当前位置:文档之家› 超高强度钢氢脆电镀抑制措施

超高强度钢氢脆电镀抑制措施

超高强度钢氢脆电镀抑制措施
超高强度钢氢脆电镀抑制措施

超高强度钢氢脆电镀抑制措施

摘要:超高强度钢目前在我国航天航空领域广泛使用,是一种综合性能优良的结构材料。电镀防护时超高强度钢对氢脆较敏感、使用中又有拉应力存在时便可能发生氢脆,使构件机械性能失效,引发事故。系统分析了超高强度钢铁基体、电镀前处理、电镀工艺、镀后处理及机械磨削等对氢脆的影响,并给出了抑制措施。

关键词:超高强度钢电镀氢脆拉应力抑制

1 前言

氢脆是一种由于氢渗入金属内部导致损伤,从而使金属材料在低于材料屈服强度的静应力作用下发生延迟断裂的现象。当金属零件中含有一定量的氢,同时又存在一定的拉应力(工作应力与残余应力之和)时,则会发生滞后断裂(氢致延迟断裂)。一般情况下,在室温附近金属的氢脆最为敏感。随着航空工业发展,高机动性、大载量型飞机研发制造,高强度钢、超高强度钢在航空制造业中得到广泛应用,飞机的关键、重要受力构件大多选用超高强度钢,但超高强度钢强度增大使得材料韧性降低,随之而来的是对缺口、氢脆及应力腐蚀问题更加敏感。目前采用铬锰硅镍钢系低合金钢。该合金钢强度高、物理性能也较好,但抗氢脆性能较差,表面处理防护后极易出现氢脆现象。氢致延迟断裂问题,它是一种廷迟破坏,高强度钢的延迟破坏所造成的事故已成为危及飞机飞行安全的严

重问题。氢脆现象往往在结构处于低于正常设计载荷下突然发生断

裂。因此氢脆断裂是难以预测的。但通过分析氢致延迟断裂现象的原因,在超高强度钢构件制造过程中加以控制,又是可以预防的。

2 氢的来源和氢脆产生

2.1 氢的来源

(1)任何电镀溶液中,不论ph值高低,水分子的离解,总会存在一定量的氢离子。因此,当金属在阴极析出时,往往伴有氢气的析出。

(2)阴极电解除油时,有下列反应发生

2h2o+2e=h2↑+2oh-

从上述反应可以看出,阴极电解除油时也有氢气产生。

(3)钢铁零件在酸侵蚀时,除去了氧化膜的溶液,基体金属同样也能与酸发生反应而放出氢气:

fe+2hcl=fecl2+h2↑

综上所述,零件在电镀、阴极电解除油和酸洗等过程中都回产生氢气。

2.2 氢脆的产生

氢脆是由于渗氢产生的内应力在外部拉应力作用下应力释放所产生的。金属渗氢产生氢脆的现象取决于氢向金属内扩散的过程和金属吸附或者夹带氢的能力.氢并不能以分子状态渗入金属基体中,只能以电离状态既质子状态溶解和扩散进入固态钢的晶格。渗入的氢从镀层中逸出,会导致镀层收缩、产生张应力;氢向底层或

基体中扩散,会导致基体或底镀层膨胀,底镀层产生应力而镀层本身收缩,则产生张应力;如果在电镀过程中形成空穴,随后基体或底镀层中渗入的氢扩散入空穴,产生很大的压力,则底镀层产生张应力,而镀层产生压应力。

3 氢脆的影响因素及抑制措施

3.1 超高强度钢基体的影响

超高强度该钢在30crmnsia高强度钢的基础上提高了锰和铬含量,并添加了1.40%~1.80%(质量分数)的镍,使其淬透性得到明显提高,改善了钢的韧性和回火稳定性;经热处理后可获得高的强度、塑性和韧性,良好的抗疲劳性能和断裂韧度,低的疲劳裂纹扩展速率,因而适宜制造高强度连接件、轴类零件以及起落架等重要受力结构件,但该钢对缺口和氢脆较强敏感性。金属元素吸氢的能力是不同的,实验证明,金属吸氢能力一次是pb>ti>cr>mn >fe>co>ni>zn>sn>cu,而超高强度钢恰恰含有上面的多种元素,因此只要环境中有氢原子,超高强度钢就有可能吸入氢。由于冶炼、机械加工、热处理等引起超高强度钢构件表面轻微裂纹的重叠,斑痕蚀坑的夹杂和超过允许深度的脱碳层,压弯成型不当造成的表面擦划伤,局部应力集中这些现象都会提高电镀氢脆产生的几率。基体表面缺陷是电镀过程中原子氢陷阱的主要来源。在局部应力集中处,阴极产生的氢原子自由能较低,极易附着在阴极上渗透进入基体。防止上述现象要从冶炼着手采用干料,或进一步采用真

空处理或真空冶炼,焊接时采用低氢焊条;另一方是进行排氢处理,如低合金结构钢锻件的冷却要缓慢以防止氢致开裂(白点),低合金结构钢焊接时一般要焊前预热、焊后烘烤。避免夹杂和晶格缺陷,减少发生触氢几率,电镀前要消除机械加工时和热处理过程中在超高强度钢构件上产生的残余应力。

3.2 镀前处理对氢脆的影响

3.2.1 超高强度钢镀前基体应力对氢脆的影响及其消除

以30crmnsini2a为列,淬火后在低温回火状态使用,回火马氏体组织对氢脆的敏感性比较大,在电镀前经过吹沙、喷丸、机械超精等工序时构件基体带有残余压应力,当残余局部压应力较大时候,电镀后会产生局部综合拉应力,氢致延迟开裂创造了必要的应力条件,此在镀前要进行消除应力。确定镀前消除应力的温度,一般的原则是较其最低回火温度低20~30℃,美国军标规定为(190??0)℃时间为>4h,iso规定为200~230℃时间为>4h,其他表面处理件为(191??4) ℃>4h,渗碳、磷化、表面淬火件为140?薄妫?h。但对于超高强度钢构件消除应力时间根据设计强度延长消除应力时间,一般为>8h-24h。

3.2.2 侵蚀对超高强度钢氢脆的影响及其消除

侵蚀(活化)利用酸的腐蚀性,将构件表面锈蚀、氧化膜溶解和剥离掉及去除部分油污,是提高镀层结合力的因素之一。侵蚀是电镀过程中产生渗氢的环节之一,在侵蚀(活化)中钢所吸收的氢量

与时间的平方根成正比,直至达到饱和状态。在ph较低的溶液中,其饱和值较高;而ph较高时,饱和值较低。另外,氢进入粗糙表面比进入光滑表面难,因为粗糙表面上有促进原子氢转变为氢分子的活性点,因此在构件表面光洁度要求不高,尽量采用吹砂;若采用酸洗,需在酸洗液中添加若干缓蚀剂。但对于超高强度材料构件严禁使用强酸侵蚀,其表面氧化皮采用吹沙、机械抛光或喷丸等无氢方法去处。对于电镀前活化工序时,要采用弱酸同时要添加缓冲剂时间尽量短,若是在电镀工艺允许情况下最好采用阳极腐蚀作为活化工序。

3.2.3 除油对超高强度钢氢脆的影响及其消除

电镀除油方法有:有机溶剂除油;化学除油;蒸汽除油和电化学除油。前三种方法则渗氢量较少,电化学除油主要依靠阴阳两极反应析出气体对零件表面溶液进行搅拌,从而促进油污脱离零件表面,同时零件表面的溶液不断地得到更换,加速皂化和乳化作用而将油污去除。阴极析氢阳极析出氧,阴极除油效率高,气泡小,数量多,但构件会渗氢。对于超高强度钢构件不允许阴极电解除油的,可选用前三种除油方式加阳极电解除油来保证被镀构件表面皂化

性油和非皂化性油去除。

3.3 超高强度钢电镀液对氢脆的影响及其抑制

3.3.1 采用低氢脆镀液

氢渗透受氢的浓度和镀层的阻挡作用所控制。电流效率越低,阴

极析氢越严重,形成阻挡层所需要的时间就越长,渗入基体的氢就越多。超高强度钢防护性镀层尽量选用低氢镀液,例如镀镉钛(镀层含钛量为0.1%~0.7%)。能使引起氢脆的初生氢减到及少量。特殊镀镉镀层多孔,氢原子容易脱附生氢分子被排除,对镀后除氢提供有利条件。

