当前位置:文档之家› 【技巧篇】教你如何选择家用光伏系统逆变器

【技巧篇】教你如何选择家用光伏系统逆变器

【技巧篇】教你如何选择家用光伏系统逆变器
【技巧篇】教你如何选择家用光伏系统逆变器

家用光伏系统该如何选择逆变器?

家用光伏系统逐步走进千家万户,越来越被人们熟知。那么你知道设备稳定性会影响系统发电收益吗。接下来小编为大家介绍一下家用系统核心设备之一的逆变器及如何选型。

逆变器的种类

逆变器可分为电站型、组串型、微型三种类型,其中电站型逆变器功率一般在30~1000KW,适用于大型工商业屋顶和地面电站;组串型逆变器功率一般在1~30KW,适用于家用型屋顶和小型商业屋顶;微型逆变器功率一般在0.2~0.5KW,适用于墙幕、窗台、小型屋顶。

根据家用光伏装机容量为3~5KW的特性,安装者一般选用组串型逆变器,逆变器的总额定容量应根据光伏系统装机总容量确定,并考虑光伏系统应用场合。

组串式逆变器的优点和缺点

组串型逆变器的优点:

1.组串式逆变器采用模块化设计,其优点是不受组串间模块差异,和阴影遮挡

的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程

度增加了发电量;

2.在阴雨天,雾气多的部区,发电时间长;

3.组串式并网逆变器的体积小、重量轻,搬运和安装都非常方便,不需要专业

工具和设备,也不需要专门的配电室,在各种应用中都能够简化施工、减少

占地,直流线路连接也不需要直流汇流箱和直流配电柜等;

4.自耗电低、故障影响小、更换维护方便等优势;

5.多路MPPT 跟踪,降低组件遮挡和朝向的影响,且当一路出现故障时,不影

响发电量,可靠性较高。

缺点:电子元器件较多,功率器件和信号电路在同一块板上,设计和制造的难度大,可靠性稍差;功率器件电气间隙小,不适合高海拔地区;户外型安装,风吹日晒很容易导致外壳和散热片老化;多个逆变器并联时,总谐波高,单台逆变器THDI 可以控制到2%以上,但如果超过40 台逆变器并联时,总谐波会迭加且较难抑制。

逆变器选对品牌可增加发电收益5000元

家用光伏逆变器容量一般在5~10KW左右,所以在选择逆变器的时候,小编提醒大家,逆变器的价格差异较小,一般为0.05-0.1元/瓦,整体价格差异基本在300-1000元,但全生命周期的发电收益相差2000-5000元,因此从长期收益系统稳定性角度,建议采用转换效率较高的逆变器型号。逆变器内部元器件的稳定性将直接影响到逆变器的质量与运行效率,选择高质量元器件将极大的降低逆变器的维护成本。

小编以锦浪逆变器举例为大家做进一步说明。锦浪最新推出的GCI三相逆变器系列,适合各类有三相电网接入项目,其最大功率为6.9KW并具有直流反接保护、交流短路保护、交流输出过电流保护、输出过电压保护、绝缘阻抗保护、残余电流(RGD)检测、浪涌保护、并网监测等功能,是住宅安装、工商业和中小型分布式光伏系统理想的配备机型。

