱的水将流干;第二种通过控制水箱的流出量的方案则会形成水长流或者水溢出的情况,因此,选择流入量作为控制参数更加合理。 1.3调节阀的选择 在工程中,当系统的控制作用消失时,如果调节阀没有关闭则会造成水的浪费甚至出现事故,因此,需要关闭调节阀。故选择电动气开式调节阀。

单容水箱液位定值控制实验

实验上水箱液位定值控制系统 一. 实验目的 1.了解闭环控制系统的结构与组成。 2.了解单闭环液位控制系统调节器参数的整定。 3.观察阶跃扰动对系统动态性能的影响。 二. 实验设备 1. THJ-2型高级过程控制系统装置 2. 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根 三. 实验原理 单回路控制系统的结构/方框图: 它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。系统的给定量是某一定值,要求系统的被控制量稳定至给定量。由于这种系统结构简单,性能较好,调试方便等优点,故在工业生产中已被广泛应用。 本实验系统的被控对象为上水箱,其液位高度作为系统的被控制量。系统的给定信号为一定值,它要求被控制量上水箱液位在稳定时等于给定值。由反馈控制的原理可知,应把上水箱的液位经传感检测作为反馈信号。其实验图如下:

过程:储水箱的水被抽出后经过电动调节阀调节进水量送给上水箱,经过LT1的测量变送使上水箱的液位反馈给LC1,LC1控制电动调节阀的开度进而控制入水流量,达到所需要的液位并保持稳定。 四.实验接线 其接线图为:图中LT2改接为LT1 五.实验内容及步骤 1.按图要求,完成系统的接线。 2.接通总电源和相关仪表的电源。 3.打开阀F1-1、F1-2、F1-6和F1-9,且把F1-9控制在适当的开度。 4.设置好系统的给定值后,用手动操作调节器的输出,使电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把调节器切换为自动,使系统投入自动运行状态。 5.启动计算机,运行MCGS组态软件软件,并进行下列实验: 设定其智能调节仪的参考参数为:SV=8cm;P=20;I=40;D=0;CF=0;ADDR=1;Sn=33;diH=50;dil=0;上水箱出水阀开度:45%。运行MCGS组态软件软件,并进行实验当实验数据稳定的同时记录的实验曲线如下图:

水箱水位控制系统

2.水箱水位控制系统 系统有3个贮水箱,每个水箱有2个液位传感器,UH1,UH2,UH3为高液位传感器,“1”有效;UL1,UL2,UL3为低液位传感器,“0”有效。Y1、Y3、Y5分别为3个贮水水箱进水电磁阀;Y2、Y4、Y6分别为3个贮水水箱放水电磁阀。SB1、SB3、SB5分别为3个贮水水箱放水电磁阀手动开启按钮;SB2、SB4、SB6分别为3个贮水箱放水电磁阀手动关闭按钮。 (二)控制要求 1.上电运行时系统处于停止状态。 2.SB1、SB3、SB5在PLC外部操作设定,通过人为的方式,按随机的顺序将水箱放空。 3.只要检测到水箱“空”的信号,系统就自动地向水箱注水,直到检测到水箱“满”信号为止。水箱注水的顺序要与水箱放空的顺序相同,每次只能对一个水箱进行注水操作。 4.为减少外部控制器件,现将每个水箱的放水控制按钮改为一个(即只有SB1、SB3、SB5),分别控制每个水箱的放水开启和关闭。也即,按一下SB1,水箱1放水,再按一下SB1,水箱1停止放水;按一下SB2,水箱2放水,再按一下SB2,水箱2停止放水;按一下SB3,水箱3放水,再按一下SB3,水箱3停止放水。系统其它控制要求保持不变。 (三)I/O配置表

