当前位置:文档之家› 数控机床精度定义

数控机床精度定义

数控机床精度定义
数控机床精度定义

数控机床精度

一份数控机床的促销文章上,机床A的“定位精度”标为0.004mm,而在另一生产商的样本上,同类机床B的“定位精度”标为0.006mm。从这些数据,你会很自然地认为机床A 比机床B的精度要高。然而,事实上很有可能机床B比机床A的精度要高,问题就在于机床A和B的精度分别是如何定义的。所以,当我们谈到数控机床的“精度”时,务必要弄

清标准、指标的定义及计算方法。

1 精度定义

一般说来,精度是指机床将刀尖点定位至程序目标点的能力。然而,测量这种定位能力的办法很多,更为重要的是,不同的国家有不同的规定。日本机床生产商标定“精度”时,通常采用JISB6201或JISB6336或JISB6338标准。JISB6201一般用于通用机床和普通数控机床,JISB6336一般用于加工中心,JISB6338则一般用于立式加工中心。上述三种标准在定义位置精度时基本相同,文中仅以JIS B6336作为例子,因为一方面该标准较新,另一方面相对于其它两种标准来说,它要稍稍精确一些。欧洲机床生产商,特别是德国厂家,一般采用VDI/DGQ3441标准。美国机床生产商通常采用NMTBA(National Machine Tool Builder's Assn)标准(该标准源于美国机床制造协会的一项研究,颁布于1968年,后经修改)。上面所提到的这些标准,都与ISO标准相关联。当标定一台数控机床的精度时,非常有必要将其采用的标准一同标注出来。同样一台机床,因采用不同标准会显示出不同的数据(采用JIS标准,其数据比用美国的NMTBA标准或德国VDI标准明显偏小)。

2 同样的指标,不同的含义

经常容易混淆的是:同样的指标名在不同的精度标准中代表不同的意义,不同的指标名却具有相同的含义。上述4种标准,除JIS标准之外,皆是在机床数控轴上对多目标点进行多回合测量之后,通过数学统计计算出来的,其关键不同点在于:(1)目标点的数量;(2)测量回合数;(3)从单向还是双向接近目标点(此点尤为重要);(4)精度指标及其它指标的计算方法。这是4种标准的关键区别点描述,正如人们所期待的,总有一天,所有机床生产商都统一遵循ISO标准。因此,这里选择ISO标准作为基准。附表中对4种标准进行了比较,本文仅涉及线性精度,因为旋转精度的计算原理与之基本一致。

3 ISO标准

在所有现行的精度测量过程中,沿轴向分布的各个目标点上都假设存在一条正态分布曲线(图1)。由于是多回合的测量过程,因此对应于每个目标点来说,都存在一个实际测定点系列分布,通过对这种分布的标准偏差计算(累积,多次∑),即可定义该正态曲线。一个±3次标准偏差(记做±3σ──亦即共6σ)可以覆盖无限个实际点中约99.74%的位置分布情形。而这个发散度即称作重复精度,它是指某一指定目标点处的重复精度。

图1 单向5次测量时的重复精度及平均定位偏差图2 双向测量时的重复精度及反向误差图1中的正态曲线是指从单方向接近目标点的曲线(称为单向),如果从反方向接近目标点(称为双向),将会出现第二条正态分布曲线(图2),两次不同方向时的结果偏差称反向误差。理论上它是由于系统的反向间隙所产生的。很明显,同一机床采用单向检测的数字结果要

置点对应的一系列实际位置点计算±3σ的分布。如果一条理论正态曲线──或双向时的两条──在每个目标点上形成,在经过3σ分布之后,所有正态曲线中最上端曲线与最下端曲线之间的展宽即ISO230-1标准中所指的定位精度(图3)。轴向重复精度指目标点处一条正态曲线最大展宽(单向)或两条正态曲线(双向)之和的最大展宽。一个最简单的理解:重复精度大约为定位精度的?,但也有例外,并且有时出入还很大。图3中目标点的正态曲线旋转了90°,目的是为了更加直观地表达展宽的概念。由于这种分析方法基于最差的定位精度情形,并且几乎覆盖100%的可能的不准确性,因此可以期望用它能较好地评价数控机床的实际性能。

图3 单/双向时的定位精度及重复精度

4 NMTBA 标准

美国的NMTBA 标准与ISO 标准非常近似,一个区别就是:NMTBA 标准喜欢采用单向测量,而ISO 标准建议双向测量;另一区别是:NMTBA 标准采用“滑动尺”(如同VDI 标准),这样把精度与轴的长度关联起来,而这一点ISO 标准并未涉及。单从这一点来看,1972年出版的NMTBA 标准也许有点过时,因为控制系统调节功能,诸如丝杆间隙补偿等)现在已经能够调整轴向移动中产生的误差──不论轴的长短,而1988年出版的ISO 标准则很显然地反映出这一点。同样应该注意的是,NMTBA 标准在滑动尺这一点上与VDI 标准相似。 还有一点区别,那就是NMTBA 以正负值反映,而VDI 和ISO 以绝对值反映,实际上绝对值与正值和负值相等(也就是+0.002mm ,-0.002mm 或±0.002mm=0.004mm),两种表达方式总的来说有相同的解释,但技术上来说还是不一样的。

5 德国标准

德国采用的标准VDI/DGQ(Verein Deutscher

Ingeieure/Deutsche Gesellschaft fuer

Qualitaet)与ISO 及NMTBA 标准基本相近,或者更

准确地说,ISO 标准与VDI 及NMTBA 标准相近。因

为后二者在前者之前问世并且很明显地被前者用

做基础。尽管计算方法及指标有区别,但关键计算结果,即定位精度和重复精度在三种标准中相近。 德国VDI 方法是文中所提及各种方法中最复杂的

一种,该标准中的一些指标,若不做仔细分析,则很难搞清楚。指标“定位精度”不象在ISO 标准中只有单一数字表达,而是分成四个部分:定位不确定性(P),定位发散度(P s ),反向误差(U)和定位偏差(P a )。 与ISO 标准中的定位精度最相近的是VDI 中的定位不确定性

