当前位置:文档之家› Graphene Field-Effect Transistors with High

Graphene Field-Effect Transistors with High

Graphene Field-Effect Transistors with High
Graphene Field-Effect Transistors with High

IBM Thomas J.Watson Research Center,Yorktown Heights,New York10598

ABSTRACT Graphene is considered to be a promising candidate for future nanoelectronics due to its exceptional electronic properties.

Unfortunately,the graphene?eld-effect transistors(FETs)cannot be turned off effectively due to the absence of a band gap,leading to an on/off current ratio typically around5in top-gated graphene FETs.On the other hand,theoretical investigations and optical measurements suggest that a band gap up to a few hundred millielectronvolts can be created by the perpendicular E-?eld in bilayer graphenes.Although previous carrier transport measurements in bilayer graphene transistors did indicate a gate-induced insulating state at temperatures below1K,the electrical(or transport)band gap was estimated to be a few millielectronvolts,and the room temperature on/off current ratio in bilayer graphene FETs remains similar to those in single-layer graphene FETs.Here,for the?rst time,we report an on/off current ratio of around100and2000at room temperature and20K,respectively,in our dual-gate bilayer graphene FETs.We also measured an electrical band gap of>130and80meV at average electric displacements of2.2and1.3V nm-1,respectively.This demonstration reveals the great potential of bilayer graphene in applications such as digital electronics, pseudospintronics,terahertz technology,and infrared nanophotonics.

KEYWORDS Graphene,?eld-effect transistors,on/off current ratio,transport band gap,digital electronics

R ecently,graphene attracts enormous attention due to its unique electronic properties.1-3Creating a

band gap in graphene is probably one of the most important and tantalizing research topics in graphene com-munity since it may ultimately enable new applications in digital electronics,pseudospintronics,4terahertz technol-ogy,5and infrared nanophotonics.6-9A number of ap-proaches have been proposed or implemented to create a band gap in single or bilayer graphenes already,such as using uniaxial strain,10,11graphene-substrate interaction,12 lateral con?nement,13-17and breaking the inversion sym-metry in bilayer graphenes.6,18-23Graphene nanoribbon ?eld-effect transistors exhibit an electrical band gap up to a few hundred millielectronvolts and very large current on/ off ratio even at room temperature.15-17However,currently there is no reliable method to produce nanoribbons with desirable nanometer scale width.Moreover,carrier mobility in ultranarrow graphene nanoribbons is usually not as high as that in large area graphene.16

On the other hand,theoretical investigations predict a sizable band gap opening up to300meV in Bernal-stacking bilayer graphene using a perpendicular E-?led to render the A1and B2sites(see Figure1a)nonequivalent.18-20Optical measurements did con?rm a band gap in bilayer graphenes with broken inversion symmetry.6,21,23However,previous carrier transport measurements were not able to?nd such a large band gap.Therefore,whether a considerable electri-cal(or transport)band gap exists in biased bilayer graphene remains an unsolved problem in graphene research.In our work,we recognized the importance of preserving the intrinsic properties of bilayer graphene and introduced an important step in the bilayer graphene FET fabrication, which allowed us to observe a large electrical band gap(>130 meV)in biased bilayer graphene.

Figure1b depicts a three-dimensional schematic view of our dual-gate bilayer graphene transistor,and the layer structure within the channel region of such a device is shown in Figure1c.The bilayer graphene channel is sandwiched completely between top and bottom gates.The bottom gate SiO2?lm is300nm thick.The top gate dielectric stack consists of?rst9(3nm of an organic seed layer made from a derivative of polyhydroxystyrene(the polymer NFC1400-3CP manufactured by JSR Micro,Inc.)followed by a10(1 nm?lm of HfO2deposited by atomic layer deposition(ALD). Details of the fabrication processes are presented in the Fabrication of the Dual-Gate Bilayer Graphene FETs section at the end of the main text and in ref24.This approach to FET fabrication allows us to probe the intrinsic properties of the biased bilayer graphene and to observe a large electrical band gap.The introduction of the organic seed layer before HfO2ALD not only facilitates the high-k gate HfO2deposition through methyl and hydroxyl groups con-tained within the polymer on the otherwise inert graphene surface but also preserves the high mobility and intrinsic properties of the active graphene layer by reducing remote phonon and Coulomb scattering.24

*To whom correspondence should be addressed,fxia@https://www.doczj.com/doc/9012739500.html,(F.X.); avouris@https://www.doczj.com/doc/9012739500.html,(P.A.).

Received for review:11/27/2009

Published on Web:01/21/2010

We ?rst investigated the switching behavior of our dual-gated bilayer graphene FETs at room temperature.Figure 2a shows the transfer characteristics of a bilayer graphene FET with a channel 1.6μm wide by 3μm long.In each curve,the back gate bias (V bg )is ?xed and the top gate bias (V tg )is scanned from -2.6to 6.4V.V bg is varied from -120to 80V at steps of 20V as shown by the black dashed arrow in Figure 2a.The source is grounded,and a drain bias of 1mV is applied to the device.Here,both “on”and “off”currents are de?ned at a speci?c back gate bias.At different back gate biases,both on and off currents are different.However,we de?ned the device on/off current ratio to be the maximum current modulation factor possible at the optimum back gate bias (-120V in this device)when modulating the top gate bias.A minimum off current of around 10nA is realized at V bg and V tg of -120and 6.4V,respectively,as shown by the black curve in Figure 2a,corresponding to a device on/off current ratio of about 100at room temperature.In

comparison,an on/off current ratio of about 4is observed in a single-layer graphene FET with similar device structure as shown in Figure 2b.Hence the on/off current ratio in our bilayer graphene FET is enhanced by a factor of 25when compared with that of a single layer graphene FET.More-over,the decrease of the off-current in our bilayer graphene FET does not seem to cease at V bg and V tg of -120and 6.4V,respectively as shown by Figure 2a.Further enhancing the top and back gate biases would result in even smaller off-current.However,in our current devices,this was not possible due to the limited strength of our gate dielectric stacks.