(四)PLC控制系统原理图(硬件电路图) (五)调试指南 1.上电时候系统处于停止状态,所有灯不亮。 2.按动SB1、SB3、SB5按钮,可随机将三个水箱放空,对应Y2、Y4、Y6的亮。 3.只要检测到水箱“空”(即低液位传感器UL1-UL3亮),系统能自动地向水箱注水,对应Y1、Y3、Y5亮,直到检测到水箱“满”信号为止(即高液位传感器UH1-UH3亮)。 4.4.水箱注水的顺序与水箱放空的顺序相同,每次只对一个水箱进行注水操作(Y1、Y3、Y5互锁)。 5.5.按一下SB1,水箱1放水(Y2亮),再按一下SB1,水箱1停止放水(Y2灭); 6.6.按一下SB2,水箱2放水(Y4亮),再按一下SB2,水箱2停止放水(Y4灭); 7.7.按一下SB3,水箱3放水(Y6亮),再按一下SB3,水箱3停止放水(Y6灭)。 8.8.先放空的水箱先进水,已通过梯形图实现。(参见梯形图步骤8)

单容水箱液位控制系统的设计

单容水箱液位控制系统辨识 一、单容水箱液位控制系统原理 单容水箱液位控制系统是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。图1-1为单容水箱液位控制系统方块图。 当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。图1-2是单容液位控制系统结构图。 图1-1 单容水箱液位控制系统的方块图系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定

值无偏差存在。图1-2 是单容水箱液位控制系统结构图。 一般言之,具有比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI )调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti 选择合理,也能使系统具有良好的动态性能。 图1-2 单容液位控制系统结构图 比例积分微分(PID )调节器是在PI 调节器的基础上再引入微分D 的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P 、PI 、PID 调节系统的阶跃响应分别如图1-3中的曲线①、②、③所示。 图1-3 P 、PI 和PID 调节的阶跃响应曲线 二、单容水箱液位控制系统建模 t(s) T( c) . 1 e ss 2 3 1

基于PLC水箱液位控制系统

摘要 本次毕业设计的课题是基于PLC的液位控制系统的设计。在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。 本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。 关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。 The liquid level control system based on PLC ABSTRACT The subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge. Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction. Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.

单容水箱实验报告

单容液位定值控制系统 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 THPCAT-2型现场总线过程控制对象系统实验装置、AT-1智能仪表挂件一个、RS485/232转换器一个、RS485通讯线一根、计算机一台、万用表一个、软管若干。 三、实验原理 图3-6 中水箱单容液位定值控制系统 (a)结构图 (b)方框图 本实验系统结构图和方框图如图3-6所示。被控量为上小水箱(也可采用上大水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT1检测到的上小水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 四、实验内容与步骤 本实验选择上小水箱作为被测对象(也可选择上大水箱或下水箱)。以上小水箱为例叙述实验步骤如下: 1. 实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-3、F1-4、F1-6全开,将上小水箱出水阀门F1-10开至适当开度(30%~80%),其余阀门均关闭。 2. 管路连接:将工频泵出水口和支路1进水口连接起来;将支路1出水口和上小水箱

进水口连接起来;将上小水箱出水口和储水箱进水口连接起来。 3. 采用智能仪表控制: 1)将“AT-1智能调节仪控制”挂件挂到网孔板上,并将挂件的通讯线插头通过RS485通讯线与RS485/232转换器连接到计算机串口1。 2)强电连线:单相I电源L、N端对应接到AT-1挂件电源输入L、N端。 3)弱电连线:上小水箱液位LT1的1-5V+、-端对应接到智能调节仪I的1-5V电压输入1、2端;智能调节I输出7、5对应接到电动调节阀控控制输入+ 、-端。 4)管路、阀门、接线检查无误后接通总电源开关,打开24V电源开关、电动调节阀开关、单相I开关。 5)检查智能调节仪基本参数设置:ctrl=1, dip=1,Sn=33, DIL=0,DIH=50,OPL=0,OPH=100,run=0。 6)打开上位机MCGS组态环境,打开“THPCAT-2智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验六、单容水箱液位定值控制实验”,进入“实验六”的监控界面。 7)先将仪表设置为手动状态,将磁力泵开关打到“手动”位置,磁力驱动泵上电打水,适当增加或减小仪表输出值,使水箱液位平衡在设定值。 8)按本章第一节中的经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。 9)待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰: a.突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面两种仅供参考)。 b.将电动调节阀的旁路F1-5(同电磁阀)开至适当开度,将电磁阀开关打至“手动”位置。 c.适当改变上小水箱出水阀F1-10开度(改变负载)。 以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面两种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3-7所示。 图3-7 单容水箱液位的阶跃响应曲线 10)分别适量改变调节仪的P及I参数,重复步骤9,用计算机记录不同参数时系统的阶跃响应曲线。