以上是小编为大家介绍的关于逆变器选型的参考,如您还有什么疑问,或是想进一步了解各类光伏产品选型技巧,可在线咨询或登录网址查询。

文章来源:https://www.doczj.com/doc/9a12473102.html,/hangye/baike/2700.html

光伏逆变器功能特点和主要技术参数说明

光伏逆变器功能特点和主要技术参数说明 将直流电能变换成为交流电能的过程称为逆变,完成逆变功能的电路称为逆变电路,而实现逆变过程的装置称为逆变器或逆变设备。太阳能光伏系统中使用的逆变器是一种将太阳能电池产生的直流电能转换为交流电能的转换装置。它使转换后的交流电的电压、频率与电力系统交流电的电压、频率相一致,以满足为各种交流用电装置、设备供电及并网发电的需要,它是光伏系统的大脑。 1.离网逆变器的主要特点 (1)采用16位单片机或32位DSP微处理器进行控制; (2)太阳能充电采用PWM控制模式,大大提高了充电效率; (3)采用数码或液晶显示各种运行参数,可灵活设置各种定值参数; (4)方波、修正波、正弦波输出。纯正弦波输出时,波形失真率一般小于5%; (5)稳压精度高,额定负载状态下,输出精度一般不大于±3%; (6)具有缓启动功能,避免对蓄电池和负载的大电流冲击; (7)高频变压器隔离,体积小、重量轻; (8)配备标准的RS232/485通信接口,便于远程通信和控制; (9)可在海拔5500m以上的环境中使用。适应环境温度范围为-20~50℃; (10)具有输入接反保护、输入欠压保护、输入过压保护、输出过压保护、输出过载保护、输出短路保护、过热保护等多种保护功能。 2.并网型逆变器主要性能特点 (1)功率开关器件采用新型IPM模块,大大提高系统效率; (2)采用MPPT自寻优技术实现太阳能电池最大功率跟踪,最大限度地提高系统的发电量; (3)液晶显示各种运行参数,人性化界面,可通过按键灵活设置各种运行参数; (4)设置有多种通信接口可以选择,可方便地实现上位机监控(上位机是指:人可以直接发出操控命令的计算机,屏幕上显示各种信号变化如电压、电流、水位、温度、光伏发电量等); (5)具有完善的保护电路,系统可靠性高; (6)具有较宽的直流电压输入范围; (7)可实现多台逆变器并联组合运行,简化光伏发电站设计,使系统能够平滑扩容; (8)具有电网保护装置,具有防孤岛保护功能。 二、光伏逆变器的主要技术参数 1.额定输出电压 光伏逆变器在规定的输入直流电压允许的波动范围内,应能输出额定的电压值,一般

光伏逆变器安装施工方案计划

20MW太阳能发电项目光伏场区

一、工程概况 1、工程概况 华润安达1号太阳能发电项目位于安达市西南部约18km处,项目所在地北侧为规划高 速公路,东侧与中和砖厂相邻,项目所在地区平坦开阔,地势较低,无不良地质现象,场地布置条件较好。场地为盐碱地。施工时将场地挖填平整、并填土至沟塘形成相对平坦地貌以利于工艺布置及场地排水,即可形成良好的施工场地,场地布置条件较好。 本期光伏厂区内占地面积为633790㎡,共安装18组1MWp太阳能子阵,总容量为 20.16MWp。施工道路与永久道路可结合。通过平整场地,用砂石铺垫,作为施工道路使用。待施工结束后,完善道路二侧边沟系统、路面养护后可作为永久道路使用。 安达市位于黑龙江省西南部,地处大庆市与肇东市之间。属中温带大陆性季风气候,冬季(11月至次年3月)被强大的蒙古高压控制,在其影响下多偏北风,天气干燥严寒;夏季(6月至8月)受副热带海洋气团的影响,降水集中,光照充足气候温热、湿润。春季(4 月至5月)多偏南大风,降水较少,易发生春旱;秋季(9月至10月)天高气爽,降温较快,常有早霜危害。气候基本特点是:冬长雪少,天气寒冷;夏短湿热,降水集中;春季风大,气候干燥;秋凉气爽,时有早霜。全年降水较少,平均气温在3℃左右。年平均无霜期较短,在170d左右。 2、太阳能资源 黑龙江省年太阳总辐射量为4400~5400MJ/ m2(相当于1222~1500kWh/ m2)。太阳 直接辐射年总量为2526~3162 MJ/ m2,直接辐射在总辐射中所占比例较大,在0.57~0.63之间,年日照时数在2242~2842小时。 华润安达光伏发电项目所在地年均太阳辐射量1357.70kWh/m2,年均日照时数2681.97h,日照时间较长,利用太阳能资源的条件较好。场址地区水平面日平均辐照度为3.72 kWh/m2d,项目场址在我国属于太阳能“资源丰富”地区,具备一定开发价值。从太阳能资源利用角度说,此地区适合建设太阳能光伏发电站。 3、气象条件 安达市位于黑龙江省西南部、松嫩平原中部,东经124°53′至125°55′,北纬46°01′至47°01′,地势东部略高,西部略低,平坦开阔,平坦地面下沉积着新老地层,储藏着丰富的水、石油和天然气等资源。安达市地处中纬度寒温带大陆性季风气候,年平均气温为4.2℃,最热月(7月)平均气温为32.1度,最冷月份(1月)平均气温为-18.7度,历年极端气温最高为38.7度,历年极端气温最低为-37.9度;年平均降水量为432.5