Scanning of the top gate bias not only modulates the doping of the bilayer graphene but also changes the induced band gap.6,21In each curve,at the minimum conductance

FIGURE 1.Structure of the bilayer graphene FET.(a)A schematic view of bilayer graphene in Bernal stacking.A1and B2are equiva-lent without vertical E ?eld shown by the green arrow;hence the system possess inversion symmetry.This symmetry is broken under E-?eld.(b)A three-dimensional schematic view of the dual-gate bilayer graphene FET.(c)The layer structure within this bilayer graphene FET channel.From top to bottom are:top metal gate,HfO 2deposited using ALD,organic polymer NFC 1400-3CP as ALD seeding layer,bilayer graphene,bottom gate oxide,and silicon back gate.Red and blue dots denote carbon atoms.The thickness of the layers is not drawn to scale.

FIGURE 2.Transport characteristics of a bilayer graphene FET at room temperature,(a)The room temperature transfer characteristics of a dual-gate bilayer graphene FET.V bg is varied from -120to 80V at steps of 20V.Inset:variation of the Schottky barrier height,?(φbarrier ),as a function of the average electrical displacement,D ave ,inferred from the off currents at the charge-neutrality point.(b)The room temperature transfer characteristics of a similar dual-gate,single-layer graphene FET for comparison purpose.V bg is varied from -90to 90V at steps of 20V.In this device,an on/off current ratio of 4is obtained,25-fold smaller if compared with that in dual-gate bilayer graphene FET as shown in (a).(c)The room temperature output characteristics of the bilayer graphene FET in (a)at V bg )-100V and V tg from -2to 6V.Inset:enlarged view of the output characteristics at V bg )-100V and V tg )6V.The horizontal and vertical axes are identical to those in the main

?gure.

the graphene sheet is approximately at the charge-neutrality condition.If an appreciable band gap exists at this condition, the off current would be dominated by the thermionic emission of carriers through the metal-graphene Schottky barrier.Hence the off current,I off,would be proportional to exp(-qφbarrier/kT),where q is the electron charge,φbarrier is the Schottky barrier height,k is the Boltzmann constant,and T is the temperature.A maximum Schottky barrier height,φbarrier

0,is attained at the charge-neutrality point when the top and back gate biases are-120and6.4V,respectively.The variation of the Schottky barrier

?(φ

barrier ))φbarrier-φbarrier

can be inferred using the off-current at each charge-neutral-ity condition in each curve.The results are plotted in the inset of Figure2a as a function of the average electrical displacement,D ave.6At the charge-neutrality condition,D≈

εSiO

2(V bg-V bg0)/d SiO

2

,whereεSiO

2

(~3.9)is the dielectric

constant of the back gate oxide,V bg0is the Dirac offset

voltage(50V in this device),and d SiO

2(300nm)is the

thickness of the back gate oxide.This approach is reliable when the Schottky barrier height is much larger than kT. When the barrier height is smaller or comparable with kT, the off current is no longer limited by thermionic emission

but also signi?cantly affected by the metal-graphene con-tact and graphene channel resistances,leading to a reduced off current.Therefore,the inset of Figure2a represents a lower limit to the Schottky barrier height created in the bilayer graphene device.We can therefore conclude that in this bilayer graphene,at an average electrical displacement of2.2V nm-1,the electrical band gap is>130meV,assum-ing the Schottky barrier height is about half of the electrical band gap.At a similar bias condition,the optical measure-ments indicated an optical band gap of around200meV.6,21 The room temperature output characteristics of the same bilayer graphene device in Figure2a are shown in Figure2c. In this measurement,the back gate bias(V bg)is?xed at-100 V.The top gate bias(V tg)is varied from-2to6V at steps of 1V.The inset of Figure2c depicts an enlarged view of the output characteristics at V bg)-100V and V tg)6V.Current saturation is observed only in this curve,which shows a typical rectifying behavior of a metal-semiconductor junc-tion25and implies again an appreciable band gap opening in graphene at this biasing condition.By contrast,other curves in Figure2c show a completely linear behavior,which is typical for metal-zero-gap-semiconductor(graphene)junc-tions as reported in many previous publications.

We have also performed transfer characteristic measure-ments on graphene FETs as a function of temperature. Figure3a shows the transfer characteristics of another of these devices with a channel geometry1.2μm wide by1.5μm long at20K.V bg is varied from0to120V at steps of20 V as shown by the black dashed arrow in the inset of Figure 3a.A device on/off current ratio of about2000is achieved at a?xed back gate bias of120V as shown by the black curve in Figure3a.At the minimum conductance(V bg)120V and V tg)-3.5V),the D ave is1.3V nm-1since V bg0in this device is about20V.Figure3b shows the device on/off current ratio measured at10different temperatures with off currents all taken at D ave of around1.3V nm-1.The im-provement in device on/off current ratio at low temperature is due to the reduction in off current.The off current,I off,for thermionic injection is proportional to exp(-qφbarrier/kT)as discussed above;thus we may expect that ln(I on/I off)vs1/T would yield a straight line with a slope of qφbarrier/k.13In fact, the dashed line in Figure3b obtained from the on/off ratios from295to100K leads to a Schottky barrier height of40 meV,corresponding to a electrical band gap of80meV,if we assume the barrier height is about half of the gap.This barrier is smaller than the optical gap of~130meV mea-sured with optical techniques at a similar bias.6,21Moreover, we observe that at temperatures below about100K,the on/ off current ratio does not improve as fast as indicated by the dashed line,most likely due to the presence of tunneling through defect states,i.e.,tails in the density of states.13,26 This phenomenon has been observed in both carbon nano-tube26and graphene nanoribbon13transistors.The optical measurements6,21on the other hand re?ect the peak in the joint density of states.Therefore,differences in electrical and optical band gaps should not be surprising.

Finally,we note that in our current devices,the large conducting plate(back gate)underneath the bilayer graphene will decrease the operational speed of the device.For realistic applications,local bottom gates should be intro-duced to minimize such parasitic capacitances.Moreover, the on current of the graphene transistors can be further enhanced by reducing the graphene-metal contact resis-FIGURE3.Transfer characteristics of a bilayer graphene FET at10 different temperatures.(a)The transfer characteristics of another bilayer graphene FET at20K.(b)The device on/off current ratio vs temperature at D ave of1.3V nm-1.The dashed line denotes the estimated on/off ratio vs temperature for a Schottky barrier height of40meV,which corresponds to an electrical band gap of80

meV.

tance and optimizing the device geometry.The off current can be further suppressed by improving the overall gate dielectric strength(or overall gate dielectric constant)and the purity of bilayer graphene.Hence,room temperature on/ off current ratio of100is by no means the upper limit of the graphene FET.