上水箱液位控制系统-过控课设

摘要 在过程工业中被控制量通常有以下四种: 液位、压力、流量、温度。而液位不仅是工业过程中常见的参数,且便于直接观察,也容易测量。过程时间常数一般比较小。以液位过程构成实验系统,可灵活地进行组态,实施各种不同的控制方案。液位控制装置也是过程控制最常用的实验装置。国外很多实验室有此类装置,如瑞典LUND大学等。很多重要的研究报告、模拟仿真均出自此类装置! 本次设计也是基于这套水箱液位控制装置来实现的。这套系统由多个水箱,液位检测变送器,电磁流量计,涡轮流量计,自动调节阀,控制面板等喝多器件构成。 液位控制的发展从七十年代到九十年代经历了几个阶段,控制理论由经典控制理论到现代控制理论,再到多学科交叉;控制工具由模拟仪表到DCS,再到计算机网络控制;控制要求与控制水平也由原来的简单、安全、平稳到先进、优质、低耗、高产甚至市场预测、柔性生产。而其中应用最广泛的就是PID 控制器。 这次首先是用一天半的时间让我们熟悉各种建模的方法。学会建立了最初的四种模型。接着后几天就是开始熟悉各种控制系统,以及运用它们去控制水箱的液位,从而更加深刻的理解控制的概念。并且在过程中,要熟练学会调整PID的参数,学会使用MATLAB等。 关键词:水箱液位;PID控制;串级控制;前馈控制;经验凑试法

目录 1引言 (1) 2 实验设备 (2) 2.1 THJ-FCS型或THJ-3型高级过程控制系统实验装置 (2) 2.2计算机及相关软件。 (6) 2.2.1 SIMATIC WinCC简介 (6) 2.2.2 监控界面 (7) 3 设备工作原理及运行过程 (8) 3.1 设备工作原理 (8) 3.2 控制系统流程图 (9) 3.3系统投运及步骤 (10) 4 参数整定与结果分析 (12) 4.1 参数整定 (12) 4.1.1 比例(P)调节 (12) 4.1.2 比例积分(PI)调节 (14) 4.1.3 比例积分微分(PID)调节 (17) 4.2 结果分析 (19) 总结 (20) 参考文献 (21)

双容水箱液位控制系统

内蒙古科技大学 控制系统仿真课程设计说明书 题目:双容水箱液位控制系统 仿真 学生姓名:任志江 学号:1067112104 专业:测控技术与仪器 班级:测控 10-1班 指导教师:梁丽

摘要 随着工业生产的飞速发展,人们对生产过程的自动化控制水平、工业产品和服务产品质量的要求也越来高。每一个先进、实用控制算法和监测算法的出现都对工业生产具有积极有效的推动作用。然而,当前的学术研究成果与实际生产应用技术水平并不是同步的,通常情况下实际生产中大规模应用的算法要比理论方面的研究滞后几年,甚至有的时候这种滞后相差几十年。这是目前控制领域所面临的最大问题,究其根源主要在于理论研究尚缺乏实际背景的支持,一旦应用于现场就会遇到各种各样的实际问题,制约了其应用。本设计设计的课题是双容水箱的PID液位控制系统的仿真。在设计中,主要针对双容水箱进行了研究和仿真。本文的主要内容包括:对水箱的特性确定与实验曲线分析,通过实验法建立了液位控制系统的水箱数学模型,设计出了控制系统,针对所选液位控制系统选择合适的PID算法。用MATLAB/Simulink建立液位控制系统,调节器采用PID控制系统。通过仿真参数整定及各个参数的控制性能,对所得到的仿真曲线进行分析,总结了参数变化对系统性能的影响。 关键词:MATLAB;PID控制;液位系统仿真