(P),尽管这两项指标的计算过程不大一样,但最终结果却极为近似:都是计算沿轴向的正态曲线的最大展宽(图4)区别仅在于正态分布曲线的计算方法。VDI 标准将双向测量的两根正态曲线合并为一体,定义为定位发散度(P s )它是通过首先取平均值,然后进行六次平均标

准差(即6 ,图5)而得出的,然后将反向误差(U)除以2,每一半加至平均正态曲线(即定位发散度)的一端(图4中的“U/2”)。 指标“定位偏差”在VDI 中的描述与ISO 标准中的同名指标不同,在ISO 标准中它是指目标点与实际点之差(图1),在VDI 标准中是指沿轴向的各个目标点对应

的一系列实际位

置点的平均值的

最大差额(图6)。

轴向重复精度与

ISO 标准中的定

义很相似,它是

由目标点对应的

最大定位发散度

加上反向误差而得到的(图4)。

图4 VDI 标准的定位不确定性(P)

图5 正反向正态曲线合并及定位发散度(P s ) 图6 定位偏差(P a )

6 JIS标准

日本工业标准JIS远比前述任一精度标准简单,自然也远不如前述任一精度标准准确。JIS B6336仅要求一次往返目标点检测(双向)目标点与其对应实际点列之间的最大定位偏差即为定位精度(图7)JIS B6336根本不考虑ISO、VDI和NMTBA中运用的±3 分布。用这种方法计量出的数控机床的精度结果给人的感觉是无论比ISO标准还是NMTBA标准计量的都要高,数值比例为1:2。JIS标准的重复精度是指目标点处的最大分散度。这种通过7次双向测量得出的最大分散度除以2,然后冠以“±”值,即表达出重复精度(图8)。

图7定位精度即最大定位偏差图8 重复精度为最大分散度除2后取“±”值

官方解读-《中国制造2025》解读之:推动高档数控机床发展讲课稿

《中国制造2025》解读之:推动高档数控机床发展 【发布时间:2015年05月22日】【来源:工信部装备工业司】 《中国制造“2025”》将数控机床和基础制造装备列为“加快突破的战略必争领域”,其中提出要加强前瞻部署和关键技术突破,积极谋划抢占未来科技和产业竞争制造点,提高国际分工层次和话语权。这一战略目标的提出,是由数控机床和基础制造装备产业的战略特征以及发展阶段特征所决定的,我们应认真学习领会,深入贯彻落实。 一、数控机床和基础制造装备具有战略必争的产业特质 1.锚定我国装备制造业全球竞争地位 数控机床和基础制造装备是装备制造业的“工作母机”,一个国家的机床行业技术水平和产品质量,是衡量其装备制造业发展水平的重要标志,“中国制造”2025将数控机床和基础制造装备行业列为中国制造业的战略必争领域之一,主要原因是其对于一国制造业尤其是装备制造业的国际分工中的位置具有“锚定”作用:数控机床和基础制造装备是制造业价值生成的基础和产业跃升的支点,是基础制造能力构成的核心,唯有拥有坚实的基础制造能力,才有可能生产出先进的装备产品,从而实现高价值产品的生产。 2.支撑国防和产业安全的战略需求 在国防安全方面,数控机床和基础制造装备对制造先进的国防装备具有超越经济价值的战略地。现代国防装备中许多关键零部件的材料、结构、加工工艺都有一定的特殊性和加工难度,用普通加工设备

和传统加工工艺无法达到要求,必须采用多轴联动、高速、高精度的数控机床才能满足加工要求。即使在全球一体化的今天,发达国家仍对我国采取技术封锁与限制。在产业安全方面,随着国内制造业升级速度加快,以装备制造业为代表的高技术含量高附加值产业与发达国家竞争加剧,工程机械、电气机械、交通运输装备正处于打入国际高端市场的攻坚期,而国内机床产品在加工精度、可靠性、效率、自动化、智能化和环保等方面还存在一定差距,进而导致产业整体竞争力不强。 3.满足用户领域转型升级的重要支撑 当前机床行业下游用户需求结构出现高端化发展态势,多个行业都将进行大范围、深层次的结构调整和升级改造,对于高质量、高技术水平机床产品需求迫切,总体上来说,中高档数控机床市场需求上升较快,用户需要更多高速、高精度、复合、柔性、多轴联动、智能、高刚度、大功率的数控机床。例如,汽车行业表现出生产大批量、多品种、车型更新快的发展趋势,新能源汽车发展加速,从而要求加工设备朝着精密、高效、智能化方向不断发展。在航空航天产业领域,随着民用飞机需求量的剧增以及军用飞机的跨代发展,新一代飞机朝着轻质化、高可靠性、长寿命、高隐身性、多构型、快速响应及低成本制造等方向发展,新一代技术急切需要更先进的加工装备来承载,航空制造装备朝着自动化、柔性化、数字化和智能化等方向发展。例如,在“两机专项”致力于突破的飞机发动机制造中,发动机叶片、