3.3.2 高氢镀液氢脆的影响及其抑制

除了防护性镀层外,超高强度钢电镀防护涉及到功能性镀层,选取高氢镀液,例如镀硬铬。电镀初期铬离子不能快速在金属基体表面还原析出铬原子来阻挡出生氢,氢渗入基体较多。镀铬过程中电流效率低其副反应析氢严重,电镀后铬镀层在自然界中易于钝化形成致密膜层对于除氢时氢的排出及其不利。构件尽量采取局部镀铬和一级镀铬(成品电镀),同时要在构件根部、转角、变径和镀层边缘区留有3mm-10mm非镀铬区,减少镀铬后应力集中现象发生。对于局部镀铬构件,非镀铬区域应采取低氢电镀,电镀时应将镀铬区加以保护绝缘,其它金属不能在铬层表面上沉积,副反应吸氢严重,氢离子浓度较高,易发生渗氢进入铬镀层中。

3.3.3 镀层厚度对氢脆的影响及其抑制

电镀时间与镀层厚度成正比,时间越长副反应产生的氢离子浓度越高,所以尽量采取一级电镀。功能性镀层多采取的是二级电镀(加大电镀后由机械加磨削至成品),例如飞机起落架杆、轮轴、定位

螺栓等镀铬构件。镀铬效率低电镀时间长(5h-8h)才能达到镀层厚度要求(100 m-180 m),电镀实践生产中由于尖端效应和边缘效应,镀铬区与非镀铬区临界边部铬层是中心部位1-2倍,临界部位一般是构件根部、转角、变径应力集中区。超高强度钢的疲劳强度,随镀铬层厚度的增加而降低,当铬层达到200 m时,疲劳强度降低30%左右,影响构件质量。镀铬层越厚,氢渗入到基体金属也越深,因此在这些区域做好辅助阴极较少电力线过于集中现象。同时对二级电镀镀层厚度要规定上限值,防止镀层过厚。不可为了获得均匀镀层将构件全部电镀后,再将非电镀区镀层去除方法。

3.3.4 镀液工艺参数对氢脆的影响

电流密度,当提高电流密度时加快氢离子得电析出,因此渗氢会随着电流密度升高而增加。但随着电流密度增大,阴极表面能快速形成一层疏松多孔镀层,减短出生氢时间,有利于氢的析出。电镀时一般要冲镀1min-5min。溶液的温度,一般电镀液随着温度升高析氢越少,但电流效率越低。溶液ph值,ph值越高含氢离子越多易渗氢。

3.4 镀后处理对氢脆的影响及其抑制

3.4.1 除氢处理

高强度钢电镀后必须进行除氢处理,镀层为cr、zn、cd、ni、sn、pb时,渗入构件的氢易残留下来;而cu、mo、al、ag、au、w等镀层具有低氢扩散性和低氢溶解度,渗氢较少。渗入的氢多存在于镀

层内或镀层与基体边境,随时问延长,氢将向基体渗入。原则上电镀后应尽快除氢,国标规定:最好在镀后1 h内或不迟于3 h进行除氢处理。但实践生产中由于拆卸非电镀区绝缘保护和镀件挂具,以及烘箱从室温升值所需温度都需要一定时间,电镀完成后一般需要2h-3h才能达到保温温度。不能为减少除氢间隔时间提前将除氢设备加热至保温温度,对镀层结合力有很大影响。除氢温度越高越好,但不能高于回火温度,现在还有一种理论当温度到达400℃氢不再逸出。时间越长越好,第一小时除氢效率最高能达到70%,随着时间延长效率越来越低。渗入氢虽然可逆,但不可能完全去除的,一般达到2ppm即可。

高强度钢除氢时还应该注意如下几点:

(1)构件放入除氢设备前,应对装载量进行计算,不能超载。

(2)构件放置时,注意不能与箱壁接触,不能阻挡风道。构件在箱内因均匀摆放,以保证温度的均匀性。

(3)构件的几何形状复杂,带有容易产生应力集中的缺口、小角度、变径等细小、较薄的构件应须延长除氢时间。

(4)除氢前必须保持镀层表面清洁,防护性镀层在除氢后再进行钝化和老化处理,以保证除氢效果和钝化层的质量。

(5)除氢保温时间应连续,不可中间间断。要有升降温曲线。

3.4.2 超高强度钢镀层返修氢脆影响

超高强度钢构件电镀后尽量不要返工。如镀层不能挽救需要再次

电镀,要使用碱性溶液退掉镀层,只能返修一次,并在构件上做返修标记,电镀后延长除氢时间。

3.5机械加工对氢脆的影响及其抑制

超高强度钢采用二级电镀后,需对镀层进行磨削达到成品尺寸,镀层的残余拉应力主要来源于此,磨削进给量越大,残余拉应力水平越高,正是这种应力存在为氢致延迟开裂创造了必须得应力条件,这种应力大小也是氢脆开裂的主要决定因素。适当控制镀层厚度,减少磨削量,严格控制镀层磨削加工的进给量,特别注意由于镀层厚度不均匀造成的局部进给量过大问题,可增加后续的去应力回火。对有些构件需在镀层上开孔或扩孔时,应更变设计将此区域设为非功能性电镀区。

4 结语

对于高强度钢来说,在一定的应力水平下1ppm的氢含量也可能导致氢致延迟开裂,单纯从氢含量上控制氢脆问题是非常困难的,因此对于防护性镀层应采用无氢电镀,例如真空镀、离子镀等。对于功能性防护镀层,目前还没有更好方法来取代,期待有新的电镀配方出现。

参考文献:

[1] helmut下,jonathan m.sofcs——too hot to

handle[j].americanceramic society

bulletin,2004,83(7):12-15.

[2] 贾玉平.铬锰硅钢的氢脆及防止措施[j].桂航学术研

究,1997(z1):44-45.

[3] 房新民.电镀过程中的氢脆及其控制[a].中国表面工程协会电镀分会第五届年会论文集[c].合肥:中国表面工程协,1998:245.

[4] 黄子勋,吴纯素.电镀理论[m].北京:中国农业机构出版社出版,1989:98.

[5] 唐军.工人岗位技能培训系列教材⑦表面处理工技能[m].北京:航空工业出版社,1992:127.

[6] 杜进祥,孙凤英,吴静,等.电镀知识三十讲[m].北京:化工工业出版杜,2009:143-144.

[7] 《中国航空材料手册》编辑委员会.中国航空材料手册[m].北京:中国标准出版社,2002,1(2):204.

[8] 杨志康.钢的氢脆川[j].化工炼油机械,1984,13(5):5-14.

[9] 商红武,安茂忠,杨培霞.电镀过程中氢脆的产生及其抑制措施[j].电镀与涂饰,2008,27(12):5.

[10] 郭莉华,陆峰,赵景茂,等.锌一镍合金电镀中氢的共沉积[j].材料保护,2002,35(10):1-3.

[11] 航空兵修理手册编写组.航空兵部队修理手册表面处理分册[m].北京:航空出版社,1977:289-290.

[12] 黄平,周本金,陈端杰.电镀过程中氢脆的控制[j].电镀与环保,2003,23(1):10-11.