In summary,we demonstrated a bilayer graphene tran-sistor with an on/off current ratio of around100at room temperature.The transport measurement indicates a Schot-tky barrier height>65meV at D ave of2.2V nm-1,corre-sponding to an electrical(transport)band gap of>130meV. At20K,a device on/off current ratio of about2000is demonstrated at D ave of1.3V nm-1.Revealing of the large electrical band gap in bilayer graphene may enable a number of novel nanoelectronic and nanophotonic appli-cations.

Fabrication of the Dual-Gate Bilayer Graphene FETs. The fabrication steps of the dual-gate bilayer graphene?eld effect transistor(FET)are described as follows:

1.Identi?cation of bilayer graphene?akes using optical approach and Raman spectroscopy.The bilayer graphene ?akes in this experiment were purchased from Graphene Industries,Inc.

2.First e-beam lithography and source/drain metallization (Ti/Pd/Au/Ti:0.5/20/20/5nm).

3.Second e-beam lithography and patterning of the bilayer graphene channel.

4.Spin coating of the organic seed layer made from a derivative of polyhydroxystyrene(the polymer NFC1400-3CP manufactured by JSR Micro,Inc.)for atomic layer deposition(ALD).The layer thickness can be adjusted by spin speed.The dielectric constant of this material is about 2.

5.24

5.Atomic layer deposition of top gate oxide(HfO2)at T< 200°C.

6.Third e-beam lithography and top gate metallization (Ti/Au:5/25nm).

Poly(methyl methacrylate)(PMMA)was used as the e-beam resist in all the processing steps mentioned above. Removal of PMMA was realized using acetone and usually was followed by isopropanol rinse.No speci?c surface cleaning steps were involved in the processing.

Acknowledgment.The authors are grateful to B.Ek and J.Bucchignano for help in technical assistance.F.X.is indebted to C.Y.Sung for his encouragement. REFERENCES AND NOTES

(1)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Zhang,

Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.

A.Science2004,

306,666.

(2)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Katsnel-

son,M.I.;Grigorieva,I.V.;Dubonos,S.V.;Firsov,A.A.Nature 2005,438,197.

(3)Zhang,Y.;Tan,J.W.;Stormer,H.L.;Kim,P.Nature2005,438,

201.

(4)San-Jose,P.;Prada,E.;McCann,E.;Schomerus,H.Phys.Rev.Lett.

2009,102,247204.

(5)Tonouchi,M.Nature Photon.2009,1,97.

(6)Zhang,Y.;Tang,T.;Girit,C.;Hao,Z.;Martin,M.C.;Zettl,A.;

Crommie,M.F.;Shen,Y.R.;Wang,F.Nature2009,459,820.

(7)Ryzhii,V.;Mitin,V.;Ryzhii,M.;Ryabova,N.;Otsuji,T.Appl.Phys.

Express2008,1,No.063002.

(8)Wang,F.;Zhang,Y.;Tian,H.;Girit,C.;Zettl,A.;Crommie,M.;

Shen,Y.R.Science2008,320,206.

(9)Xia,F.;Mueller,T.;Lin,Y.-M.;Valdes-Garcia,A.;Avouris,Ph.Nat.

Nanotechnol.2009,4,839.

(10)Ni,Z.H.;Yu,T.;Lu,Y.H.;Wang,Y.Y.;Feng,Y.P.;Shen,Z.X.

ACS Nano2008,2,2301.

(11)Pereira,V.M.;Castro Neto,A.H.;Peres,N.M.R.Phys.Rev.B

2009,80,No.045401.

(12)Zhou,S.Y.;Gweon,G.-H.;Fedorov,A.V.;First,P.N.;de Heer,

W.A.;Lee,D.-H.;Guinea,F.;Castro Neto,A.H.;Lanzara,A.Nat.

Mater.2007,6,770.

(13)Chen,Z.;Lin,Y.M.;Rooks,M.J.;Avouris,Ph Physica E2007,40,

228.

(14)Han,M.Y.;Ozyilmaz,B.;Zhang,Y.;Kim,P.Phys.Rev.Lett.2007,

98,206805.

(15)Li,X.;Wang,X.;Zhang,L.;Lee,S.;Dai,H.Science2008,319,

1229.

(16)Wang,X.;Ouyang,Y.;Li,X.;Wang,H.;Guo,J.;Dai,H.Phys.Rev.

Lett.2008,100,206803.

(17)Ritter,K.A.;Lyding,J.W.Nat.Mater.2009,8,235–242.

(18)McCann,E.Phys.Rev.B2006,74,161403(R).

(19)Castro,E.V.;Novoselov,K.S.;Morozov,S.V.;Peres,N.M.R.;

Lopes dos Santos,J.M.B.;Nilsson,J.;Guinea,F.;Geim,A.K.;

Castro Neto,A.H.Phys.Rev.Lett.2007,99,216802.

(20)Min,H.;Sahu,B.;Banerjee,S.K.;MacDonald,A.H.Phys.Rev.B

2007,75,155115.

(21)Mak,K.F.;Lui,C.H.;Shan,J.;Heinz,T.F.Phys.Rev.Lett.2009,

102,256405.

(22)Oostinga,J.B.;Heersche,H.B.;Liu,X.;Morpurgo,A.F.;Vander-

sypen,L.M.K.Nat.Mater.2008,7,151.

(23)Ohta,T.;Bostwick,A.;Seyller,T.;Horn,K.;Rotenberg,E.Science

2006,313,951.

(24)Farmer,D.B.;Chiu,H.-Y.;Lin,Y.-M.;Jenkins,K.A.;Xia,F.;

Avouris,Ph.Nano Lett.2009,9,4474.

(25)Sze,S.M.Physics of semiconductor devices;Wiley:New York,

1993;Chapter5.

(26)Appenzeller,J.;Radosavljevic,M.;Knoch,J.;Avouris,Ph Phys.

Rev.Lett.2004,92,No.048301.