目录 第一章控制系统仿真概述 (2) 1.1 控制系统计算机仿真 (2) 1.2 控制系统的MATLAB计算与仿真 (2) 第二章 PID控制简介及其整定方法 (6) 2.1 PID控制简介 (6) 2.1.1 PID控制原理 (6) 2.1.2 PID控制算法 (7) 2.2 PID 调节的各个环节及其调节过程 (8) 2.2.1 比例控制与其调节过程 (8) 2.2.2 比例积分调节 (9) 2.2.3 比例积分微分调节 (10) 2.3 PID控制的特点 (10) 2.4 PID参数整定方法 (11) 第三章双容水箱液位控制系统设计 (12) 3.1双容水箱结构 (12) 3.2系统分析 (12) 3.3双容水箱液位控制系统设计 (15) 3.3.1双容水箱液位控制系统的simulink仿真图 (15) 3.3.2双容水箱液位控制系统的simulink仿真波形 (16) 第四章课程设计总结 (17)

单容水箱液位控制系统的设计

单容水箱液位控制系统辨识 一、单容水箱液位控制系统原理 单容水箱液位控制系统是一个单回路反馈控制系统,它的控制任务是使 水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动 的影响。单回路控制系统由于结构简单、投资省、操作方便、且能满足一般 生产过程的要求,故它在过程控制中得到广泛地应用。图 1-1为单容水箱液 位控制系统方块图。 当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的 选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之, 控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常 工作。因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个 很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十 分重要的工作。图1-2是单容液位控制系统结构图 GK-07 图i-i 单容水箱液位控制系统的方块图 系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调 节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定 值无偏差存在。图1-2是单容水箱液位控制系统结构图。 一般言之,具有比例(P )调节器的系统是一个有差系统,比例度3的大 小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分 电帖泵2 04 上水箱

(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数3, Ti选择合理,也能使系统具有良好的动态性能。 图1-2单容液位控制系统结构图 比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图1-3中 二、单容水箱液位控制系统建模 2.1液位控制的实现 液位控制的实现除模拟PID调节器外,可以采用计算机PID算法控制。首先由差压传感器检测出水箱水位;水位实际值通过单片机进行A/D转换,

双水箱水位控制系统

****大学《控制系统仿真与设计》总结报告基于MATLAB的双水箱液位控制系统仿真 学生姓名: 院系班级: 学号: 联系电话: Email: 2018年5月26日

一、单水箱模型仿真及控制 1.水箱液位仿真 1.1液位表达式的转化 由流量方程表达式:Adh = (qin ? q1)dt;q1=k; 得dh与dt关系式:dh = (qin ? k)dt S;其中dt为仿真时间步长,h为当前液位 高度,dh为进行一步后液位变化量,累加即得实际液位。 1.2程序流程图 1.3程序代码 S=15;%截面积 k=1.5;%流量系数 qin=2;%输入流量 T=1000;%仿真时间 dt=1;%步长 h=zeros(1,T/dt);%初始化液位数组 h(1,1)=0;%液位初值 for i=1:T/dt-1 q1=k*sqrt(h(1,i)); dh=(qin-q1)*dt/S; h(1,i+1)=h(1,i)+dh; end t=0:dt:T-1;%时间坐标 plot(t,h);%绘图 xlabel('t(s)'),ylabel('h(m)'); title('A水箱液位仿真(未添加控制)'); legend('h');

1.4仿真结果 液位初值0 液位初值2 2.PID仿真模型构建 2.1PID传递函数结构图 由PID控制器传递函数:G(s) = K p+ + Kd * s 利用Simulink绘制结构图: 2.2由结构图建立子系统 选中结构图,建立subsystem

参数设定窗口设置: 即可通过双击子系统修改PID参数 3.PID控制的实现及参数整定 3.1建立原系统结构图并仿真 设置仿真时间为1000,得到仿真结果: 可见该结果与1.4结果相同。