高强度钢板介绍

高强度钢板介绍 牌号Q420钢,强度高,特别是在正火或正火加回火状态有较高的综合力学性能。主要用于大型船舶,桥梁,电站设备,中、高压锅炉,高压容器,机车车辆,起重机械,矿山机械及其他大型焊接结构件。 牌号Q460钢,强度最高,在正火,正火加回火或淬火加回火状态有很高的综合力学性能,全部用铝补充脱氧,质量等级为C、D、E级,可保证钢的良好韧性的备用钢种。用于各种大型工程结构及要求强度高,载荷大的轻型结构。 1.1 国内 国内对汽车用高强度钢板倾向于分为两类: 普通高强度钢板抗拉强度或屈服强度相对较低,或采用传统工艺或传统工艺少许改进即能生产出来高强度钢板。如烘烤硬化钢板、含磷钢板、高强度IF 钢板以及HSLA钢板等。 先进高强度钢板需要采用先进设备及工艺方法才能生产出来的钢板,如双相钢板(DP钢板)、复相钢板(CP钢板)、相变诱发塑性钢板(TRIP钢板)和马氏体钢板(M钢板或Mart钢板)等。 1.2 日本 将抗拉强度不低于340MPa的冷轧钢板和抗拉强度不低于490MPa的热轧钢板通称为高强度钢板(HSS)。 1.3 德国(BMW) 高强度钢板(HSS)屈服强度高于180MPa(包括180MPa),低于300MPa 的钢板。 先进高强度钢板(AHSS)屈服强度高于300MPa(包括300MPa),低于600MPa 的钢板。 超高强度钢板(UHSS)屈服强度高于600MPa(包括600MPa)的钢板。1.4 ULSAB组织 ULSAB组织将高强度钢板分为两类:屈服强度为210~550MPa的钢板定义为高强度钢板(HSS);屈服强度大于550MPa的钢板定义为超高强度钢板(UHSS)。 1.5 国际钢铁协会(IISI) 把高强度钢板从定性概念上定义为高强度钢板(HSS)和先进高强度钢板(AHSS)。 2 高强度钢板的品种介绍 2.1 普通高强度钢板 (1)高强度IF钢板是在IF钢的基础上,添加不同类型的强化元素(如固溶强化元素P、Mn、Si)和适当的轧制工艺控制,使钢材在保证良好塑性和冲压性能的同时,拥有较高的强度,满足复杂形状轿车冲压件性能要求。 (2)烘烤硬化钢板(BH钢)包括IP钢烘烤硬化钢板和低碳烘烤硬化钢板两种。特点是钢板冲压成形前具有较低的屈服强度,通过冲压成形后的涂漆烘烤工艺使钢板的屈服强度增加。 (3)含磷钢板利用磷在钢中的固溶强化作用进行强化。含磷钢板可以用来冲制一些形状比较复杂的汽车冲压件。 (4)超低碳含磷钢板特点是具有良好的深冲性、塑性和韧性,P、Mn、Si 等元素的固溶强化作用保证了其强度。

电镀锌去氢原理

电镀锌件去氢 工件镀锌时,表面有拉痕处在酸洗电镀过程中易吸氢,后期加热时,此处易产生气泡。金属材料经过酸洗除锈或者电镀,这种都有可能使材料中渗进原子态的氢。这样的氢原子进入金属的晶格内,造成晶格的外扭,产生很大的内应力,使金属镀层和基体的韧性下降,金属材料的就变脆了,这就是“氢脆”,同时往往还有起泡和针孔等现象。应该说金属都有此现象,只是程度不同。一般对氢吸附能力强的金属此现象较明显。这些金属中最大的是铬,其次是铁及其合金等,其他金属很小或者几乎没有。这些金属材料做以上加工后都要做“驱氢”处理。处理方法一般是将金属放到烘箱里烘或者放到热油里加热。 一、氢脆 1氢脆现象氢脆是通常表现为应力作用下的延迟断裂现象。曾经出现过汽车弹簧、垫圈、螺钉、片簧等镀锌件,在装配之后数小时内陆续发生断裂,断裂比例达40%~50%。某产品镀镉件在使用过程中曾出现过批量裂纹断裂。另外,有一些氢脆并不表现为延迟断裂现象,例如:电镀挂具(钢丝、铜丝)经多次电镀和酸洗退镀,导致渗氢较严重,本来轫性不错的这些材料,在使用中经常出现轻轻一折便发生脆断的现象;猎枪精锻用的芯棒,经多次镀铬之后,堕地断裂;有些内应力大的淬火零件在酸洗过程是便产生裂纹。这些零件渗氢严重,无需外加应力就产生裂纹,甚至直接导致断裂,再也无法用去氢来恢复原有的韧性。 2 氢脆机理延迟断裂现象的产生是由于零件内部的氢向应力集中的部位扩散聚集,应力集中部位的金属缺陷多(原子点阵错位、空穴等)。氢扩散到这些缺陷处,氢原子变成氢分子,在金属内部产生巨大的压力,这个压力与材料内部的残留应力及材料受的外加应力,组成一个合力,当这合力超过材料的屈服强度,就会导致断裂发生。氢脆既然与氢原子的扩散有关,扩散是需要时间的,而扩散的速度又与浓差梯度、温度和材料种类有关。因此,氢脆更多的是表现为延迟断裂。氢原子具有最小的原子半径,容易在钢、铜等金属中扩散,而在镉、锡、锌及其合金中氢的扩散比较困难。镀镉层是最难扩散的,镀镉时产生的氢,最初停留在镀层中和镀层下的金属表层,很难向外扩散,去氢特别困难。经过一段时间后,氢扩散到金属内部,特别是进入金属内部缺陷处的氢,就很难扩散出来。常温下氢的扩散速度相当缓慢,所以需要即时加热去氢。温度升高,增加氢在钢中的溶解度,过高的温度会降低材料的硬度,所以镀前去应力和镀后去氢的温度选择,必须考虑不致于降低材料硬度,不得处于某些钢材的脆性回火温度,不破坏镀层本身的性能。国家有关标准对电镀锌后消除氢脆的热处理条件是根据金属材料的不同最大抗拉强度作出了温度从190度—220度(摄氏),时间为1h-24h的除氢要求。 3 氢脆的控制

超高强度钢

超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域。 随着洁净化、微合金和控轧控冷等先进冶金技术在钢铁企业的逐步推广和应用,钢材的品质得到了大幅度提高,发达国家正在研制相当于目前常用钢材抗拉强度数倍的超高强度钢。这种钢具有超细化、超洁净、超均质的组织和成分的特征,以及超高强度和超高韧性的特点。超高强度钢与普通结构钢的强度的界限目前尚无统一规定,习惯上是将室温抗拉强度超过1,400MPa、屈服强度大于1,200MPa 的钢称为超高强度钢。超高强度钢除了要求其高的抗拉强度外,还要求具有一定塑性和韧性、尽可能小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等。超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机械制造、车辆和其它军事装备上。因此,超高强度钢不仅是钢铁材料研究的重要方向,而且具有广阔的应用和发展前景。 超高强度钢的发展 超高强度合金钢是为满足某些特殊要求发展起来的,按其物理冶金学特点,超高强度钢大体可以分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。典型的低合金超高强度钢是AISI 4340 和D6AC;典型的二次硬化型中,合金超高强度钢是HY180 和AF1410,由于马氏体时效钢属高合金钢,在这里将不拟述及。 1.低合金超高强度钢 低合金超高强度钢大多是AISI 4130、4140、4330 或4340的改进型钢种。AISI 4340 是最早出现的低合金超高强度钢,它于1950年开始研究,并于1955年开始用于飞机起落架。通过淬火和低温回火处理,AISI 4130、4140、4330 或4340钢的抗拉强度均可超过1,500MPa,而且缺口冲击韧性较高。 为了抑制低合金超高强度钢回火脆性,1952年美国国际镍公司开发了300M。该钢通过添加了1%至2%的硅来提高回火温度(260至315摄氏度),并可抑制马氏体回火脆性。另外,通过调整碳含量和添加少量钒,又开发了AMS 6434 和LadishD6AC钢。20世纪80年代,中国通过对AISI 4330的改进,研制开发了高强韧性能的685和686装甲钢。在AISI 4340 的基础上,中国还研制了新型超高硬度695装甲钢,其抗穿甲弹防护系数达到1.3以上。值得注意的是,尽管以4340和300M 钢为代表的低合金超高强度钢具有高强度,但它们的断裂韧性和抗应力腐蚀能力都比较差,因而其应用受到了一定的限制。 2.二次硬化超高强度钢 随着航空工业的快速发展,开发强度高、断裂韧性好、可焊接性好的新型航空材料成为发展方向。研究者于20 世纪70 年代开发了HY180钢。为了达到航空构件材料的损伤容限和耐久性,70 年代末Speich 和Chendhok 等在对Fe10Ni 系合金钢进行的研究基础上,对HYl80 进行了改进,开发了AF1410超高强度合金钢,该钢经830℃油淬正510℃时效后,σ0.2大于等于1517MPa,KⅠc大于等于154MPa m1/2。因此该钢以极高的强韧性、良好的加工性能和焊接性能成为受航空界欢迎的一种新型高强度钢。