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

5G邻区规划方案

5G实验网场景化邻区规划方案 一、邻区规划总原则: 1)配置LTE->NR邻区关系; 2)配置NR->NR邻区关系; 3)配置LTE->LTE邻区关系; 4)配置3层邻区。 二、场景化分类 1、MOCN站点-MOCN站点 1)4-4站内 ADD EUTRANINTRAFREQNCELL:LOCALCELLID=X,MCC="460",MNC="00",ENODEBID=XX,CELLID=X; 2)4-4外部 ADD EUTRANEXTERNALCELL:MCC="460",MNC="00",ENODEBID=XX,CELLID=XX,DLEARFCN =1300,ULEARFCNCFGIND=NOT_CFG,PHYCELLID=X,TAC=XX; 3)4-4同频邻区(FDD与FDD,3D MIMO与3D MIMO) ADD EUTRANINTRAFREQNCELL:LOCALCELLID=1,MCC="460",MNC="00",ENODEBID=919055, CELLID=111; PLMN共享: ADD EUTRANEXTERNALCELLPLMN:MCC="460",MNC="00",ENODEBID=919055,CELLID=111, SHAREMCC="460",SHAREMNC="08"; 4)4-4异频邻区(FDD与3D MIMO) ADD EUTRANINTERFREQNCELL:LOCALCELLID=1,MCC="460",MNC="00",ENODEBID=919018, CELLID=94; PLMN共享: ADD EUTRANEXTERNALCELLPLMN:MCC="460",MNC="00",ENODEBID=919018,CELLID=94,S HAREMCC="460",SHAREMNC="08"; 5)4-5外部 ADD NREXTERNALCELL:MCC="460",MNC="00",GNODEBID=1048559,CELLID=1,DLARFCN=50 9004,ULARFCNCONFIGIND=NOT_CFG,PHYCELLID=42,TAC=30671; 6)4-5邻区

风机叶片材料 设计与简介

风机叶片材料、设计与工艺简介 核心提示:复合材料风机叶片是风力发电系统的关键动部件,直接影响着整个系统的性能,并要具有长期在户外自然环境条件下使用的耐候性和合理的价格。因此,叶片的材料、设计和制造质量水平十分重要,被视为风力发电系统的关键技术和技术水平代表。 复合材料风机叶片是风力发电系统的关键动部件,直接影响着整个系统的性能,并要具有长期在户外自然环境条件下使用的耐候性和合理的价格。因此,叶片的材料、设计和制造质量水平十分重要,被视为风力发电系统的关键技术和技术水平代表。影响风机叶片相关性能的因素主要有原材料、风机叶片设计及叶片的制造工艺三种。 一风机叶片的原料 目前的风力发电机叶片基本上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与E-玻璃纤维、S-玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。 对于同一种基体树脂来讲,采用玻璃纤维增强的复合材料制造的叶片的强度和刚度的性能要差于采用碳纤维增强的复合材料制造的叶片的性能。但是,碳纤维的价格目前是玻璃纤维的10左右。由于价格的因素,目前的叶片制造采用的增强材料主要以玻璃纤维为主。随着叶片长度不断增加,叶片对增强材料的强度和刚性等性能也提出了新的要求,玻璃纤维在大型复合材料叶片制造中逐渐出现性能方面的不足。为了保证叶片能够安全的承担风温度等外界载荷,风机叶片可以采用玻璃纤维/碳纤维混杂复合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,则使用碳纤维作为增强材料。这样,不仅可以提高叶片的承载能力,由于碳纤维具有导电性,也可以有效地避免雷击对叶片造成的损伤。 风电机组在工作过程中,风机叶片要承受强大的风载荷、气体冲刷、砂石粒子冲击、紫外线照射等外界的作用。为了提高复合材料叶片的承担载荷、耐腐蚀和耐冲刷等性能,必须对树脂基体系统进行精心设计和改进,采用性能优异的环氧树脂代替不饱和聚酯树脂,改善玻璃纤维/树脂界面的粘结性能,提高叶片的承载能力,扩大玻璃纤维在大型叶片中的应用范围。同时,为了提高复合材料叶片在恶劣工作环境中长期使用性能,可以采用耐紫外线辐射的新型环氧树脂系统。 二风机叶片的设技 以最小的叶片重量获得最大的叶片面积,使得叶片具有更高的捕风能力,叶片的优化设计显得十分重要,尤其是符合空气动力学要求的大型复合材料叶片的最佳外形设计和结构优化设计的重要性尤为突出,它是实现叶片的材料/工艺有效结合的软件支撑。另外,计算机

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽频的光吸收和非线性光学性质, 以及室温下的量子霍尔效应等。常温

规划的冗余邻区筛查方法

规划的冗余邻区筛查方法 提交人:唐亮提交时间:2009-04-08 1方法介绍 1.1思路 目前中兴后台基于切换关系的统计,只能统计那些发生过切换请求的邻区关系,对于那些从未发生过切换请求的邻区关系,则无法从后台报表中提取得出。基于这一点,通过将后台邻区切换关系统计表与无线参数表中的邻区规划表进行对比,就能筛选出那些从未发生过切换请求的冗余邻区关系来。 1.2工具准备 网规网优软件NOP4.20版本 后台软件MINOS EXCEL邻区行转列工具 1.3实施步骤 1.获取规划的邻区关系表。可用NDE导出后台无线参数表(Radio Parameter,适用NOP4.20以上版本的是RAR压缩格式文件),将此参数导入NOP中,再利用NOP 导出邻区关系表(NeighborCell,文件为EXCEL报表格式),得到后台规划的邻区 关系; 2.获取在一段时间内,实际发生过切换请求的邻区关系。可通过MINOS提取小区级邻区切换关系,并导出为报表(GsmRelation,文件为EXCEL报表格式),得到各 小区有切换请求的邻区关系; 3.对比上述两步骤导出的邻区关系,筛选出网规网优表中规划的,但却不存在切换请求的邻区关系,即得到冗余的规划邻区; 4.删除冗余邻区。 2做法验证 本次选取西宁联通市区GSM网络中邻区个数大于25个的小区进行了排查。 1.用NDE从后台提取最新无线参数数据,导入NOP中,再从NOP中导出邻区关系表,表中邻区是规划的邻区关系,此表格记之为表A。