数控机床精度检测项目及常用工具

数控机床精度检测项目及常用工具 随着数控技术的进一步推广应用,越来越多的数控机床利用自身带有的测头系统来进行工件、刀具尺寸检测及进行仿形数字化。要知道上述功能的实现,与机床自身的精度密切相关,若机床精度不作定期校准,则谈不上准确地完成上述工作。 雷尼绍ML10激光干涉仪线性位移测量软件可提供按下述标准进行的数据分析:BS4656英国三测机标准;BS3800英国机床标准;ISO 230-2国际标准;VDI/DGQ 3441德国工程师学会机床标准;VDI 2617德国工程师学会三测机标准;NMTBA美国机床协会标准;GB10931-89中国国家标准;ASME B89.1.12M美国机械工程师学会标准;ASME B5.54美国机械工程师学会标准;E60—099法国标准;JISB2330日本国家标准。 2 英国雷尼绍公司先进技术 英国雷尼绍公司是专门从事设计、制造高精度检测仪器与设备的世界性跨国公司。主要产品为三坐标测量机及数控机床用测头、激光干涉仪、球杆仪等,为机械制造工业提供了序前(激光干涉仪和球杆仪)、序中(数控机床用工件测头及对刀测头)和序后(三测机用测头及配置)检测的成系列质量保证手段。她的全部技术与产品都旨在保证数控机床精度,改善数控机床性能,提高数控机床效率,可保证和改善数控机床制造厂工作母机的加工精度与质量,扩大制成品的市场。 2.1ML10激光干涉仪 雷尼绍ML10激光干涉仪为机床检定提供了一种高精度仪器,它精度高,达到±1.1PPM(在0~40℃下),测量范围大(线性测长40m,任选80m),测量速度快(60m/min),分辨率高(0.001μm),便携性好。由于雷尼绍激光干涉仪具有自动线性误差补偿功能,可方便恢复机床精度,更受到用户欢迎! 为使大家进一步了解ML10激光干涉仪在检测数控机床精度方面所具有的独特优点,下面着重介绍ML10激光干涉仪在精度检测中的应用。 (1)几何精度检测可用于检测直线度、垂直度、俯仰与偏摆、平面度、平行度等。 (2)位置精度的检测及其自动补偿可检测数控机床定位精度、重复定位精度、微量位移精度等。利用雷尼绍ML10激光干涉仪不仅能自动测量机器的误差,而且还能通过RS232接口自动对其线性误差

数控车床检验标准

共享知识分享快乐 一.写出CAK6140数控车床检验标准 1.机床外观的检查 机床外观的检查一般可按通用机床的有关标准进行,但数控机床是高技术设备,其外观质量的要求更高。外观检查内容有:机床有无破损;外部部件是否坚固;机床各部分联结是否可靠;数控柜中的MDI/CRT单元、位置显示单元、各印制电路板及伺服系统各部件是否有破损,伺服电动机(尤其是带脉冲编码器的伺服电机)外壳有无磕碰痕迹。 2.机床几何精度的检查 数控机床的几何精度综合反映机床的关键零部件组装后的几何形状误差。数控机床的几 何精度检查和普通机床的几何精度检查基本类似,使用的检查工具和方法也很相似只是检查要求更高。每项几何精度的具体检测办法和精度标准按有关检测条件和检测标准的规定进行。 同时要注意检测工具的精度等级必须比所测的几何精度要高一级。现以一台普通立式加工中心为例,列出其几何精度检测的内容: 1)工作台面的平面度。 2)各坐标方向移动的相互垂直度。 3)X坐标方向移动时工作台面的平行度。 4)Y坐标方向移动时工作服台面的平行度。 5)X坐标方向移动时工作台T形槽侧面的平行度。 6)主轴的轴向窜动。 7)主轴孔的径向圆跳动。 8)主轴沿Z坐标方向移动时主轴轴心线的平行度。 9)主轴回转轴心线对工作台面的垂直度。 10)主轴箱在Z坐标方向移动的直线度。 对于主轴相互联系的几何精度项目,必须综合调整,使之都符合允许的误差。如立式加工中心的轴和轴方向移动的垂直误差较大,则可以调整立柱底部床身的支承垫铁,使立柱适当前倾或后仰,以减少这项误差。但是这也会改变主轴回转轴心线对工作台面的垂直度误差,因此必须同时检测和调整,否则就会由于这一项几何精度的调整造成另一项几何精度不合格。 机床几何精度检测必须在地基及地脚螺栓的混凝土完全固化以后进行。考虑到地基的稳定时间过程,一般要求在机床使用数月到半年以后再精调一次水平。 检测机床几何精度常用的检测工具有:精密水平仪、900角尺、精密方箱、平尺、平行光管、千分表或测微仪以及高精度主轴心棒等。各项几何精度的检测方法按各机床的检测条件规定。各种数控机床的检测项目也略有区别,如卧式机床比立式机床多几项与平面转台有关的几何精度。在检测中要注意消除检测工具和检测方法的误差,同时应在通电后各移动坐标往复运动几次,主轴在中等转速回转几分钟后,机床稍有预热的状态下进行检测。 3.机床性能及数控功能的试验 根据《金属切削机床试验规范总则》的规定,试验项目包括可靠性、静刚度、空运转振动、热变形、抗振性切削、噪声、激振、定位精度、主轴回转精度、直线运动不均匀性及加工精度等。在进行机床验收时,各验收内容需按照机床出厂标准进行。 1.机床定位精度的检查 数控机床的定位精度是表明机床各运动部件在数控装置控制下所能达到的运动精度。因此,更具实测的定位精度数值,可以判断出该机床以后在自动加工中所能达到的最好的加工精度。.

关于数控机床加工精度提高方法的分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 关于数控机床加工精度提高方法的分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6613-90 关于数控机床加工精度提高方法的 分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 本文通过分析数控机床加工过程中误差产生的原因和相关影响因素,对提高数控机床加工精度的方法进行了分析。 数控机床本身具有比较高的生产效率。在批量生产的同时还可以有效控制加工精度。这在很大程度上改变了传统机床加工精度对于操作者的依赖性。现在已经被广泛的应用在机械加工、电力设备制造等的行业。但是,在实际的加工过程中,数控机床对于操作人员自身的要求以及对于机床自身性能的要求也是比较高的。在科技不断进步的今天,人们对于制造业的产品要求也随之升高,数控机床在加工零件产品的过程中对于所处的自然环境要求也不断提高。很多的数控机床在这样的情况下,其加工的精度也不能够满足