太阳能光伏并网控制逆变器工作原理及控制方法

2015年6月15日 22:28 太阳能光伏并网控制逆变器工作原理及控制方 摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分: 其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

太阳能逆变器的测试系统详解

太阳能逆变器的测试系统详解 太阳能逆变器测试系统详细描述: 1.防孤岛检测装置(手动型) ACLT-2210M RLC各11.1K,总装机容量33.3K,步进幅度0.001K,最大电流分辨率1mA,满足10K逆变器防孤岛保护试验检测需要 ACLT-3803M RLC各32.97K,总装机容量98.91K,步进幅度0.01K,最大电流分辨率1mA,满足30K逆变器防孤岛保护试验检测需要 ACLT-3820M RLC各66.97K,总装机容量200.91K,步进幅度0.01K,最大电流分辨率1mA,满足60K逆变器防孤岛保护试验检测需要 ACLT-3830M RLC各109.97K,总装机容量329.91K,步进幅度0.01K,最大电流分辨率1mA,满足100K逆变器防孤岛保护试验检测需要 ACLT-3840M RLC各139.97K,总装机容量419.91K,步进幅度0.01K,最大电流分辨率1mA,满足130K逆变器防孤岛保护试验检测需要 ACLT-3860M RLC各209.97K,总装机容量629.91K,步进幅度0.01K,最大电流分辨率1mA,满足200K逆变器防孤岛保护试验检测需要

ACLT-3880M RLC各269.97K,总装机容量809.91K,步进幅度0.01K,最大电流分辨率1mA,满足250K逆变器防孤岛保护试验检测需要 ACLT-38160M RLC各529.97K,总装机容量1589.91K,步进幅度0.01K,最大电流分辨率1mA,满足500K逆变器防孤岛保护试验检测需要 ACLT-38300M RLC各1079.97K,装机容量3239.91K,步进幅度0.01K,最大电流分辨率1mA,满足1000K逆变器防孤岛保护试验检测需要 太阳能逆变器测试系统 一、太阳能逆变器测试系统关于谐振频率的难点为了模拟孤岛运行环境,需要RLC负载能够精确产生一个稳定的基频频率(50Hz或60Hz),谐振频率公式,L与C一定要均衡,才能达到基频频率。为了高效率实施逆变器检测,防孤岛试验检测装置在选型时一定要注意选择一套可以稳定、快速、自动调试出基频频率的RLC负载。 二、太阳能逆变器测试系统关于逆变器输出无功对谐振频率的影响所有被测光伏逆变器一定会有无功输出,无功可能是容性,也可能也是感性。关键是在实施防孤岛效应保护试验时,逆变器输出无功功率一定要可以自动补偿到RLC 负载调试中,避免在试验过程过欠频触发保护,导致测量结果错误。所以一定要注意选择一套可以自动补偿逆变器输出无功功率的RLC负载。 三、太阳能逆变器测试系统关于寄生量对测量结果的影响如果试验的电感负荷比电容大,谐振频率会大于50Hz,电感负荷比电容小,谐振频率会小于