图0-1 从NOP中导出无线参数 图0-2 从NOP中导出的规划邻区关系表 2.在EXCEL中利用COUNTA函数统计表格A中邻区关系数量,再筛选出邻区关系数量大于25个的小区。 图0-3 规划邻区数量统计 3.将表格A中筛选出的小区邻区关系通过“行转列工具”转换,并索引出主小区CI 备用,生成如下格式,记之为表C。 图0-4 邻区行转列工具

翼型风力机叶片的设计与三维建模论文

甘肃机电职业技术学院 现代装备制造工程系毕业论文 翼型风力机叶片的设计与三维建模 姓名:王成寿 学号: 142000848 班级:G142701 年级:2014级 指导老师:杨欣

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 其蕴量巨大,全球的风能约为 2.74×10^9M W,其中可利用的风能为2×10^7M W,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。 把风的动能转变成机械动能,再把机械能转化为电力动能,这就 是风力发电。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 本课题研究水平轴风力发电机的叶片设计、实体建模。主要任务 如下:1.编制叶素轴向、周向速度诱导因子、最佳弦长及扭角的计算的界面程序;2.根据程序计算并绘制风力机叶片弦长随叶片展向长度的变化曲线;3.根据程序计算并绘制风力机叶片扭角随叶片展向长度的变化曲线;4.将所设计的叶片的三维模型的进行实体建模。 关键词:风力发电,风力机叶片,三维建模

摘要 (1) 1、综述 (1) 1.1、风力机简介 (1) 1.2、风力机简史 (1) 1.3、风力机的特点 (2) 1.4、风力机的基本原理 (2) 1.5、风力机的构成和分类 (3) 1.6、风力机存在的问题 (3) 1.7、本课题的背景目的及主要工作 (4) 2、风力机设计理论 (6) 2.1、翼型基本知识 (6) 2.2、叶片设计的空气动力学理论 (7) 2.2.1、贝茨理论 (7) 2.1.2、叶素理论 (8) 2.1.3、动量理论 (9) 2.3、风力机的特性系数 (10) 2.3.1、风能利用系数C p (10) 2.3.2、叶尖速比λ (10) 2.4、翼型介绍 (11) 2.4.1、翼型的发展概述 (11) 2.4.2、N A C A翼型简介 (11) 3、风力机叶片的设计 (13) 3.1、风力机叶片的外形设计 (13) 3.1.1、叶片设计的总体参数 (13) 3.1.2、确定风轮直径D (13) 3.1.3、翼型弦长计算 (14) 3.1.4、叶片重要参数的选取 (14) 3.2、叶片优化设计的计算程序编制 (16)

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

石墨烯制备方法研究

石墨烯制备方法研究 具有优良的力学、电学、热学及电子学性质的石墨烯,近些年来成为研究的热点。简单介绍了石墨烯制备的主要方法,包括微机械分离法、化学插层法、加热SiC法及气相沉积法。 标签:石墨烯;制备方法 0 引言 自2004年Novoselov,K. S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯以来,碳元素同素异形体又增加了新的一员,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。 石墨烯又称单层石墨,是只有一个C原子层厚度的石墨,是构建其他碳质材料的结构单元。通过SP2杂化成键,碳原子与周围三个碳原子以C-C单键相连,同时每个碳原子中未成键的一个π电子形成与平面垂直的π轨道。结构决定性质,石墨烯具有强度很大的C-C键,因此其具有极高的强度(其强度为130GPa,而无缺陷的石墨烯结构的断裂强度是42N/m)。而其可自由移动的π电子又赋予了石墨烯超强的导电性(石墨烯中电子的典型传导速率为8×105m/s)。同时,石墨烯还具有一系列奇特的电子特性,如反常的量子霍尔效应,零带隙的半导体以及电子在单层石墨片层内的定域化现象等。 规模化制备大批量石墨烯是石墨烯材料应用的第一步,已成为当前研究的重点。按照石墨烯的制备途径,可以将其制备方法分为两类:自上而下制备以及自下而上制备。顾名思义,简单地说自上而下途径是从石墨中获得石墨烯的方法,主要依靠物理过程处理石墨使其分层来得到石墨烯。自下而上途径是从碳的化合物中断裂化学键生长石墨烯的方法,主要依靠加热等手段使含碳化合物分解从而生长石墨烯。 1 自上而下制备石墨烯途径 自上而下途径是从石墨出发(又可称之为石墨途径),用物理手段如机械力、超声波、热应力等破坏石墨层与层之间的范德华力来制备单层石墨的方法。根据石墨处理方法的不同,又可细分为机械剥离法和化学插层法。前者是直接使用机械方法将石墨分层来获得石墨烯的方法。后者则是将石墨先用化学插层剂处理转换为容易分层的形式如石墨插层化合物,然后再对其处理来获得石墨烯。 这类方法的优点是原料来源广泛,制备操作较为简单,制备一般不需高温,对设备要求不是很高,但是这类方法是通过石墨分层得到的,得到的单层石墨混在石墨片层中,其分离比较困难,而且生成的石墨烯尺寸不可控。 1.1 机械剥离法

TD邻区频点扰码规划指导手册

一、邻区规划 1.1TD-SCDMA几个基本原则 地理位置上直接相邻的小区一般要作为邻区; 邻区一般都要求互为邻区,即A扇区载频把B作为邻区,B也要把A作为邻区;在一些特殊场合,可能要求配置单向邻区,如当高层室内覆盖的窗口室外宏小区的信号较强, 为了避免UE重选到室外小区起呼后往室内走产生掉话,配置室外到室内小区的单向邻区, 这样可以降低室外宏小区的负荷。 对于密集城区和普通城区,由于站间距比较近(0.5~1.5公里),邻区应该多做。 目前对于同频、异频和异系统邻区理论最大可以配置32个(但是目前在LMT-R只能配置24 个),所以在配置邻区时,需注意邻区的个数,把确实存在相邻关系的配进来,不相干的 一定要去掉,以免占用了邻区名额,把真正的相邻邻区没有配置而在某些区域形成干扰。 实际网络中,既要求配置必要的邻区,又要避免过多的邻区。 对于市郊和郊县的基站,虽然站间距很大,但一定要把位置上相邻的作为邻区,保证能够及时切换,避免掉话。 因为TD-SCDMA的邻区不存在先后顺序的问题,而且检测周期比较短(一般32个同频邻区只需要320ms的测量周期),所以只需要考虑不遗漏邻区,而不需要严格按照信号 强度来排序相邻小区。 由于仿真模型误差或者人工参照mapinfo添加邻区主观上的误差会造成重要邻区的漏配等,可参考2G H1表,来避免重要邻区的漏配。 页脚内容1