数控机床加工精度

数控机床加工精度,注意事项及保养 加工前:每日打开机床需进行机床预热、回归机床坐标,以保证机床加工精度。 上件:上件时应注意找正,保持找正误差不超过两丝(包括平面及水平精度),寻找基准角及分中时应注意巡边器不超过工件15CM,压装工件时注意躲避加工面和孔。另外工件必须装夹牢固,防止工件因装夹不稳,飞出伤人。使用行车吊装大件时,注意工件和机床保持一定距离,防止工件与机床发生碰撞。 加工中:注意对刀时需把工件表面擦拭干净以保持对刀精度,钻铰定位孔时,注意钻孔完毕及时用气枪清理孔内残留铁屑,保证铰孔时不会出现夹刀现象,3D加工应注意寻找基准角时注意是否有间隙偏置,需按实际情况偏置刀具补偿,精加工时走刀速度不可以太快,根据3D类型及程序走向,调试进给。另外加工时,注意夹刀长度,在不碰触工件的情况下刀具装夹越短,刀具摆动越小,以保证工件精度。 加工结束:测量精度孔及精铣槽精度保证工件卸下后模具的装配。3D检查有未精铣到的面及加工中出现的问题及时解决,尽量保证一次加工成型。 注意事项及保养 1:注意不可在刀具旋转时靠近主轴,防止发生人身事故!!! 2:进入机床时应小心,防止滑倒,摔伤。!!! 3:应经常检查对刀仪是否精准,经常校正对刀仪,保持对刀仪的精度。 4:刀具装夹时注意清理干净刀柄内锥孔及刀夹,保持刀具表面整洁。 5:清理机床时注意主轴上必须夹刀,防止铁屑进入主轴内锥孔影响加工精度。 6:刀具磨损应根据工件加工后测量后加放刀具补偿。 7:应常检查刀具的装夹是否正常,检查刀夹精度。 8:应常检查寻边器是否损坏,一经发现应及时修理或更换。 9:换装刀具时注意清理机床主轴内锥孔及刀具锥柄保证加工时不会出现因刀具装夹不稳而出现的加工精度偏差。 10:经常检查机床润滑油,确保机床润滑到位。 11:定期检测机床精度,确保精度误差不超过0.02mm。 12:刚学习操作时应注意使用寻边器和对刀仪时格外小心(通常刚操作时,对刀仪和寻边器损坏较频繁)。 13:有时上件和编程时基准不一致导致工件加工错误,应注意减少此类情况。 14:定期更换润滑液,保证机床润滑到位,定期清理润滑油箱内的油污。 15:定期检查润滑油管看是否破裂,如有破裂应及时更换。 16:定期检查,调整丝杆轴向间隙。 17:保持导轨清洁,防止铁屑等影响导轨磨损。 18:使用刀库时应手动换刀空试,确定无误后方可正常使用。 19:开关机时应按照操作步骤进行操作。 20:加工运行时注意机床出现的问题及修改机床及时记录情况。 21:每次保养记录保养情况。 22:刀具的使用及损坏及时记录。 注:操作人员必须严格遵守以上条例!!!

数控车床检验标准

一.写出CAK6140数控车床检验标准 1、机床外观的检查 机床外观的检查一般可按通用机床的有关标准进行,但数控机床就是高技术设备,其外观质量的要求更高。外观检查内容有:机床有无破损;外部部件就是否坚固;机床各部分联结就是否可靠;数控柜中的MDI/CRT单元、位置显示单元、各印制电路板及伺服系统各部件就是否有破损,伺服电动机(尤其就是带脉冲编码器的伺服电机)外壳有无磕碰痕迹。 2、机床几何精度的检查 数控机床的几何精度综合反映机床的关键零部件组装后的几何形状误差。数控机床的几何精度检查与普通机床的几何精度检查基本类似,使用的检查工具与方法也很相似只就是检查要求更高。每项几何精度的具体检测办法与精度标准按有关检测条件与检测标准的规定进行。 同时要注意检测工具的精度等级必须比所测的几何精度要高一级。现以一台普通立式加工中心为例,列出其几何精度检测的内容: 1)工作台面的平面度。 2)各坐标方向移动的相互垂直度。 3)X坐标方向移动时工作台面的平行度。 4)Y坐标方向移动时工作服台面的平行度。 5)X坐标方向移动时工作台T形槽侧面的平行度。 6)主轴的轴向窜动。 7)主轴孔的径向圆跳动。 8)主轴沿Z坐标方向移动时主轴轴心线的平行度。 9)主轴回转轴心线对工作台面的垂直度。 10)主轴箱在Z坐标方向移动的直线度。 对于主轴相互联系的几何精度项目,必须综合调整,使之都符合允许的误差。如立式加工中心的轴与轴方向移动的垂直误差较大,则可以调整立柱底部床身的支承垫铁,使立柱适当前倾或后仰,以减少这项误差。但就是这也会改变主轴回转轴心线对工作台面的垂直度误差,因此必须同时检测与调整,否则就会由于这一项几何精度的调整造成另一项几何精度不合格。 机床几何精度检测必须在地基及地脚螺栓的混凝土完全固化以后进行。考虑到地基的稳定时间过程,一般要求在机床使用数月到半年以后再精调一次水平。 检测机床几何精度常用的检测工具有:精密水平仪、900角尺、精密方箱、平尺、平行光管、千分表或测微仪以及高精度主轴心棒等。各项几何精度的检测方法按各机床的检测条件规定。各种数控机床的检测项目也略有区别,如卧式机床比立式机床多几项与平面转台有关的几何精度。 在检测中要注意消除检测工具与检测方法的误差,同时应在通电后各移动坐标往复运动几次,主轴在中等转速回转几分钟后,机床稍有预热的状态下进行检测。 3、机床性能及数控功能的试验 根据《金属切削机床试验规范总则》的规定,试验项目包括可靠性、静刚度、空运转振动、热变形、抗振性切削、噪声、激振、定位精度、主轴回转精度、直线运动不均匀性及加工精度等。在进行机床验收时,各验收内容需按照机床出厂标准进行。 1.机床定位精度的检查 数控机床的定位精度就是表明机床各运动部件在数控装置控制下所能达到的运动精度。因此,更具实测的定位精度数值,可以判断出该机床以后在自动加工中所能达到的最好的加工精度。