超高强度船体结构钢的开发现状与趋势

超高强度船体结构钢的开发现状与趋势 发表时间:2018-08-10T15:17:55.367Z 来源:《科技中国》2018年4期作者:汤卫兵黄振毅[导读] 摘要:超高强度船体结构钢在制造领域,通常被用来为海洋平台或者大型船舶提供结构上的强度支撑,促进海洋油气开发工程的顺利推进,有着广阔的应用前景。基于此主要发展情况,本文首先分析当前国内外超高强度船体结构钢的开发现状,同时立足于此主要现状,深入探索在未来的制造业消费市场中,超高强度船体结构钢的发展趋势,希望能够为超高强度船体结构钢的科学应用提供理论层面借 鉴。 摘要:超高强度船体结构钢在制造领域,通常被用来为海洋平台或者大型船舶提供结构上的强度支撑,促进海洋油气开发工程的顺利推进,有着广阔的应用前景。基于此主要发展情况,本文首先分析当前国内外超高强度船体结构钢的开发现状,同时立足于此主要现状,深入探索在未来的制造业消费市场中,超高强度船体结构钢的发展趋势,希望能够为超高强度船体结构钢的科学应用提供理论层面借鉴。 关键词:超高强度船体结构钢;焊接性能;析出粒子 引言:在建造船体结构钢的时候,一定要严格按照船级社的建造规范依次开展施工工艺,使得最终制造出来的船体结构钢质量能够满足船体结构的建造需要。通常来说,船体结构钢的强度有着严格的等级划分标准,其中超高强度结构钢属于强度要求最高的一种类型,要求在建造的时候严格按照强度等级超出420MPa的标准来开展生产工艺,使得最终建造出来的钢强度能够满足大型船舶的运航需求。 一、浅析超高强度船体结构钢的开发现状 (一)生产工艺的开发现状 传统的TMCP技术发展至今,已经逐渐演变成了超高强度船体结构钢的生产工艺。在建造超高强度船体结构钢的时候,技术人员通常会注意将TMCP技术的粗轧温度稳定在1000℃-1050℃之间,接着运用大道次压下量的方法,让形变的部位能够逐渐渗透到板坯心部,使得其中的奥氏体材质逐渐结晶。当前已经出现了新的生产工艺,能够结合大型船舶对超高强度船体结构钢质量的使用需求,大幅优化TMCP生产工艺的性能,使得结晶环节中的材料下压率能够超过40%,再逐渐回温到Ar3温度以上,最后可以通过冷却方法的利用,得到具有细小晶粒的室温组织,这种新型生产工艺的好处便是能够显著增强超高强度船体结构钢大强度[1]。 (二)HY系列的开发现状 超高强度船体结构钢HY系列,主要包括美国研制出来的HY80、HY100以及HY130等系列,还有能够替换HY80的HSLA80系列,以及能够替换HY100的HSLA100系列。HY系列的超高强度船体结构钢具有非常高的强度等级,甚至能够达到550MPa-890MPa,主要是因为HY 系列的超高强度船体结构钢具有大量的Ni物质。当超高强度船体结构钢中的Mn含量能够达到1.6%的时候,Ni的含量能够达到1.02%,这时侯超高强度船体结构钢的强度性能最高,正是因为HY系列的超高强度船体结构钢采用了高Mn+低Ni的成分配置方法,所以该系列的钢结构的强度较高,但是焊接性能有所欠缺。 (三)HSLA系列的开发现状 相比之下,HSLA系列的超高强度船体结构钢在碳当量,以及裂纹敏感系数方面的生产工艺都与HY系列存在着较大的不同。首先,HSLA系列的超高强度船体结构钢显著降低了C、Cr、Ni的含量,同时又增加了Cu、Mo和Mn的含量,使得最终制造出来的HSLA系列超高强度船体结构钢,相较HY100钢要多出大量的Mn、Mo、Ni含量,但是Cr的含量却要少很多,只能在一定程度上改善HY系列超高强度船体结构钢的碳当量以及裂纹敏感系数,也就是说实现了焊接性能的有效改善,并且合金元素也有了极大的改善,整体来说HSLA100系列超高强度船体结构钢逐渐转变成了双向组织的超高强度船体结构。 二、浅析超高强度船体结构钢的发展趋势 (一)Cu析出粒子的优化 目前,国内外超高强度船体结构钢的研发,正在逐步向改善强韧化方法以及保持适当碳当量值的方向发展,以期大幅提高超高强度船体结构钢的强度性能。开发超高强度船体结构钢的时候,引出的析出强化粒子主要为Cu粒子,这种Cu粒子的优势在于能够与超高强度船体结构钢的组织类型、变形程度达到良好的契合,从而加强Cu粒子在界面的偏聚情况,使得析出的Cu粒子激活能开始有所降低。如此一来,通过Mn以及Ni的添加,能够显著降低Cu粒子的临界形核功,继而利用三种元素之前的相互契合与相互作用,有效提升奥氏体的稳定性,最终达到强化超高强度船体结构钢结构强度的效果[2]。 (二)化合物析出粒子 在回火温度升高的条件下,超高强度船体结构钢会析出大量富含Nb、Ti的碳氮化物。这些化合类物质的尺寸基本处于10-20nm之间,在Nb、Ti显著增高的前提下也不会导致超高强度船体结构钢中碳当量的增加,能够有效减缓C原子的扩散速度。在电子搅拌离心力的作用下,细小的钛氧化物粒子开始逐渐向周边扩散,等到冷却之后就能够产生纳米钛氧化粒子,可以有效抵抗奥氏体的生产,从而显著改善超高强度船体结构钢的力学性能,使得最终生产出来的超高强度船体结构钢在质量性能商更为优越,是为未来超高强度船体结构钢的主要发展方向。 (三)焊接性能的提升 焊接性能的提升能够改善超高强度船体结构钢的性能,增强其在结构方面的铸造质量。在目前的生产工艺中,超高强度船体结构钢一旦经受了高温热循环处理,便会导致结构的韧性开始下降,影响到钢结构最后的焊接效果。因此,未来提升超高强度船体结构钢的焊接性能将成为主要的发展方向,目的是为了提高焊接前预热、焊接后回火处理的效果,保证超高强度船体结构钢在生产工艺能够获得良好的焊接效果,继而逐步突破超高强度船体结构钢焊接工艺方面存在的难点,促进超高强度船体结构钢强度等级的提高。 结束语:综上所述,目前我国的超高强度船体结构钢开发正在逐步取得新的进展,面临的各项技术瓶颈也在不断的被突破,未来超高强度船体结构钢还将在我国走向纵深化的发展道路。但是与此同时,技术人员还要意识到超高强度船体结构钢开发过程中存在的技术难点,继而从韧性、强度以及焊接性能等方面出发,全面推动超高强度船体结构钢的研发技术走向质的飞跃,提升船体结构的稳定性。参考文献: [1]雷玄威, 黄继华, 陈树海,等. 超高强度船体结构钢的开发现状与趋势[J]. 材料科学与工艺, 2015, 23(4):7-16. [2]陈佳, 孙明, 隋丹,等. 高强度船体结构钢的现状与发展[J]. 工程技术:全文版, 2016(2):00289-00289.