1.2GSM-TD的邻区配置原则 邻区配置原则 配置总体策略 1)TD-GSM网络同PLMN 2)空闲状态 用户优先驻留TD网 T D<->GSM双向重选 3)连接状态 C S业务进行TD->GSM单向切换,挂机后通过小区重选返回TD网络 P S业务进行TD<->GSM双向重选 TD->GSM相邻小区配置规则 建议邻区数量控制在6个以内; GSM->TD相邻小区配置规则 目前23G操作策略为CS单向切换(TD->GSM),IDLE/PS双向重选。通话过程中发生TD->G 网切换在通话结束后UE若检测到TD网络,则尽快发起由G网到T网的重选。为了保证能及时回到T网,需要给现网中大多数的GSM小区配置TD邻区,工作量大且容易出错。 页脚内容2

风电叶片设计流程

叶片设计流程 一.空气动力设计 1.确定风轮的几何和空气动力设计参数 2.选择翼型 3.确定叶片的最佳形状 4.计算风轮叶片的功率特性 5.如果需要可以对设计进行修改并重复步骤4,以找到制造 工艺约束下的最佳风轮设计。 6.计算在所有可遇尖速比下的风轮特性 对于每个尖速比可采用上面步骤4所述的方法,确定每个叶素的空气动力状态,由此确定整个风轮的性能。 7.风力机叶片三维效应分析 8.非定常空气动力现象 9.风力机叶片的动态失速 10.叶片动态入流 二.风机载荷计算 作为风力机设计和认证的重要依据,用于风力机的静强度和疲劳强度分析。国际电工协会制定的IEC61400-1标准、德国船级社制定的GL 规范和丹麦制定的DS 472标准等对风力机的载荷进行了详细的规定。

2.1IEC61400-1 标准规定的载荷情况 2.2风机载荷计算 1计算模型 1)风模型 (1)正常风模型 (2)极端风模型 (3)三维湍流模型 2)风机模型 风机模型包括几何模型、空气动力学模型、传动系统动力学模型、控制系统闭环模型和运行状态监控模型等。 2风力机载荷特性 1)叶片上的载荷 (1)空气动力载荷 包括摆振方向的剪力Q yb和弯矩M xb、挥舞方向的剪力Q xb和弯矩M yb以及与变浆距力矩平衡的叶片俯仰力矩M zb。可根据叶片空气动力设计步骤4中求得的叶素上法向力系数Cn和切向力系数Ct, 通过积分求出作用在叶片上的空气动力载荷。 (2)重力载荷 作用在叶片上的重力载荷对叶片产生的摆振方向弯矩,随叶片方位角的变化呈周期变化,是叶片的主要疲劳载荷。 (3)惯性载荷

(4)操纵载荷 2)轮毂上的载荷 3)主轴上的载荷 4)机舱上的载荷 5)偏航系统上的载荷 6)塔架上的载荷 三.风力机气动弹性 当风力机在自然风条件下运行时,作用在风力机上的空气动力、惯性力和弹性力等交变载荷会使结构产生变形和振动,影响风力机的正常运行甚至导致风力机损坏。因此,在风力机的设计中必须考虑系统的稳定性和在外载作用下的动力响应,主要有①风力机气动弹性稳定性和动力响应②风力机机械传动系统的振动③风力机控制系统(包括偏航系统和变浆距系统等)的稳定性和动力响应④风力机系统的振动。 3.1风力机气动弹性现象 1.风力机叶片气动弹性稳定性问题 2.风力机系统振动和稳定性问题 3.2风力机气动弹性分析 目的是保证风力机在运行过程中不出现气动弹性不稳定。主要的方法是特征值法和能量法。特征值法是在求解弹性力学的基本方 程中,考虑作用在风力机叶片上的非定常空气动力,建立离散的描述风力机叶片气动弹性运动的微分方程。采用Floquet理论求解,最后 稳定性判别归结为状态转移矩阵的特征值计算。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

石墨烯纤维纱的性能及其应用

石墨烯纤维纱的性能及其应用 石墨烯的发现 石墨烯是目前发现的最薄、最坚硬、导电性能最强的新型纳米材料,从2004年石墨烯在实验室被正式制备以来,受到全球广泛关注,被誉为“新材料之王”。在国内,相关技术人员通过打开分子链,嵌入金属模板,利用高科技高温煅烧这一航天技术,成功从玉米芯纤维素中研制出生物质石墨烯,全球首创,成为2016年纤维新秀。 用石墨烯纤维面料的独特功效 1、体温即可激发的远红外 石墨烯特有人体体温激发远红外功能,促进血液微循环,加速新陈代谢,有效放松肌肉缓解疲劳,用石墨烯纤维面料制作贴身衣物,亲肤能改善血液微循环,缓解慢性疼痛,有效改善人体亚健康。 2、抗菌抑菌 石墨烯纤维特有抗菌抑菌功能,有效抑制真菌的滋生,抑菌除臭功能显著。 3、吸湿透气 石墨烯纤维同时具有祛湿透气功能,能持久保持肌肤干爽,透气舒适,有效保护私处健康。 4、抗静电 天然抗静电功能,让穿着更舒适。 5、防紫外线 石墨烯纤维同时具防紫外线功能,无论制作贴身衣物还是外穿时装,功能同样出众。