数控机床精度校验检测

数控机床精度检测 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方面,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。因此,数控机床精度检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 1、检验所用的工具 1.1、水平仪 水平:0.04mm/1000mm 扭曲:0.02mm/1000mm 水平仪的使用和读数 水平仪是用于检查各种机床及其它机械设备导轨的直线度、平面度和设备安装的水平性、垂直性。 使用方法: 测量时使水平仪工作面紧贴在被测表面,待气泡完全静止后方可读数。水平仪的分度值是以一米为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进行计算: 实际倾斜值=分度值×L×偏差格数

水平仪的读数:水平仪读数的符号,习惯上规定:气泡移动方向和水平移动方向相同时读数为正值,相反时为负值。 1.2、千分表

1.3、莫氏检验棒

2、检验内容 2.1、相关标准(例) ?加工中心检验条件第2部分:立式加工中心几何精度检验JB/T8771.2-1998 ?加工中心检验条件第7部分:精加工试件精度检验JB/T8771.7-1998 ?加工中心检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/T8771.4-1998 ?机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/T17421.2-2000 加工中心技术条件JB/T8801-1998 2.2、检验内容 精度检验内容主要包括数控机床的几何精度、定位精度和切削精度。 2.2.1、数控机床几何精度的检测 机床的几何精度是指机床某些基础零件本身的几何形状精度、相互位置的几何精度及其相对运动的几何精度。机床的几何精度是综合反映该设备的关键机械零部件和组装后几何形状误差。数控机床的基本性能检验与普通机床的检验方法差不多,使用的检测工具和方法也相似,每一项要独立检验,但要求更高。所使用的检测工具精度必须比所检测的精度高一级。其检测项目主要有: 直线度 一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度。 部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度。 运动的直线度,如立式加工中心X轴轴线运动的直线度。 平面度(如立式加工中心工作台面的平面度) 测量方法有:平板法、平板和指示器法、平尺法、精密水平仪法和光学法。 平行度、等距度、重合度 线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度。 运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度。 等距度,如立式加工中心定位孔与工作台回转轴线的等距度。 同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。 垂直度 直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度; 运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。 旋转 径向跳动,如数控卧式车床或主轴定位孔的径向跳动。 周期性轴向窜动,如数控卧式车床主轴的周期性轴向窜动。 端面跳动,如数控卧式车床主轴的卡判定位端面的跳动。 2.2.2、机床的定位精度检验 数控机床的定位精度是测量机床各坐标轴在数控系统控制下所能达到的位置精度。根据实测的定位精度数值判断机床是否合格。其内容有:

国内外数控机床对比

国内外当下主产机床对比 1 中高档、中低档数控系统的综合比较 以下精选各数控公司的中高档数控系统、中低档数控系统中最佳性能产品加以比较: (1)广州数控GSK21M数控系统 系统具有4轴3联动控制功能,可扩展至7轴4联动控制;支持直线、圆弧、样条曲线插补;最快进给速度可达60m/min;系统具有256点输入输出点;,支持梯形图编程;具有99组刀具长度补偿和刀具半径补偿;直线坐标轴具有反向间隙及螺距误差补偿;系统支持刚性攻丝;系统采用4级密码控制系统操作权限;采用电子盘,用户程序容量可达32MB;系统可通过RS232接口实现与PC机通信,用于传输程序、参数和梯形图。支持U盘存储。 (2)凯恩帝K1000M/T II系列数控系统 系统具有4轴4联动控制功能;数字量输入输出点数可达40/24个,支持梯形图编程;数控系统NC代码处理速度可达10000/18s,最快进给速度可达24m/min;系统具有直线插补、圆弧插补、螺旋线插补等基本插补控制功能;具有刀具半径补偿、刀具长度补偿;具有反向间隙和螺距误差补偿;系统支持刚性攻丝;系统采用4级密码控制系统操作权限;采用电子盘,用户程序容量可达640KB;系统可通过RS232接口实现与PC机通信传输程序、参数和偏置。支持U盘存储。(3)华中数控世纪星HNC-21M/T系列数控系统 系统基于嵌入式PC,具有5轴4联动控制功能,具有脉冲输出接口、模拟量输出接口;数字量输入输出点数可达40/32个;系统最小分辨率1μm,最大移动速度:16m/min;系统具有直线、圆弧、螺旋线、正弦线插补,自动加减速控制;支持小线段连续加工功能,适用于复杂模具加工;系统支持反向间隙补偿,多达5000点的双向螺距误差补偿功能; 8MB Flash程序断电存储,8MBRAM加工缓冲区,可选配硬盘支持2GB数控程序存储;可采用RS232接口传输数控代码,可选配以太网接口;系统具有刀具半径补偿、刀尖半径补偿和刀具长度补偿等。(4)大连大森dasen-3i、dasen-9i 自1995年成立以来,陆续推出了大森Ⅰ型、Ⅱ型、Ⅲ型及大森Ⅵ型数控系统,属于中、低档数控产品。目前供应的大森3i型数控系统是大森Ⅲ型数控系统的升级产品:系统具有3轴3联动控制功能;具有PLC在线显示、编辑、监控功能;加工程序容量可升级为240KB;最快速移动速度可达240m/min;计算机联机传输速度可达19200bps;采用130,000p/r绝对值编码器。 大森9i型数控系统,具有3轴2轴联动控制功能;最小分辨率1μm,最大移动速度30m/min;RS232通信接口;具有反向间隙补偿和螺距误差补偿功能;具有刀具半径、刀尖半径、刀具长度补偿功能;程序容量40MB以上,最多支持100个数控程序;采用内置PLC,数字量输入输出点可达44/44个。 (5)日本FANUC公司Fanuc-0i MB/TB系列数控系统 系统具有4轴4联动控制功能;具有4路D/A模拟量伺服闭环控制接口;数字量输入输出点数可达96/64;分辨率1μm时进给速度可达240m/min,分辨率为0.1μm时进给速度可达100m/min;系统具有直线、圆弧、螺旋线插补功能,支持刚性攻丝;数控系统具有刀具半径补偿、刀具长度补偿,且几何误差、磨损误差可以分别补偿;数控系统支持反向间隙补偿、螺距误差补偿;PMC指令处理速度可达3.3ms/1000步,采用梯形图编程,最大存储容量可达4000步;系统支持密码

数控机床加工精度分析与应用.