国内外钢材强度

3 材料 3.1 结构钢材 3.1.1 概论 本章规范涉及根据以下条款之一进行装配式结构的设计,其中结构钢设计强度不超过460N/mm2。条款1: 遵照附录A1.1的相关材料标准之一和条款3.1.2所列的基本要求并且由具有质量保证体系的厂商生产的钢材。 条款2: 没有按照附录A1.1的相关标准之一但是来自于具有认可质量保证体系的厂商的钢材。这些钢材在使用前需进行测试以表明其能够满足某个相关标准。附录D1列出了关于测试试样尺寸的要求。条款3: 不确定钢材;没有包含在条款1、条款2或条款1H中的钢材。在使用前必须对这些钢材进行拉伸试验,以证明其能够满足预期设计目的。附录D1列出了关于测试试样尺寸的要求。对这些材料的使用进行了用途的约束和限制。 章节3.1涉及热轧型钢和冷成型空腹截面型钢,同时章节3.8涉及冷成型开口截面型钢和压型钢板。 根据条款3.1.3列出的附加的要求和限制,规范包括了一个高强钢材的级别,其强度大于 460N/mm2同时不超过690N/mm2,并且由具有认可质量保证体系的厂商生产。 条款1H: 屈服强度大于460N/mm2并且小于或等于690N/mm2同时满足附录A1.1所列某个相关标准的高强钢材。条款3.1.3给出了关于这些钢材及生产厂商的基本要求。附录D1列出了关于测试试样尺寸的要求。 本规范没有涉及屈服强度大于690N/mm2的超高强度钢材。根据香港建筑权威的批准,其可以以专有高强拉杆或拉筋的形式,用于抗拉螺栓连接的应用,或者其它用途。在这些情况中,RSE必须提供彻底的证明,以确保香港将建筑权威材料文件递呈中的所有要求都能够满足。 本规范包括弹性和塑性分析及设计。塑性分析和设计不允许用于不确定钢材或屈服强度大于 460N/mm2的钢材。高强钢材可能有利于某一些临界极限状态,但限制了抗屈曲能力的改善。它们的使用没有能够改善疲劳和正常使用状态的性能。 表3.1-强度等级概括表

电镀基本知识-电镀基本原理和方法

目录1.电镀的定义和分类 1-1.电镀的定义 1-2.电镀的分类 1-3.电镀的常见工艺过程 2.常见电镀效果的介绍 2-1.高光电镀 2-2.亚光电镀 2-3.珍珠铬 2-4.蚀纹电镀 2-5.混合电镀 3.电镀件设计的常见要求 3-1.电镀件镀层厚度对配合尺寸的影响 3-2.电镀件变形的控制 3-3.局部电镀要求的实现 3-4.混合电镀效果对设计的要求 3-5.电镀效果对设计的影响 3-6.电镀成本的大致数据

1.电镀的定义和分类 1-1.电镀的定义 随着工业化生产的不断细分,新工艺新材料的不断涌现,在实际产品中得到应用的设计效果也日新月异,电镀是我们在设计中经常要涉及到的一种工艺,而电镀效果是我们使用时间较长,工艺也较为成熟的一种效果,对于这种工艺的应用在我们的产品上已经非常多,我们希望通过总结我们已有的经验作一些设计的参考性文件,可以更好的将电镀效果应用在我们的设计上,也更合理的应用在我们的设计上,可以为以后的工作带来一些方便。通过这种工艺的处理我们通常可以得到一些金属色泽的效果,如高光,亚光等,搭配不同的效果构成产品的效果的差异性,通过这样的处理为产品的设计增加一个亮点。 1-1-1.电镀的定义 电镀就是利用电解的方式使金属或合金沉积在工件表面,以形成均匀、致密、结合力良好的金属层的过程,就叫电镀。简单的理解,是物理和化学的变化或结合。 电镀工艺的应用我们一般作以下几个用途: a.防腐蚀 b.防护装饰 c.抗磨损 d.电性能:根据零件工作要求,提供导电或绝缘性能的镀层 e.工艺要求 1-1-2.常见镀膜方式的介绍 这里从类同与电镀的一些工艺作分析介绍,以下的一些工艺都是在与我们电镀相关的一些工艺过程,通过这样的介绍给大家对这些工艺有一个感性的认识。 化学镀(自催化镀) autocalytic plating 在经活化处理的基体表面上,镀液中金属离子被催化还原形成金属镀层的过程。这是在我们的工艺过程中大多都要涉及到的一个工艺工程,通过这样的过程才能进行后期电镀等处理,多作为塑件的前处理过程。 电镀 electroplating 利用电解在制件表面形成均匀、致密、结合良好的金属或合金沉积层的过程,这种工艺过程比较烦杂,但是其具有很多优点,例如沉积的金属类型较多,可以得到的颜色多样,相比类同工艺较而言价格比较低廉。 电铸 electroforming 通过电解使金属沉积在铸模上制造或复制金属制品(能将铸模和金属沉积物分开)的过程。这种处理方式是我们在要求最后的制件有特殊表面效果如清晰明显的抛光与蚀纹分隔线或特殊的锐角等情况下使用,一般采用铜材质作一个部件的形状后,通过电镀的工艺手段将合金沉积在其表面上,通常沉积厚度达到几十毫米,之后将形腔切开,分别镶拼到模具的形腔中,注射塑件,通过这样处理的制件在棱角和几个面的界限上会有特殊的效果,满足设计的需要,通常我们看到好多电镀后高光和蚀纹电镀效果界限分明的塑胶件质量要求较高的通常都采用这样的手段作设计。如下图所见的棱角分明的按键板在制造上采用电铸工艺的话,会达到良好的外观效果。 图 1-1 按键电镀效果1

电镀的定义和用途

电镀diàndù(Electroplating) 电镀的概述:利用电解作用使金属或其它材料制件的表面附着一层金属膜的工艺。可以起到防止腐蚀,提高耐磨性、导电性、反光性及增进美观等作用电镀的主要用途是什么? 1、提高金属制品或者零件的耐蚀性能。例如钢铁制品或者零件表面镀锌。 2、提高金属制品的防护-装饰性能。例如钢铁制品表面镀铜、镀镍镀铬等。 3、修复金属零件尺寸。例如轴、齿轮等重要机械零件使用后磨损,可采用镀铁、镀铬等祸福其尺寸。 4、电镀还可赋予某种制品或零件某种特殊的功能。例如镀硬铬可提高其耐磨性能等。 [编辑本段] 电镀的概念 就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。电镀时,镀层金属做阳极,被氧化成阳离子进入电镀液;待镀的金属制品做阴极,镀层金属的阳离子在金属表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸.电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。 [编辑本段] 电镀作用 利用电解作用在机械制品上沉积出附着良好的、但性能和基体材料不同的金属覆层的技术。电镀层比热浸层均匀,一般都较薄,从几个微米到几十微米不等。通过电镀,可以在机械制品上获得装饰保护性和各种功能性的表面层,还可以修复磨损和加工失误的工件。镀层大多是单一金属或合金,如钛靶、锌、镉、金或黄铜、青铜等;也有弥散层,如镍-碳化硅、镍-氟化石墨等;还有覆合层,如钢上的铜-镍-铬层、钢上的银-铟层等。电镀的基体材料除铁基的铸铁、钢和不锈钢外,还有非铁金属,如ABS 塑料、聚丙烯、聚砜和酚醛塑料,但塑料电镀前,必须经过特殊的活化和敏化处理。[编辑本段]