石墨烯纤维的应用范围 、墨烯内暖纤维石墨烯内暖纤维是由生物质石墨烯与各类纤维复合而成的一种智能多功能纤维新材料,具备超越国际先进水平的低温远红外功能,集防静电等作用于一身。 石墨烯内暖纤维长丝、短纤规格齐全,短纤可与棉毛丝麻等纤维以及涤纶腈纶等其他各种纤维等其他各种纤维搭配混纺,长丝可与各种纤维交织,制备不同功能需求的纱线面料。 在纺织领域,可以制成袜类、婴幼服饰、家居面料、户外服装等。石墨烯内暖纤维的用途服装领域,还可以应用于车辆内饰、美容卫材、摩擦材料、过滤材料等。 墨烯内暖绒材料石墨烯内暖绒是由生物质石墨烯均匀分散于涤纶空白切片中进行共混纺丝生产而成。该技术既充分利用了可的低成本生物质资源,又将生物质石墨烯的功能充分展现到纤维中,获得了高性能、高附加值的新型纺织材料。石墨烯内暖绒材料具有远红外升温、保暖透气、抗静电等多功能特性,作为填充材料应用于棉被、羽绒服等,对提升纺织工业创新能力和推动高附加值产品开发具有重大意义和市场价值。

LTE网络的邻区规划及优化策略

LTE网络的邻区规划及优化策略 1.网络问题: 1)邻区过多会影响到终端的测量性能,容易导致终端的测量不准确,引起切换不及时、误切换及重新慢等; 2)邻区过少,同样会引起误切换、孤岛效应等; 3)邻区信息错误则直接影响到网络正常的切换流程。 这几类现象都会对网络的接通、掉话和切换指标产生不利的影响。因此,要保证稳定的网络性能,就需要很好地来规划邻区。做好邻区规划优化可使在小区服务边界的手机能及时切换到信号最佳的邻小区,以保证通话质量和整网的性能。 2.合理制定邻区规划原则 1) LTE网络邻区规划时需要综合考虑各小区的覆盖范围及站间距、方位角等因素。LTE邻区关系配置时应尽量遵循以下原则: 距离原则:地理位置上直接相邻的小区一般要作为邻区; 强度原则:对网络做过优化的前提下,信号强度达到了要求的门限,就需要考虑配置为邻小区; 交叠覆盖原则:需要考虑本小区和邻小区的交叠覆盖面积; 互含原则:邻区一般要求互相配置邻区,即A扇区把B扇区作为邻区,B扇区也要将A扇区作为邻区。 在一些特殊场合,可能要求配置单向邻区。通过强大的Pioneer/Navigator网优利器,也会很容易的定位发现网络中的邻区漏配现象。 网络接入类问题的网络优化策略 1) 查询站点是否存在告警,若是,产品排障; 2) 是否存在干放,干放是否有告警或者上下行不平衡,若是,干扰问题处理; 3) 判断问题发生在RRC建立过程还是RAB建立过程; 4) RAB建立过程问题,是否存在拥塞,通过后台统计计是否用户终端导致的,跟踪信令分析来定位问题; 5) 是否存在上行干扰,若是,调整时隙优先级;

6) 跟踪小区UU口信令,如果RRC建立失败过程中rrc setup 消息多次重发是下行链路有问题的可能性大,否则上行链路有问题或者同步过程有问题的可能性大。 7) 外场测试是否复现,根据现场情况进行调整;是否存在越区覆盖,调整天馈;是否存在同频干扰,改换频点; 8) 是否存在系统间干扰,若是,建议处理系统间干扰或缩小覆盖范围; 掉线类问题的网络优化策略 1) 问题小区和周围邻区是否存在告警,如驻波比告警、GPS失步、小区退服等现象; 2) 通过话统统计来查看小区干扰底噪是否过高,通过调整载波优先级、时隙优先级、频点等手段进行规避干扰; 3) 查看统计话统的切换关系是否合理,需要结合GIS地理分布进行分析; 4) 核查切换参数和邻区关系是否存在异常,切换参数如门限和切换时延;是否存在漏配邻区(包括系统内和系统外); 5) 现场复测观察小区覆盖是否正常,是否存在弱覆盖、乒乓切换、越区覆盖、切换失败、小区更新和掉话等现象;可通过调整天馈、功率、切换参数或者调整门限解决和最小接入电平解决; 6) 处理室内小区时需要关注门口室内外切换关系、窗边的切换关系和室分系统是否正常等问题;

风力机叶片设计

风力机叶片设计、制造的趋势和评价 风力机叶片设计、制造的趋势和评价 风力机叶片设计、制造的趋势和评价风力机叶片设计、制造的趋势和评价美国Sandia 国家试验室 Paul S.Veers,Thomas D.Ashwill,,Herbert J. Sutherland,https://www.doczj.com/doc/9012739500.html,ird and Donald.W Lobitz 等著前言风力机叶片的尺寸和产量都巳稳定增大,现在主流产品功率为 1MW 至 3MW。80 米直径的转子巳在生产,90 米至 120 米直径的转子已有样机。2001 年生产风力机叶片共用了5 万吨成品玻璃纤维层合板,今后几年还会增加。叶片变长叶轮变大,都会增加叶片在整机成本中的比重。因为叶片是整台风机的关键部件之一,改进叶片的设计、制造及性能,一直是研究开发的主要目标。叶片设计和制造的改进基于多年的生产经验和工业研发。有的研发是欧美政府资助的项目。研究的重点是,多种叶片设计和材料技术。技术挑战包括:尺寸加大但抑制重量增加、改进功率性能和减轻载荷、方便运输、使疲劳循环达 1 亿至 10 亿次、和降低设计裕度。叶片只占风机成本的 10% ~ 15%,所以靠叶片来降低能源价格(COE),其作用是有限度的。如果创新的叶片设计,能降低 10% ~ 20%载荷,则能从几个主要部件(如塔、传动轴系、叶片本身)都得到好处。适当的叶片成本降低,和带来的其它系统造价降低,可降低能源价格。设计和制造历史上的叶片结构和制造方法图1 是切面图,表示风机叶片的典型结构。翼缘(大梁盖)为较厚的主要是单向纤维铺层组成,以承担拍打方向的弯矩。叶片蒙皮是典型的双轴向的(double-bias)或三轴向的(triaxial)玻璃纤维;轻木或泡沫塑料芯是抗屈曲用的。过去,叶片用全玻璃纤维铺层或个别情况用碳纤维局部加强制造。当叶片长度到 30 米时,最普通的制造方法是湿法手工铺放敞模成型。值得注意的例外是 Vestas,她造叶片一直用预浸料玻璃纤维。 图 1. 风力机叶片结构图叶片质量增加的趋势图 2 给出 750KW 至 4.5MW 风机叶片质量与风机转子半径的关系。简单地放大叶片,其质量将按转子半径的立方增加。但图 2 并非如此,仅是半径 2.3 次方的关系。从图 2 还可看到叶片质量有较大分散度。这主要因为材料、制造方法及设计准则的变化。对某一设计等级的某个制造厂,还可发现其质量增大另一种趋势。Vestas 的 V66 和 V80 叶片的质量差就是半径的 2.7 次方的关系。此指数值很接近立方放大关系。因为 V66 巳用了高性能预浸材料,己是轻重量设计,再降低重量(假定未改变纤维种类) 的空间不大了。质量增长指数低于立方关系,很可能是采用较厚截面的翼型的结果。LM35.0 和 LM43.8,在 IEC 二级,的质量差放大指数为半径的 1.7 次方,这大大低于其它各家的。这是因为 LM 设计中已在材料性能上采取了重大改进 , 和使用较厚截面的翼型。 图 2. 商用 MW 级叶片设计的质量增长(基本为玻璃纤维) 参 考文献 2 详细介绍了,商业叶片质量增长趋势,和气动力、结构设计、材料、