数控机床加工精度分析与应用 王美姣 (河南职业技术学院机电系,河南郑州450046 摘要:数控机床是一种高精度、高效率、高柔性、高技术的现代化机电设备,其应用越来越普 及。提高机床效率、保证加工精度、确保产品品质是生产所必需。 关键词:数控机床;加工精度;应用 中图分类号:TG659文献标识码:B文章编 号:167125276(20040320025204 Application and analysis of manufacturing precision of NC machines WAN G Mei2jiao (Henan Vocational&Technical College,Zhengzhou Henan450046,China Abstract:A NC machine tool is a modern mechatronic equipment which has advantage of high precision,high efficiency,high flexibility and advanced technologies.NC machines are being used in more and more fields.It is needed in production to improve efficiency,ensure precision and quality of products. K ey w ords:NC machine tool;manufacturing precision;application 数控机床是按照加工程序自动加工零件,它具有加工精度高、生产效率高、产品品质稳定、加工过程柔性好、加工功能强等特点。加工过程中,只要改变加工程序就能达到加工不同形状、不同精度零件的目的。但并不是每个数控操作人员都能在规定的时间内保证工件的加工精度,提高机床效率,确保产品合格。本文总

数控切割机机床几何精度国家标准

数控切割机机床几何精度国家标准 数控机床的几何精度是综合反映机床主要零部件组装后线和面的形状误差、位置或位移误差。根据GB T 17421.1-1998《机床检验通则第1部分在无负荷或精加工条件下机床的几何精度》国家标准的说明有如下几类: (一)、直线度 1、一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度; 2、部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度; 3、运动的直线度,如立式加工中心X轴轴线运动的直线度。 长度测量方法有:平尺和指示器法,钢丝和显微镜法,准直望远镜法和激光干涉仪法。 角度测量方法有:精密水平仪法,自准直仪法和激光干涉仪法。 (二)、平面度(如立式加工中心工作台面的平面度) 测量方法有:平板法、平板和指示器法、平尺法、精密水平仪法和光学法。 (三)、平行度、等距度、重合度 线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度; 运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度; 等距度,如立式加工中心定位孔与工作台回转轴线的等距度; 同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。 测量方法有:平尺和指示器法,精密水平仪法,指示器和检验棒法。 (四)、垂直度 直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度; 运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。 测量方法有:平尺和指示器法,角尺和指示器法,光学法(如自准直仪、光学角尺、放射器)。(五)、旋转 径向跳动,如数控卧式车床主轴轴端的卡盘定位锥面的径向跳动,或主轴定位孔的径向跳动; 周期性轴向窜动,如数控卧式车床主轴的周期性轴向窜动; 端面跳动,如数控卧式车床主轴的卡判定位端面的跳动。 测量方法有:指示器法,检验棒和指示器法,钢球和指示法。 此资料来源于北京海宝得武汉分公司https://www.doczj.com/doc/9813640755.html,/

关于数控机床加工精度提高方法的分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.关于数控机床加工精度提高方法的分析正式版

关于数控机床加工精度提高方法的分 析正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 本文通过分析数控机床加工过程中误差产生的原因和相关影响因素,对提高数控机床加工精度的方法进行了分析。 数控机床本身具有比较高的生产效率。在批量生产的同时还可以有效控制加工精度。这在很大程度上改变了传统机床加工精度对于操作者的依赖性。现在已经被广泛的应用在机械加工、电力设备制造等的行业。但是,在实际的加工过程中,数控机床对于操作人员自身的要求以及对于机床自身性能的要求也是比较高的。在科技不断进步的今天,人们对于制造业的

产品要求也随之升高,数控机床在加工零件产品的过程中对于所处的自然环境要求也不断提高。很多的数控机床在这样的情况下,其加工的精度也不能够满足实际情况对于零件精度的要求。所以,对于怎样提高数控机床加工精度的问题,是值得我们不断研究的一个问题。正像是美国通用公司的著名工程师佛罗曼说的那样,当前普通的数控机床技术在全世界的范围内已经发展的相对成熟,但是随着制造业不断的进步和社会生产的需要,普通的数控机床已经不能够满足生产的发展实际,我们需要更紧密、制造更渐变,使用更高效的数控机床产品,这是数控机床技术的发展趋势。

数控机床精度及性能检验

数控机床精度及性能检验 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方而,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。因此,数控机床精度和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 一、精度检验 一台数控机床的检测验收工作,是一项工作量大而复杂,试验和检测技术要求高的工作。它要用各种检测仪器和手段对机床的机、电、液、气各部分及整机进行综合性能及单项性能的检测,最后得出对该数控机床的综合评价。这项工作为数控机床今后稳定可靠地运行打下一定的基础,可以将某些隐患消除在考机和验收阶段中,因此,这项工作必须认真、仔细,并将符合要求的技术数据整理归档,作为今后设备维护、故障诊断及维修中恢复技术指标的依据。 1、几何精度检验 几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。数控机床的几何精度的检验工具和检验方法类似于普通机床,但检测要求更高。 几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度:在几何精度检测时应注意测量方法及测量工具应用不当所引起的误差。在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴故个等的转速运转十多分钟后进行。 常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。检测工具的精度必须比所测的几何精度高一个等级。 (一)卧式加工中心几何精度检验 1)x 、y 、z 坐标轴的相互垂直度。 2)工作台面的平行度。 3)x 、Z 轴移动时工作台面的平行度。 4)主轴回转轴线对工作台面的平行度。 5)主轴在Z 轴方向移动的直线度: 6)x 轴移动时工作台边界与定位基准面的平行度。 7)主轴轴向及孔径跳动。 8)回转工作台精度。 具体的检测项目及方法见表2—1。 (二)卧式数控车床几何精度检验 斜床身、带转盘刀架的卧式数控车床,其几何精度检验见表2—2。 2、定位精度的检验 数控机床的定位精度是测量机床各坐标轴在数控系统控制下所能达到的位置精度。根据实测的定位精度数值,可判断零件加工后能达到的精度。 1.直线运动定位精度 这项检测一般在空载条件下进行,对所测的每个坐标轴在全行程内,视机床规格,分每20mm 、50mm 或100mm 间距正向和反向快速移动定位,在每个位置上测出实际移动距离和理论移动距离之差。先进的检测仪器有双频激光干涉仪,用它快速进行五次以上的测量,由处理装置进行计算打印,绘出带±3σ的误差曲线。在该曲线上得出正、反向定位时的平均位置偏差j X 、标准偏差j S ,则位置偏差max min (3)(3)j j j j A X S X S =+--。