电镀基本原理

电镀基本原理 电镀是一种电化学过程,也是一种氧化还原过程.电镀的基本过程是将零件浸在金属盐的溶液中作为阴极,金属板作为阳极,接直流电源后,在零件上沉积出所需的镀层. 例如:镀镍时,阴极为待镀零件,阳极为纯镍板,在阴阳极分别发生如下反应: 阴极(镀件):Ni2++2e→Ni (主反应) 2H++e→H2↑ (副反应) 阳极(镍板):Ni -2e→Ni2+ (主反应) 4OH--4e→2H2O+O2+4e (副反应) 不是所有的金属离子都能从水溶液中沉积出来,如果阴极上氢离子还原为氢的副反应占主要地位,则金属离子难以在阴极上析出.根据实验,金属离子自水溶液中电沉积的可能性,可从元素周期表中得到一定的规律,如表1.1所示 阳极分为可溶性阳极和不溶性阳极,大多数阳极为与镀层相对应的可溶性阳极,如:镀锌为锌阳极,镀银为银阳极,镀锡-铅合金使用锡-铅合金阳极.但是少数电镀由于阳极溶解困难,使用不溶性阳极,如酸性镀金使用的是多为铂或钛阳极.镀液主盐离子靠添加配制好的标准含金溶液来补充.镀铬阳极使用纯铅,铅-锡合金,铅-锑合金等不溶性阳极. ★电镀基本工艺及各工序的作用 2.1 基本工序 (磨光→抛光)→上挂→脱脂除油→水洗→(电解抛光或化学抛光)→酸洗活化→(预镀)→电镀→水洗→(后处理)→水洗→乾燥→下挂→检验包装 2.2 各工序的作用 2.2.1 前处理:施镀前的所有工序称为前处理,其目的是修整工件表面,除掉工件表面的油脂,锈皮,氧化膜等,为后续镀层的沉积提供所需的电镀表面.前处理主要影响到外观,结合力,据统计,60%的电镀不良品是由前处理不良造成,所以前处理在电镀工艺中占有相当重要的地位.在电镀技术发达的国家,非常重视前处理工序,前处理工序占整个电镀工艺的一半或以上,因而能得到表面状况很好的镀层和极大地降低不良率. 喷砂:除去零件表面的锈蚀,焊渣,积碳,旧油漆层,和其它干燥的油污;除去铸件,锻件或热处理后零件表面的型砂和氧化皮;除去零件表面的毛刺和和方向性磨痕;降低零件表明的粗糙度,以提高油漆和其它涂层的附著力;使零件呈漫反射的消光状态 磨光:除掉零件表明的毛刺,锈蚀,划痕,焊缝,焊瘤,砂眼,氧化皮等各种宏观缺陷,以提高零件的平整度和电镀质量. 抛光:抛光的目的是进一步降低零件表面的粗糙度,获得光亮的外观.有机械抛光,化学抛光,电化学抛光等方式. 脱脂除油:除掉工件表面油脂.有有机溶剂除油,化学除油,电化学除油,擦拭除油,滚筒除油等手段. 酸洗:除掉工件表面锈和氧化膜.有化学酸洗和电化学酸洗. 2.2.2 电镀 在工件表面得到所需镀层,是电镀加工的核心工序,此工序工艺的优劣直接影响到镀层的各种性能.此工序中对镀层有重要影响的因素主要有以下几个方面: 2.2.2.1主盐体系 每一镀种都会发展出多种主盐体系及与之相配套的添加剂体系.如镀锌有氰化镀锌,锌酸盐镀锌,氯化物镀锌(或称为钾盐镀锌),氨盐镀锌,硫酸盐镀锌等体系. 每一体系都有自己的优缺点,如氰化镀锌液分散能力和深度能力好,镀层结晶细致,与基体结合力好,耐蚀性好,工艺范围宽,镀液稳定易操作对杂质不太敏感等优点.但是剧毒,严

高强钢

高强度钢材在建筑工程中的应用2012年05月16日08:05网络21次阅读0次被顶共有评论0条从钢结构工程的发展历史来看,钢结构的发展始终是与钢材的强度以及生产工艺的发展带来的加强性能紧密相关。也是由于钢结构的发展,对材料的各种性能指标不断推出新的要求,促进了钢材种类的扩展及强度的提高;正是钢结构材料的不断改进,提高了钢结构的承载力,经济性能和使用性能,满足和促进了钢结构工程的发展,应用,推广及进步,同时与高强度钢材匹配的具有良好韧性,延性,和足够强度的焊接金属材料和焊接工艺逐渐地成熟,完全能满足钢结构加工制作的要求,使高强度钢材的应用成为可能。 近几年,国内的高层钢结构建筑,大跨度空间结构的发展,对钢材的强度等指标提出了更高的要求,像国家体育场就使用了Q460E,水立方工程使用了Q420,CCTV新址使用了Q460,均是经专门论证而使用的.我国新的钢材规范低合金高强度结构钢GB/T1591-2008,代替GB/T1591-1994,也给出了Q500,Q550,Q620,Q690级性能钢材,取消了Q295强度级别钢材。有的学者,将强度级别460Mpa-1100Mpa钢材称为超高强度钢材,笔者认为,700MPA 以下钢材还是根据国内习惯及规范中的叫法称为高强度钢材为宜(指低合金钢),更高强度级别的钢材也可称为超高强度钢材。 高强度钢材的优点有很多,研究结果表明,在同样的轴心受压条件下,采用高强度钢材的钢柱,在整体稳定方面,极限应力δu与屈服强度fy的比值δu/fy(即整体稳定系数φ),要比普通强度钢材钢柱高很多。 这主要是因为相对于普通强度钢材钢柱,构件的初始缺陷(主要包括几何初始缺陷和残余应力)对高强度钢材钢柱的影响要小很多,残余应力特别是残余压应力的数值与钢材的屈服强度没有直接关系。在钢柱截面起控制作用的关键部位,对于高强度钢材钢柱而言,残余应力与钢材屈强度的比值要比普通钢材钢柱小很多;恰恰是这一比值对钢柱的整体稳定系数有很大影响,而不是残余应力的绝对数值大小。 关于几何初始缺陷的影响,已有研究者在仅考虑相同几何初始缺陷条件下,针对两种钢材(235MPa和690MPa)的H形截面轴心受压钢柱绕强轴的整体稳定承载力进行了初步计算和对比,结果表明高强度钢材(690MPa)钢柱的相对强度(即整体稳定系数φ)更高。 相对于普通钢材,钢结构采用高强度钢材具有以下优势:能够减小构件尺寸和结构重量,相应地减少焊接工作量和焊接材料用量,减少各种涂层(防锈、防火等)的用量及其施工工作量,使得运输安装更加容易,降低钢结构的加工制作、运输和安装成本;在建筑物使用方面,减小构件尺寸能够创造更大的使用净空间;特别是,能够减小所需板的厚度,从而相应减小焊缝厚度,改善焊缝质量,提高结构疲劳使用寿命。采用高强度钢材,有利于可持续发展战略和保护环境基本国策的实施。高强度钢材能够降低钢材用量,从而大大减少铁矿石资源的消耗;焊接材料和各种涂层(防锈、防火等)用量的减少,也能够大大减少不可再生资源的消耗,同时能够减少因资源开采对环境的破坏,这对于我国实施可持续发展战略、改变“高资源消耗”的传统工业化发展模式、充分利用技术进步建立“效益优先型”、“资源节约型”和“环境友好型”国民经济体系都有极大的促进作用。 欧美国家以及日本,对高强度钢材的发展及应用均十分重视,像欧洲的建筑用高强度钢材规范EN10025-6,给出了高强度钢材的力学性能,化学成份以及冲击韧性等,从而保证钢材具有良好的焊接性能也为其他工程中开阔了畅通的道路。例如: 1,索尼中心(Sony Center) 德国柏林索尼中心大楼(Sony Center)(图)为了保护已有的一个砌体结构建物,将大楼的一部分楼层悬挂在屋顶桁架上。屋顶桁架跨度60m,高12m,其杆件用600mm×100mm矩形实心截面,采用了S460和S690钢材(强度标准值460MPa和690MPa),以尽可能减小构件截面。

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案 直接说结论:以合金钢作原料生产的10.9级、12.9级、14.9级高强度螺栓电镀后(或仅酸洗后),必须在第一时间除氢脆处理,除氢脆处理的方法是:200度烘箱加热3- 4小时析出氢原子。 以下内容是唠叨: 第二次世界大战初期,英国皇家空军一架Spitpie战斗机由于引擎主轴断裂而坠落,机毁人亡,此事曾震惊英国朝野。1975年美国芝加哥一家炼油厂,因一根15cm 的不锈钢管突然破裂,引起爆炸和火灾,造成长期停产。法国在开采克拉克气田时, 由于管道破裂,造成持续一个月的大火。我国在开发某大油田时,也曾因管道破裂发 生过井喷,损失惨重。在军事方面还有:美国“北极星”导弹因固体燃料发动机机壳破 裂而不能发射,美空军F-11战斗机在空中突然坠毁等。途中行驶的汽车因传动轴突然断裂而翻车,正在机床上切削的刀具突然断裂等事故枚不胜举。这些灾难性的恶性事故,瞬时发生,事先毫无征兆,断裂无商量,严重地威胁着人们生产财产安全。起初 科学工作者们对出事原因,众说纷纭,一筹莫展。后来经过长期观察和研究,终于探 明这一系列的恶性事故的罪魁祸首——氢脆。 1、氢脆的原因 氢脆通常表现为钢材的塑性显著下降,脆性急剧增加,并在静载荷下(往往低于 材料的σb)经过一段时间后发生破裂破坏的趋势。众所周知,氢在钢中有一定的溶解度。炼钢过程中,钢液凝固后,微量的氢还会留在钢中。通常生产的钢,其含氢量在 一个很小的范围内。氢在钢中的溶解度随温度下降而迅速降低,过饱和的氢将要析出。