水箱液位单回路控制系统

水箱液位单回路控制系统 一、控制目的 根据设定的控制对象和管道配置,运用计算机和INTOUCH组态软件,设计一套监控系统,并通过调试使得水箱液位维持恒定或保持在一定的误差范围内。 二、性能要求 1、要求水箱液位恒定,液位设定值SP自行给定。 2、无扰动时,水压基本恒定,由变频器控制水泵实现。 3、扰动因数:水箱出水流量允许波动。 4、预期性能:响应曲线为衰减震荡;允许存在一定误差。调整时间尽可能短。 三、方案设计、控制规律选择 简单控制系统一般是单回路控制系统。由于其结构简单并且能够满足大多数控制质量的要求,因此在生产过程控制中得到了广泛的应用,是生产过程控制中最基本的一种控制系统。一个单回路反馈系统是由测量变送器装置、控制器、和被控对象所组成,按其被控变量类型的不同可以分为温度控制系统、压力控制系统、流量控制系统、液位控制系统等。 控制系统设计时针对某一特定生产对象进行的,当系统安装完成之后,控制效果主要取决于控制器的参数设定整定。选择合适的比例度、积分时间、微分时间是保证和提高系统控制质量的主要途径。 单回路水箱的原理,系统地输入变量为进水阀门、出水阀门的开度,输出变量为水箱液位。单回路PID控制的被控制量是水位,控制量是进水门、出水门开度。通过调节PID控制器的比例增益、积分时间、微分时间三个参数得到比较好的控制效果。 PID 调节器构成的闭环控制回路一般原理如图1 所示

图1 控制系统方框图 控制系统草稿图如图2 图2 控制规律选择:目前工业上常用的控制规律主要有:比例控制、比例积分控制和比例积分微分控制等。本方案采用比例积分微分控制。 比例控制——克服干扰能力强、控制及时、过渡时间短。是最基本的控制规律。但在终了时会存在余差,负荷变化越大余差越大。使用于滞后较小、负荷变化不大、允许被控变量存在余差的场合。 比例积分控制——在比例作用下引用积分作用,虽然会使系统的稳定性降低,但没有余差。适用于控制通道滞后较小、负荷变化不大、不允许被控变量存在余差的场合。 比例微分控制——引入了微分作用,具有超前控制作用,在被控对象具有较大滞后时,会有效的改善控制质量。但对于滞后小干扰作用频繁,含有高频噪声的系统,将可能使系统产生振荡,甚至失控。 比例积分微分控制——综合了比例、积分、微分控制规律的优点。适用于容量滞后较大、负荷变化大、控制要求高的场合。 该方案的控制目标是使水位达到平衡状态,通过控制电动调节阀改变阀门开度,来控制流量的大小,从而来控制水位。选择阀门开度为控制量,水位为被控量。控制规律选择PID控制规律。 四、测要求试:

水箱液位控制系统的设计及实物调试

自动控制系统课程设计 1、设计题目:水箱液位控制系统的设计及实物调试 2、设计目的 1、加强对自动控制原理这门课程的认识,初步认识工程设计方法。 2、通过对水箱液位控制系统的设计,进一步理解书本知识,提高实践能力,增强分析问题,解决问题的能力。 3、学习并掌握Matlab的使用方法,学会用Matlab仿真。 4、学会对仿真结果进行分析,计算,并应用到实践设计中去。 3、设计设备 1、ACCC—Ⅰ型自动控制理论及计算机控制技术实验装置 2、数字式万用表 3、示波器 4、MATLAB软件 4、设计任务 (1)复习有关教材、到图书馆查找有关资料,了解水箱液位控制系统的工作原理。 (2)总体方案的构思 根据设计的要求和条件进行认真分析与研究,找出关键问题。广开思路,利用已有的各种理论知识,提出尽可能多的方案,作出合理的选择。画出其原理框图。 (3)总体方案的确定 可从频域法、跟轨迹法分析系统,并确定采用何种控制策略,调整控制参数。(4)系统实现 搭建系统上的硬件电路,实现开环控制,记录实验数据。引入闭环控制,将设计好的控制策略实现其中,根据实际响应效果调整参数直至最优,并记录数据