平床身数控车床精度几何检验表

数控车床几何精度检验表 序号检验项目简图允差mm 实测mm G1 导轨调平 a. 纵向 导轨在垂直平面 内的直线度 b. 横向 导轨的平行度(a) 500<Dc≤1000 0.02(凸) 局部公差:在任意250测量长度上为0.0075 (b) 0.04/1000 G2 溜板移动在水平 面内的直线度 (尽可能在两顶 尖间轴线和刀尖 所确定的平面内 检验)500<Dc≤1000 0.02 Dc>1000 最大工件长度每增加 1000允差增加0.005 最大允差: 0.03 G3 尾座移动对溜板 移动的平行度: a.在垂直平面内 b.在水平面内Dc≤1500 a和 b:0.03 局部公差:在任意500测量长度上为0.02 G4 主轴端部的跳 动: a.主轴的轴向窜 动 b.主轴轴肩支承 面的跳动a: 0.01 b: 0.02 (包括轴向窜动) G5 主轴定心轴径的 径向跳动 0.01 G6 主轴锥孔轴线的 径向跳动 a.靠近主轴端 部; b.距主轴端面 300处a: 0.01 b: 在 300测量长度上为: 0.02

序号检验项目简图允差mm 实测mm G7 主轴轴线对溜板 移动的平行度 a.在垂直平面 内; b.在水平面内a: 在 300测量长度上为: 0.02(只许向上偏) 冷检:-0.01~-0.02 b: 在 300测量长度为: 0.015(只许向前偏) G8 主轴顶尖的跳动0.015 G9 尾座套筒轴线对 溜板移动的平行 度 a.在垂直平面内 b.在水平面内a: 在 100测量长度上为: 0.015(只许向上偏) b: 在 100测量长度为: 0.01(只许向前偏) G10 尾座套筒锥 孔轴线对溜板移 动的平行度 a.在垂直平面 内; b.在水平面内a: 在 300测量长度为: 0.03(只许向上偏)b: 在 300测量长度为: 0.03(只许向前偏) G11 床头和尾座两顶 尖的等高度0.040 (只许尾座高) 冷检:0.05~0.07 G12 横刀架横向移动 对主轴轴线的垂 直度0.02/300 (偏差方向α≥ 90°) 操作学员(签字):指导教师(签字):年月日年月日

数控机床的现状与发展

数控机床现状及发展趋势分析 数控机床的概念 数控机床就是在数字控制下,能在尺寸精度和几何精度两方面完成金属毛坯零件加工成所需要形状的工作母机的总称。数控机床通常由控制系统、伺服系统、检测系统、机械传动系统及其他辅助系统组成。 国产数控机床的发展现状 一、国产数控机床与国际先进水平差距逐渐缩小 数控机床是当代机械制造业的主流装备,国产数控机床的发展经历{HotTag}了30年跌宕起伏,已经由成长期进入了成熟期,可提供市场1,500种数控机床,覆盖超重型机床、高精度机床、特种加工机床、锻压设备、前沿高技术机床等领域,产品种类可与日、德、意、美等国并驾齐驱。特别是在五轴联动数控机床、数控超重型机床、立式卧式加工中心、数控车床、数控齿轮加工机床领域部分技术已经达到世界先进水平。其中,五轴(坐标)联动数控机床是数控机床技术的制高点标志之一。 它集计算机控制、高性能伺服驱动和精密加工技术于一体,应用于复杂曲面的高效、精密、自动化加工,是发电、船舶、航天航空、模具、高精密仪器等民用工业和军工部门迫切需要的关键加工设备。

五轴联动数控机床的应用,其加工效率相当于2台三轴机床,甚至可以完全省去某些大型自动化生产线的投资,大大节约了占地空间和工作在不同制造单元之间的周转运输时间及费用。国产五轴联动数控机床品种日趋增多,国际强手对中国限制的五轴联动加工中心、五轴数控铣床、五轴龙门铣床、五轴落地铣镗床等均在国内研制成功,改变了国际强手对数控机床产业的垄断局面。 二、国产数控机床存在的问题 由于中国技术水平和工业基础还比较落后,数控机床的性能、水平和可*性与工业发达国家相比,差距还是很大,尤其是数控系统的控制可*性还较差,数控产业尚未真正形成。因此加速进行数控系统的工程化、商品化攻关,尽快建成与完善数控机床和数控产业成为当前的主要任务。目前主要问题有: 三、核心技术严重缺乏 统计数据表明,数控机床的核心技术—数控系统,由显示器、控制器伺服、伺服电机和各种开关、传感器构成,中国90%需要国外进口。如在上海设厂的德国吉特迈集团和意大利利雅路机床集团,在烟台建厂的韩国大宇综合机械株式会社,所有的核心技术都被外方掌握。国内能做的中、高端数控机床,更多处于组装和制造环节,普遍未掌握核心技术。国产数控机床的关键零部件和关键技术主要依赖进口,国内真正大而强的企业并不多。目前世界最大的3家厂商是:日