氢是在钢铁中扩散速度最快的元素,其原子半径最小,在低温区仍有很强的扩散 能力。如果冷却时有足够的时间使钢中的氢逸出表面或钢中的氢含量较低时,则氢脆 就不易发生。如果冷却速度快,钢件断面尺寸比较大或钢中氢含量较高时,位于钢件 中心部分的氢来不及逸出,过剩的氢将进入钢的一些缺陷中去,如枝晶间隙、气孔内。若缺陷附近由于氢的聚集会产生强大的内压而导致微裂纹的萌生与扩展。这是由于缺 陷吸附了氢原子之后,使表面能大大降低,从而导致钢材破坏所需的临界应力也急剧 降低。 一般的说,钢的氢脆发生在室温附近的-50~100℃之间。温度过低时氢的扩散速 度太慢,聚集少不会析出;高温时氢将被“烤”出钢外,氢脆破坏也不大会发生。随着 科学的发展,人们又发现氢脆机理的新观点:氢促进了裂纹尖端区塑性变形,而塑性 变形,又促进了氢在该区域内浓集,从而降低了该区的断裂应力值,这就促进了微裂 的产生,裂纹的扩展也伴随着塑性流变。

超高强度钢定义

超咼强度钢定乂 超高强度钢 超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600?1900MPa 50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M D6AC和H 一11钢等。60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa法国研制的35NCD16钢,抗拉强度大于1850MPa而断裂韧度和抗应力腐蚀性能都有明显的改进。80年代初,美国研制成功AF1410二次硬化型超高强度钢,在抗拉强度为1860MPS时,钢的断裂韧度达

到160 MP a m以上,AF1410钢是目前航空和航天工业部门正在推广应用的一种新材料。 中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa 70年代初,结合中国资源条件,研制成功32Si2M n2MoVA和 40CrMnSiMoVA(G(一4)钢。1980 年以来,从国 外引进新技术,采用真空冶炼新工艺,先后研制 成功45CrNiMoVA (D6AC)、34Si2MnCrMoVA

(406A) 、35CrNi4MoA、40CrNi2Si2MoVA(300M) 和18Ni马氏体时效钢,成功地用于制做飞机起落架、固体燃料火箭发动机壳体和浓缩铀离心机简体等。目前超高强度钢已形成不同强度级别系列,在国防工业和经济建设中发挥着重要的作用。 现在,以改变合金成分提高超高强度钢的强 度和韧性已很困难。发展超高强度钢的主要方向是开发新工艺、新技术,提高冶金质量,如采用真空冶炼技术,最大限度降低钢中气体和杂质元素含量,研制超纯净超高强度钢;通过多向锻造和形变热处理,改变钢的组织结构和细化晶粒尺寸,从而提高钢的强度和韧性,例如正在发展的相变诱发塑性钢(TRIP钢)等。 超高强度钢的合金成分、组织和特性 (1)中碳低合金超高强度钢此类钢是通过淬火和回火处理获得较高的强度和韧性,钢的强度主要取决于钢中马氏体的固溶碳浓度。含碳量增加,钢的强度升高;而塑性和韧性相应降低。因此,在保证足够强度的原则下,尽可能降低钢中含碳量,一般含碳量在0?30?0. 45% o钢中合

超高强度钢

超高强度钢 超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600~1900MPa。50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M、D6AC和H一11钢等。60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa。法国研制的35NCDl6钢,抗拉强度大于1850MPa,而断裂韧度和抗应力腐蚀性能都有明显的改进。80年代初,美国研制成功AFl410二次硬化 型超高强度钢,在抗拉强度为1860MPa时,钢的断裂韧度达到160 MPa·m以上,AFl410 钢是目前航空和航天工业部门正在推广应用的一种新材料。 中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa。70年代初,结合中国资源条件,研制成功32Si2Mn2MoVA和40CrMnSiMoVA(GC一4)钢。1980年以来,从国外引进新技术,采用真空冶炼新工艺,先后研制成功45CrNiMoVA (D6AC)、34Si2MnCrMoVA (406A)、35CrNi4MoA、40CrNi2Si2MoVA(300M)和18Ni马氏体时效钢,成功地用于制做飞机起落架、固体燃料火箭发动机壳体和浓缩铀离心机简体等。目前超高强度钢已形成不同强度级别系列,在国防工业和经济建设中发挥着重要的作用。 现在,以改变合金成分提高超高强度钢的强度和韧性已很困难。发展超高强度钢的主要方向是开发新工艺、新技术,提高冶金质量,如采用真空冶炼技术,最大限度降低钢中气体和杂质元素含量,研制超纯净超高强度钢;通过多向锻造和形变热处理,改变钢的组织结构和细化晶粒尺寸,从而提高钢的强度和韧性,例如正在发展的相变诱发塑性钢(TRIP钢)等。 一超高强度钢的合金成分、组织和特性 (1)中碳低合金超高强度钢此类钢是通过淬火和回火处理获得较高的强度和韧性,钢的强度主要取决于钢中马氏体的固溶碳浓度。含碳量增加,钢的强度升高;而塑性和韧性相应降低。因此,在保证足够强度的原则下,尽可能降低钢中含碳量,一般含碳量在0.30~0.45%。钢中合金元素总量约在5%左右,Cr、Ni和Mn在钢中的主要作用是提高钢的淬透性,以保证较大的零件在适当的冷却条件下获得马氏体组织,Mo、W和v的主要作用是提高钢的抗回火能力和细化晶粒等。几种典型钢种的化学成分如表2·12.1。 该类钢通过淬火处理,在Ms点温度以下发生无扩散相变,形成马氏体组织。采用适宜的温度进行回火处理,析出ε—碳化物,改善钢的韧性,获得强度和韧性的最佳配合。提高回火温度(250—450℃回火)时,板条马氏体的ε—碳化物发生转变和残留奥氏体分解形成Fe3C渗碳体,钢的韧性明显下降,此现象称为回火马氏体脆性。产生此种回火脆性的原因主要是由于钢中的硫、磷等杂质元素在奥氏体晶界偏聚和渗碳体沿晶界分布,降低了晶界结合强度。300M钢等含有1.5%硅,能有效地仰制ε—碳化物转变和残留奥氏体分解,使钢的回火马氏体脆性温度提高到350~500℃。硅在钢中只能提高回火马氏体脆性区的温度,但