前沿讲座石墨烯研究进展

石墨烯 世界2010年最大的科学笑话? 是“石墨薄片”获2010世界诺贝尔物理学奖? 获奖理由是说:获奖科学家用小学生使用的铅笔,在纸上涂抹下铅笔芯中的石墨粉,再用胶粘纸,进行反复粘贴,石墨粉变薄,而能创造出天下奇迹。也就是石墨粉越薄,强度越大,强得能超过钢铁100倍?越薄越能耐高温?越薄越有超导电性?而没有任何事实根据支持,竟然获奖。 “石墨薄片”获奖,被推荐和评选为2010世界最大笑的理由是:因为在宇宙间,在世界上找不到,永远也找不到,物质越薄,强度越大,越能耐高温,电阻越小的物质和事实存在,诺贝尔奖又是世界上的大事。而宇宙间有数不尽的大自然机器早已作了上百亿年的试验,证据事实数据堆山塞海。人类也进行了数不尽的物质材料验证实验,事实证据也无处不在。无不说明在地球上,人世间绝对没有,物质越薄强度越大……的物质和事实存在。难道宇宙和人类早已进行了千年,万年……. 的辛苦实验,还不如用铅笔在纸上毫无事实根据的胡乱画圈?而世界顶级的科学家们,则对大自然的事实视而不见,就此胡乱的相信和评选.....,还有我们更多无知的吹捧,难道不是天下的大笑话?如果您不相信可以去自作小学生的实验,去看一看变相批评瑞典皇家科学院,2010年物理学评审委员会的建议文章,就会更明白。当

然还有在自由的环境下,用“石墨诺贝尔笑话奖”这个题目就能看到成千上万的科学精英们,对此问题是怎么说的?又是怎么样去看?

科学家将石墨烯聚光能力提高20倍 据美国物理学家组织网8月30日报道,英国科学家表示,他们对石墨烯的最新研究表明,让石墨烯与金属纳米结构结合可将石墨烯的聚光能力提高20倍,改进后的石墨烯设备有望在未来的高速光子通讯中用作光敏器,让速度为现在几十倍的超高速互联网成为现实。相关研究发表于《自然—通讯》杂志上。 2010年,英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃谢洛夫因在石墨烯研究领域的突出贡献而荣膺诺贝尔奖。现在,他们和剑桥大学科学家做出了这项最新发现,为提高互联网和其他通讯设施的速度铺平了道路。 此前科学家们就发现,将两根紧密排列的金属丝放在石墨烯上方,用光照射于其上会产生电力,这个简单的设备其实是一个基本的太阳能电池。更重要的是,因为石墨烯内的电子拥有高流动性和高速度等独特属性,石墨烯设备处理数据的速度可能是目前最快的互联网光缆的几十倍甚至几百倍。 然而,迄今为止,这些极富应用潜力的设备在实用过程中一直遭遇聚光效率低下这一瓶颈,石墨烯只能吸收照射于其上的3%的光线来产生电力,其余光线全成了“漏网之鱼”。

石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究 诚信申明 本人声明: 所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书 设计(论文)题目:石墨烯薄膜制备方法研究 学院:化学工程学院专业:化学工程与工艺班级:化工0805 学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林 1.设计(论文)的主要任务及目标 主要任务:(1)利用Hummers法制备氧化石墨; (2)利用电化学还原法制备石墨烯。 主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。 2.设计(论文)的基本要求和内容 了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。 3.主要参考文献 [1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45 [2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010 [3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc, 1958,80(6):1339 4.进度安排 设计(论文)各阶段名称起止日期 1 前期文献查阅并准备开题2012.2.15~2012.2.29 2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1 3 总结实验结果,编写实验论文2012.5.1~2012.5.20 4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30 5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

石墨烯的性能与应用

ANYANG INSTITUTE OF TECHNOLOGY 《材料物理》期末论文 石墨烯的性能及应用 学院名称:数理学院 专业班级:应用物理学11-1班 学生姓名:邢俊俊 学号: 201111020026 2014年6月

石墨烯的性能及应用 摘要:石墨烯其貌不扬,其微片看上去就好像是棉花一样的黑色絮状物,可它为什么如此受追捧?答案其实并不复杂。因为它太轻薄了,只有一个原子厚度,却又非常坚硬。除此之外,它还拥有优秀的导热性、极低的电阻率。在轻薄坚固的同时,它还几乎是完全透明的。这些特性让研究者们能够创造出无限的可能性,无怪乎石墨烯横空出世之时业界震惊。 关键词:石墨烯、新材料、物质、科技 Abstract:Graphene does not seem good, its microchip looks like black cotton floc, but why it can be so popular these days? The answer is not complicated. Because it is so thin and only has one atom thick, it is very hard, however. In addition, it has excellent thermal conductivity and low resistivity. It is in strong light while almost completely transparent. These features allow the researchers are able to create infinite possibilities, no wonder when the industry turned out of graphene shocked. Key words: Graphene, new materials, substances, Technology 1、前言: 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov),成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸

相关主题
文本预览
相关文档 最新文档