数控机床精度的检测龚正伟

数控机床精度的检测 论文关键词: 数控机床;几何精度;定位精度;切削精度;检测与注意事项。 论文摘要: 现代数控机床集合了电子计算机、伺服系统、自动控制系统、精密测量系统及新型机构等先进技术,能够加工形状复杂、精密、批量零件,并且具有加工精度高、生产效率高、适应性强等特点。随着我国制造业的快速发展,数控机床在机械制造业已得到广泛应用,且对数控机床的精度要求也越来越高。如何检测数控机床的精度,正成为各行业用户在验收与维护数控机床时非常关注的问题。机床的精度主要包括机床的几何精度、机床的定位精度和机床的切削精度。根据我在日常工作中所积累的经验,就这些精度的检测项目、检测方法及注意事项进行综合的说明: 检验目的:了解进行数控机床几何精度检测、加工精度检测常用的工具及其使用方法 检验要求:了解ISO标准、GB中常见的数控机床几何精度及加工精度检测项目标准数据,掌握数控机床几何精度、加工精度检测方法。 检验内容:机床调平、常见几何精度检测、常见加工精度检测 数控车床精度检测 1.床身导轨的直线度和平行度 检验工具:精密水平仪 检验方法:(1)水平仪沿Z 轴向放在溜板上,沿导轨全长等距离在各位置上检验,记录水平仪的读数,并计算出床身导轨在垂直平面内的直线度误差。(2)水平仪沿X 轴向放在溜板上,在导轨上移动溜板,记录水平仪读数,其读数最大值即为床身导轨的平行度误差。2.溜板在水平面内移动的直线度 检验工具:指示器和检验棒,百分表和平尺 检验方法:将直验棒顶在主轴和尾座顶尖上;再将百分表固定在溜板上,百分表水平触及验棒母线;全程移动溜板,调整尾座,使百分表在行程两端读数相等,检测溜板移动在水平面内的直线度误差。 3.主轴跳动 检验工具:百分表和专用装置 检验方法:用专用装置在主轴线上加力 F ( F 的值为消除轴向间隙的最小值),把百分表安装在机床固定部件上,然后使百分表测头沿主轴轴线分别触及专用装置的钢球和主轴轴肩支承面;旋转主轴,百分表读数最大差值即为主轴的轴向窜动误差和主轴轴肩支承面的跳动误差 4.主轴锥孔轴线的径向跳动 检验工具:百分表和验棒 检验方法:将检验棒插在主轴锥孔内,把百分表安装在机床固定部件上,使百分表测头垂直触及被测表面,旋转主轴,记录百分表的最大读数差值,在a、b 处分别测量。标记检棒与主轴的圆周方向的相对位置,取下检棒,同向分别旋转检棒90 度、180 度、270 度后重新插入主轴锥孔,在每个位置分别检测。取4次检测的平均值即为主轴锥孔轴线的径向跳动误差 5.主轴轴线(对溜板移动)的平行度 检验工具:百分表和验棒 检验方法:将检验棒插在主轴锥孔内,把百分表安装在溜板上,然后:(1)使百分表

关于数控机床加工精度提高方法的分析通用范本

内部编号:AN-QP-HT873 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 关于数控机床加工精度提高方法的分 析通用范本

关于数控机床加工精度提高方法的分析 通用范本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 本文通过分析数控机床加工过程中误差产生的原因和相关影响因素,对提高数控机床加工精度的方法进行了分析。 数控机床本身具有比较高的生产效率。在批量生产的同时还可以有效控制加工精度。这在很大程度上改变了传统机床加工精度对于操作者的依赖性。现在已经被广泛的应用在机械加工、电力设备制造等的行业。但是,在实际的加工过程中,数控机床对于操作人员自身的要求以及对于机床自身性能的要求也是比较高的。在科技不断进步的今天,人们对于制造业

一、数控机床的精度检验(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 一、数控机床的精度检验 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方面,数控机床各项性能和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 1. 几何精度检验 几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。数控机床精度的检验工具和检验方法类似于普通机床,但检测要求更高。 几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度。在几何精度检测时,应注意测量方法及测量工具应用不当所引起的误差。在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴按中等转速运转十多分钟后进行。常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。检测工具的精度必须比所设的几何精度高一个等级。 以卧式加工中心为例,要对下列几何精度进行检验: 1)X、Y、Z坐标轴的相互垂直度; 2)工作台面的平行度; 3)X、Z轴移动时工作台面的平行度; 4)主轴回转轴线对工作台面的平行度; 5)主轴在Z轴方向移动的直线度; 6)X轴移动时工作台边界与定位基准的平行度; 7)主轴轴向及孔径跳动; 8)回转工作台精度。

2. 定位精度的检验 数控机床的定位精度是表明所测量的机床各运动部位在数控装置控制下,运动所能达到的精度。因此,根据实测的定位精度数值,可以判断出机床自动加工过程中能达到的最好的工件加工精度。 (1)定位精度检测的主要内容 机床定位精度主要检测内容如下: 1) 直线运动定位精度(包括X 、Y 、Z 、U 、V 、W 轴); 2) 直线运动重复定位精度; 3) 直线运动轴机械原点的返回精度; 4) 直线运动失动量的测定; 5) 直线运动定位精度(转台A 、B 、C 轴); 6) 回转运动重复定位精度; 7) 回转轴原点的返回精度; 8) 回转运动矢动量的测定。 (2)机床定位精度的试验方法 检查定位精度和重复定位精度使用得比较多的方法是应用精密线纹尺和读数显微镜(或光电显微镜)。以精密线纹尺作为测量时的比较基准,测量时将精密线纹尺用等高垫按最佳支架(见图5.1)安装在被测部件例如工作台的台面上,并用千分表找正。显微镜可安装在机床的固定部件上,调整镜头使与工作台垂直。在整个坐标的全长上可选取任意几个定位点,一般为5~15个,最好是非等距的。对每个定位点重复进行多次定位。可以从单一方向趋近定位点,也可以从两个方向分别趋紧,以便揭示机床进给系统中间隙和变形的影响。每一次定位的误差值X 可按下式计算: ()()00y y s s X L L ---= 式中 0s ——基准点或零点时显微镜的读数; L s ——工作台移动L 距离后显微镜的读数; 0y 、L y ——相应于0s 和L s 时机床调位读数装置或数码显示装置的读数,对于数

相关主题
文本预览
相关文档 最新文档