电镀基本原理

电镀基本原理 电镀工艺基础理论 一、电镀概述 简单来说,电镀指借助外界直流电的作用,在溶液中进行电解反应,使导电体例如金属的表面沉积一金属或合金层。我们以硫酸铜的电镀作例子: 硫酸铜镀液主要有硫酸铜、硫酸和水,甚至也有其它添加剂。硫酸铜是铜离子(Cu2+)的来源,当溶解于水中会离解出铜离子,铜离子会在阴极(工件)还原(得到电子)沈积成金属铜。这个沉积过程会受镀浴的状况如铜离子浓度、酸碱度(pH)、温度、搅拌、电流、添加剂等影响。 阴极主要反应: Cu2+(aq) + 2e-→Cu (s) 电镀过程中的铜离子浓度因消耗而下降,影响沉积过程。面对这个问题,可以两个方法解决:1.在浴中添加硫酸铜;2.用铜作阳极。添加硫酸铜方法比较麻烦,又要分析又要计算。用铜作阳极比较简单。阳极的作用主要是导体,将电路回路接通。但铜作阳极还有另一功能,是氧化(失去电子)溶解成铜离子,补充铜离子的消耗。 阳极主要反应: Cu (s) →Cu2+(aq) + 2e- 由于整个镀液主要有水,也会发生水电解产生氢气(在阴极)和氧气(在阳极)的副反应 阴极副反应: 2H3O+(aq) + 2e-→H2(g) + 2H2O(l) 阳极副反应: 6H2O(l) →O2(g) + 4H3O+(aq) + 4e- 结果,工件的表面上覆盖了一层金属铜。这是一个典型的电镀机理,但实际的情况十分复杂。 电镀为一种电解过程,提供镀层金属的金属片作用有如阳极,电解液通常为镀着金属的离子溶液,被镀物作用则有如阴极。阳极与阴极间输入电压后,吸引电解液中的金属离子游至阴极,还原后即镀着其上。同时阳极的金属再溶解,提供电解液更多的金属离子。某些情况下使用不溶性阳极,电镀时需添加新群电解液补充镀着金属离子。 电镀一般泛指以电解还原反应在物体上镀一层膜。其目前使用种类有:一般电镀法(electroplating)、复合电镀(composite plating)、合金电镀(alloy plating)、局部电镀(selective plating)、笔镀(pen plating)等等。由于电镀表面具有保护兼装饰效用;故广被应用。也有少部分的电镀提供其它特性,诸如高导电性、高度光反射性或降低毒性,最常使用的电镀金属为镍、铬、锡、铜、银及金。 点击观看电沉积原理Flash图二、电镀的原理和概念 2.1 电镀的定义和目的 电镀(electroplating)被定义为一种电沉积过程(electrode-position process),是利用电极(electrode)通过电流,使金属附着于物体表面上,其目的是在改变物体表面之特性或尺寸。 电镀的目的是在基材上镀上金属镀层(deposit),改变基材表面性质或尺寸。例如赋予金属光泽美观、物品的防锈、防止磨耗、提高导电度、润滑性、强度、耐热性、耐候性、热处理之防止渗碳、氮化、尺寸 错误或磨耗之另件之修补。

氢脆的原理与预防

去氢处理,也称除氢处理,一般对电镀前后必须进行工序,特别是对高强度高硬度的零件在电镀工艺中。 氢脆的原理与预防 在任何电镀溶液中,由于水分子的离解,总或多或少地存在一定数量的氢离子。因此,电镀过程中,在阴极析出金属(主反应)的同时,伴有氢气的析出(副反应)。析氢的影响是多方面的,其中最主要的是氢脆。氢脆是表面处理中最严重的质量隐患之一,析氢严重的零件在使用过程中就可能断裂,造成严重的事故。表面处理技术人员必须掌握避免和消除氢脆的技术,氢脆的影响降低到最低限度。 一、氢脆 1氢脆现象 氢脆通常表现为应力作用下的延迟断裂现象。曾经出现过汽车弹簧、垫圈、螺钉、片簧等镀锌件,在装配之后数小时内陆续发生断裂,断裂比例达40%~50%。某特种产品镀镉件在使用过程中曾出现过批量裂纹断裂,曾组织过全国性攻关,制订严格的去氢工艺。另外,有一些氢脆并不表现为延迟断裂现象,例如:电镀挂具(钢丝、铜丝)由于经多次电镀和酸洗退镀,渗氢较严重,在使用中经常出现一折便发生脆断的现象;猎枪精锻用的芯棒,经多次镀铬之后,堕地断裂;有的淬火零件(内应力大)在酸洗时便产生裂纹。这些零件渗氢严重,无需外加应力就产生裂纹,再也无法用去氢来恢复原有的韧性。 2 氢脆机理

延迟断裂现象的产生是由于零件内部的氢向应力集中的部位扩散聚集,应力集中部位的金属缺陷多(原子点阵错位、空穴等)。氢扩散到这些缺陷处,氢原子变成氢分子,产生巨大的压力,这个压力与材料内部的残留应力及材料受的外加应力,组成一个合力,当这合力超过材料的屈服强度,就会导致断裂发生。氢脆既然与氢原子的扩散有关,扩散是需要时间的,扩散的速度与浓差梯度、温度和材料种类有关。因此,氢脆通常表现为延迟断裂。 氢原子具有最小的原子半径,容易在钢、铜等金属中扩散,而在镉、锡、锌及其合金中氢的扩散比较困难。镀镉层是最难扩散的,镀镉时产生的氢,最初停留在镀层中和镀层下的金属表层,很难向外扩散,去氢特别困难。经过一段时间后,氢扩散到金属内部,特别是进入金属内部缺陷处的氢,就很难扩散出来。常温下氢的扩散速度相当缓慢,所以需要即时加热去氢。温度升高,增加氢在钢中的溶解度,过高的温度会降低材料的硬度,所以镀前去应力和镀后去氢的温度选择,必须考虑不致于降低材料硬度,不得处于某些钢材的脆性回火温度,不破坏镀层本身的性能。 二、避免和消除的措施 1 减少金属中渗氢的数量 在除锈和氧化皮时,尽量采用吹砂除锈,若采用酸洗,需在酸洗液中添加若丁等缓蚀剂;在除油时,采用化学除油、清洗剂或溶剂除油,渗氢量较少,若采用电化学除油,先阴极后阳极;在电镀时,碱性镀液或高电流效率的镀液渗氢量较少。

超高强度钢

超高强度钢 随着潜艇、机、箭、天器和兵器的发展,对超高强度钢的需求显著增长。根据钢中的合金含量可以将超高强度钢分为低合金超高强度钢、合金超高强度钢和高合金超高强度钢。据合结钢的物理冶金学特点可以将超高强度钢分为低合金超高强度钢、次硬化超高强度钢和马氏体时效钢。低合金超高强度钢大多是 AISI4130、4140、4330或4340的改进型钢;HY180和AF1410是典型的二次硬化型中合金超高强度钢;高合金超高强度钢的典型代表是马氏体时效钢。AISI4340是最早出现的低合金超高强度钢。它于1950年开始研究,并于1955年应用于飞机起落架。通过淬火和低温回火处理,AISI413041404330或4340钢的屈服强度可以超过1500MPa,然而缺口冲击韧性降低。在钢中添加1%~2%的硅可以抑制回火时ε-碳化物生长及Fe3C形成,提高回火温度(260-315℃)来消除热应力和相变应力以提高韧性,同时又可避免马氏体回火脆性。坩埚熔炼Hy-Tuf和300M便是利用上述原理开发的高硅低合金超高强度钢。1952年美国国际镍公司开发的300M钢是在4340钢中添加硅和钒元素。300M钢在300℃回火可获得最佳的强度和韧性配合。通过调整碳含量和添加钒,开发了AMS6434和LadishD6AC钢。通过对AISI4330的改进,我国开发了高性能685和686装甲钢。在工艺性能相当的条件下,高性能685装甲钢的抗枪弹和抗炮弹性能优于目前我国大量应用的前苏联2п和43пCM装甲钢。在AISI4340的基础上,我国还研制了高硬度695装甲钢,其抗穿甲弹防护系数达到1.3以上。值得注意的是,尽管以4340和300M钢为代表的低合金超高强度钢具有高强度,但它们的断裂韧性和抗应力腐蚀能力较差。马氏体时效钢强化作用是通过马氏体相变和等温时效析出金属间化合物Ni3Mo来达到的。马氏体时效钢的基本化学成分是18%Ni-8%Co-5%Mo。随着钛含量从0.20%提高到1.4%,屈服强度可以在1375-2410MPa之间变化。为了获得高韧性,应尽量降低钢中的磷、、和氮含量。目前马氏体时效钢的发展方向是:为了获得更高的强度和韧性,开发更高洁净度的马氏体时效钢;为了降低成本,开发经济的无钴马氏体时效钢。 除了广泛应用的AF1410等二次硬化超高强度钢之外,为了获得更高的强度和韧性配合,美国SRG在二次硬化钢的物理冶金学研究基础上,开发了高洁净度的AerMet钢。高洁净度保证了Aer-Met100钢 (0.23%C-3%Cr-11.1%Ni-13.4%Co-1.2%Mo)具备目前最佳的强度和韧性配Met100

相关主题
相关文档 最新文档