5、设计要求 1.分析系统的工作原理,进行系统总体设计。 2.选择系统主电路各元部件,进行主电路设计,并完成系统调试。 3.构成开环系统,并测其动态特性。 4.测出各环节的放大倍数及其时间常数。 5.分析单闭环无差系统的动态性能。 6.比较开环时和闭环时的动态响应。 7.构成水箱液位闭环无静差系统,并测其动态性能指标和提出改善系统动态性能的方法,使得系统动态性能指标满足s t s t s r 5.0,2.0%,5%<<≤σ。 6、MATLAB 软件仿真 6.1 软件仿真部分设计要求 1、参考文献【1】完成对电机的数学建模,拉普拉斯变换后得到系统的传递函数; 2、带入表中的水箱液位系统参数,求出系统的开环传递函数; 3、绘制出系统的开环传递函数的单位阶跃响应,分析系统的单位阶跃响应,得到相关性能指标; 4、分步骤实现系统的PID 校正,分别进行比例控制(P )校正,比例微分控制(PD )校正,比例积分控制(PI )校正和比例积分微分控制(PID )校正; 5、运用《自动控制原理》知识分析系统的性能特征,从阶跃响应性能指标,频域特性等角度分析系统校正前和校正后的性能; 6、设计后的系统满足如下性能指标:s t s t s r 5.0,2.0%,5%<<≤σ; 7、改变输入信号,将阶跃信号分别换成方波信号,信号的周期设置为4s ,幅值为5V 。 6.2 模型建立 1. “水箱系统”的液位控制工艺过程原理图 参考文献【1】,可以得到水箱液位控制系统的工艺过程原理图如图6.2.1所示

单容水箱液位控制系统的PID算法

自动控制原理课程设计报告

单容水箱液位控制系统的PID算法 摘要随着科技的进步,人们对生产的控制精度要求越来越高,水箱液位系统是过程控制中一种典型的控制对象,提高液位控制系统的性能十分重要。本文针对理想的单容水箱液位系统,将包括单容水箱、电动机等在内的部分分别建立数学模型,并加入常规PID对系统性能进行调节。但由于实际单容水箱液位系统具有时滞性和非线性,实际生产中若要对其建立精确的数学模型比较困难。因此,将模糊控制的方法引用到对单容水箱液位系统的PID控制中,通过Simulink仿真验证了算法的有效性。结果表明,和常规PID控制相比,模糊PID控制具有良好的动静态品质。 关键词单容水箱液位; PID控制; MA TLAB; Simulink; 模糊控制. PID control method in water level systemof single-tank ABSTRACT With the development of technology, the control precision is more and more important. And thewater level system of single-tankis a typical control target in process control. The article mainly deals with the water level system of single-tank. It establishes mathematics model for every part of the system, and uses the traditional PID to improve the function . But in actual industry,it’s hard to establishes precise mathematics model. So, it introduces fuzzy PID control in this system. The result suggests that fuzzy PID control is more suitable than the traditional one. KEY WORDS the water level of single-tank; PID control; MA TLAB ; Simulink; fuzzy control. 在工业过程控制中,被控量通常有:液位、压力、流量和温度。其中,液位控制是工业中常见的过程控制,广泛运用于水塔、锅炉、高层建筑水箱等受压容器的液位测量,是工业自动化的一个重要的组成部分。因此,对它进行研究有很高的价值。 单容水箱是一个自衡系统,自衡调节过程比较缓慢,液位很难达到预期值。加入闭环调整后,系统的性能有所改善。但是,实际过程中往往要求要求水箱系统超调小、响应快、稳态误差小。并且要求水箱在一定扰动下,即出水阀门打开后,液位能够平稳、快速、准确地恢复到一个恒定值。因此,在水箱液位控制过程中引入PID调节。 常规PID适用于数学模型容易确定的系统。理想模型下,引入PID调节后,系统的动态和静态性能改善。但是实际中,液位控制具有滞后、非线性、时变性、数学模型难以准确建立等特点。常规的PID控制采用固定的参数,难以保证控制适应系统的参数变化和工作条件变化。而模糊控制具有对参数变化不敏感和鲁棒性强等特点,但控制精度不太理想。如果将模糊控制和常规的PID控制结合,用模糊控制理论来整定PID控制器的比例、积分、微分系数,就能更好地适应控制系统的参数变化和工作条件的变化。 本文主要对单容水箱闭环系统建立模型,分析其闭环系统、引入常规PID控制及引入模糊PID控制后的系统性能,并用MATLAB进行仿真。 1 单容水箱液位控制系统模型 1.1原理图 1.2系统闭环结构框图 负载阀 调节阀 电机浮子 减速器 电位器 图1单容水箱液位闭环控制系统

水箱液位控制系统

课程设计报告 设计题目:水箱液位控制系统 班级:自动化0901班 学号: 姓名:郝万福 指导教师:王姝梁岩 设计时间:2012年5月7号----5月25号

摘要 在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。 在这次课程设计中,我们主要是设计一个水箱液位控制系统,涉及到液位的动态控制、控制系统的建模、PID 参数整定、传感器和调节阀等一系列的知识。通过将电磁流量计和涡轮流量计分别作为主管道和副管道控制系统的调节阀控制水箱液位高度。首先测取被控液位高度过程的图像,建立了主回路的进水流量和主管道流量、进水流量和水箱(上)液位高度、副回路进水流量和水箱(上)液位、双容水箱的进水流量和水箱(下)液位之间的数学模型,从而加强了对液位控制系统的了解。然后,通过参数试凑法对PID参数的调试,使上述的模型能快速的达到稳定并且超调量和余差等满足设计要求。最后通过MATLAB仿真实验,加深了对双容水箱滞后过程以及串级水箱液位过程和前馈控制系统的理解,对工业控制工程中对控制系统设计过程有了一定的认识。在PID参数整定过程中,我对比例控制,积分控制,微分控制的作用、效果以及调试方法有了一定了解。通过这次课程设计加深我们对《自动控制原理》、《过程控制系统及仪表》等科目的理解。 关键词:水箱液位控制PID参数整定串级控制前馈控制MATLAB仿真

双容水箱液位定值控制系统实验报告

XXXX大学 电子信息工程学院 专业硕士学位研究生综合实验报告 实验名称:双容水箱液位定值控制系统专业:控制工程 姓名: XXX 学号:XXXXXX 指导教师: XXX 完成时间:XXXXX

实验名称:双容水箱液位定值控制系统 实验目的: 1.通过实验进一步了解双容水箱液位的特性。 2.掌握双容水箱液位控制系统调节器参数的整定与投运方法。 3.研究调节器相关参数的改变对系统动态性能的影响。 4.研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。 5.掌握双容液位定值控制系统采用不同控制方案的实现过程。 实验仪器设备: 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI通讯电缆一根。 实验原理: 本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。要求下水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。调节器的参数整定可采用本章第一节所述任意一种整定方法。本实验系统结构图和方框图如图所示。

实验二、单容水箱液位PID控制系统

实验二、单容水箱液位PID 控制系统 一、实验目的 1、通过实验熟悉单回路反馈控制系统的组成和工作原理。 2、研究系统分别用P 、PI 和PID 调节器时的阶跃响应。 3、研究系统分别用P 、PI 和PID 调节器时的抗扰动作用。 4、定性地分析P 、PI 和PID 调节器的参数变化对系统性能的影响。 二、实验设备 1、THKGK-1型过程控制实验装置: GK-02、 GK-03、 GK-04、 GK-07(2台) 2、万用表一只 3、计算机系统 三、实验原理 1、单容水箱液位控制系统 图7-1、单容水箱液位控制系统的方块图 图7-1为单容水箱液位控制系统。这是一个单回路反 馈控制系统,它的控制任务是使水箱液位等于给定值所要 求的高度;并减小或消除来自系统内部或外部扰动的影 响。单回路控制系统由于结构简单、投资省、操作方便、 且能满足一般生产过程的要求,故它在过程控制中得到广 泛地应用。 当一个单回路系统设计安装就绪之后,控制质量的好 坏与控制器参数的选择有着很大的关系。合适的控制参 数,可以带来满意的控制效果。反之,控制器参数选择得 不合适,则会导致控制质量变坏,甚至会使系统不能正常 工作。因此,当一个单回路系统组成以后,如何整定好控 制器的参数是一个很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 图7-2单容液位控制系统结构图 系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定值无偏差存在。 一般言之,具有比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密 切相关。比例积分(PI )调节器,由于积分 的作用,不仅能实现系统无余差,而且只要t(s)T( c) .10e ss 23 1

水箱液位监控系统设计

科信学院 课程设计说明书(2012 /2013 学年第一学期) 课程名称:工业监控系统工程设计 题目:水箱液位监控系统设计 专业班级: 学生姓名: 学号: 指导教师:刘增环、段广玉、杜永等 设计周数: 2周 设计成绩: 2013年 1月 4日

目录 1 课程实际目的 (2) 2 课程设计征文 (2) 2.1监控组态软件的概念 (2) 2.2监控组态软件的组成及原理 (3) 2.3技术要求 (5) 2.4组态界面的建立 (5) 2.5变量组态 (5) 2.6动画连接 (7) 3动作脚本程序 (9) 3.1脚本程序 (10) 4课程设计总结或结论 (12) 5参考文献 (13)

1、课程设计目的 (1)了解过程控制实验装置的结构,了解实验的原理、实验过程、操作方法和控制算法。 (2)了解各路检测信号到远程数据采集模块的输入通道的构成,了解输入信号的有效范围和实际变化范围。了解远程数据采集模块各输出通道的构成,了解输出信号的有效范围。 (3)了解远程数据采集模块与计算机的连接方法和工作关系,了解所用的ICP-7017模拟量输入模块和ICP-7024模拟量输出模块的工作原理,性能指标和模拟量输入输出信号的编址。 (4)根据制定实验“上水箱中水箱液位串级控制实验”实验的需要开发计算机上的监控系统软件。 (5)撰写设计说明书。阐明使用到的各路输入输出信号的功能,画出系统电路原理图或结构图,说明监控软件使用的控制算法以及程序设计思路,并附组态软件脚本程序。 2、课程设计正文 2.1监控组态软件的概念 随着现代化生产过程控制技术飞速发展,生产装置大型化,生产过程连续化和自动化程度的不断提高,对过程工业生产的实时控制和监控的需求越来越高。当然,目前极为成熟的集散控制系统足以解决所有的控制要求。但是,出于成本及其他因素考虑,诸如控制点较少的小规模生产设备,动用大型的集散控制系统设备是耗资且繁琐的,这样,各种各样的监控组态软件便成为了解决这些问题的很好选择。迄今为止,监控组态软件已经得到了蓬勃的发展,技术以趋于成熟并已经成为工业自动化系统的必要组成部分,即“基本单元”或“基本元件”。作为自动化通用软件,监控组态软件始终处于“承上启下”的地位。它的控制品质及数据采集的实时性都可以很好的达到预期目标。正因如此,监控组态软件几乎已经应用于所有的工业信息化项目中了。力控监控组态软件作为占有国内市场的主要品牌之一,凭借着自身的许多优越性而越来越受到自动控制行业的关注,被更好的利用到实际生产实践当中去了。 “组态(configure)”的概念是伴随着集散控制系统(Distributed Control System, DCS)的出现才开始被广大的生产过程自动化技术人员所熟识的。每套DCS都是比较通用的控制系统,可以应用到很多的领域,为了使用户在不需要编写程序的情况下便可以生成适合自己需求的应用系统,每个DCS厂商在DCS中都预装了系统软件和应用软件,其中的应用软

相关主题
文本预览
相关文档 最新文档