光伏项目逆变器的安装、调试方案

3.5逆变器的安装、调试 本项目逆变器的安装、调试严格按施工规范进行 3.5.1施工准备 (1)材料要求: 箱体应有足够的机械强度,周边平整无损伤,油漆无二层板厚度不应小于1.5mm;箱内各种器具应安装牢固,导线排列整齐、压接牢固;有产品合格证明书(证)。 (2)配电箱、盘安装所用配件均采用镀锌材料。 (3)绝缘导线:导线的型号规格必须符合设计要求,并有产品合格证明书(证)。 (4)其它材料:电器仪表、熔丝、端子板、绝缘子、铝套管、卡片框,软塑料管、塑料带、黑胶布、防锈漆、灰漆、焊锡、焊剂。应符合设计要求。 3.5.2主要机具 度量工具:石笔、钢卷尺、水平尺等。 手锤、钢锯、锯条、扁锉、圆锉、剥线钳、尖嘴钳、液压钳、活动板手、锡锅、喷灯、锡条等。 手电钻、钻头、发电机、兆欧表、万用表、平口改锥和梅花改锥、梯子、高凳、开孔器等。 3.5.3施工作业条件 (1)方阵支架已安装完成 (2)方阵组件已安装完成。 3.5.4组串式逆变器施工安装操作 (1)箱体定位螺栓固定盘面组装 (2)逆变器应安装在安全、干燥、易操作的位置。 (3)明装逆变器配电盘当砖墙时应采用金属膨胀螺栓固定,当为彩板房时应采用加长螺栓穿墙固定。 (4)逆变器作好明显可靠的接地;导线引出面板时,面板线孔应光滑无毛刺;金属面板应装设绝缘保护套。 (5)逆变器外壳应有明显可靠的PE保护地线(PE为黄绿相间的双色线);

但PE保护地线不允许利用箱体或盒体串连。 (6)逆变器配线排列整齐,并绑扎成束;在活动部位应固定;盘面引出及引进的导线应留有适当余度,以便于检修。 (7)导线剥削处不应伤线芯或线芯过长;导线压头应牢固可靠;多股导线不应盘圈压接,应加装接线端子,必须采用穿孔顶丝压接时,多股导线应压接后再搪锡,不得减少导线股数。 (8)逆变器的盘面上安装的各种刀闸及自动开关等,当处于断路状态时,刀片可动部分不应带电(特殊情况除外)。 (9)垂直装设的刀闸及熔断器等电器上端接电源,下端接负荷;横装者左侧(面对盘面)接电源,右侧接负荷。 (10)逆变器上如有电源指示灯,其电源应接至总开关的外侧,并应安装单独熔断器(电源侧)盘面闸具位置应与支路相对应,其下面应装设卡片框,标明路别及容量。 (11)当PE线所用材料与相线相同时选择导线截面不应小于下表中的规定:导线最小截面: (12)用此表若得出非标准截面时,应选用与之最接近的标准截面导体;但不得小于:裸铜线4mm2裸铝线6mm2绝缘铜线1.5mm2绝缘铝线2.5mm2。 (13)PE保护地线若不是供电电缆或电缆外护层的组成部分时,按机械强度要求,截面不应小于下列数值: 有机械保护时为2.5mm2;无机械保护时为4mm2; 3.5.5绝缘摇测 逆变器全部安装完毕后,用500V兆欧表对线路进行绝缘摇测。两人进行摇测,同时做好记录,作为技术资料存档。

光伏并网逆变器测试规范

深圳市晶福源电子技术有限公司 并网逆变器电性能测试规范 (此文档只适用于金太阳标准) 拟制:彭庆飞/丁川日期:2012.11.19 审核:石绍辉日期:2012.12.01 复审:石绍辉日期:2012.12.07 批准:石绍辉日期:2012.12.07 文件编号:20111219 生效日期:2013.1.1版本号:VA.1

文件修订记录

目录 1目的 (6) 2适用范围 (6) 3定义 (6) 4引用/参考标准 (6) 5测试基本原则及判定准则 (6) 5.1测试基本原则 (6) 5.2 测试问题分类的基本原则和标准 (6) 5.4 质量判定准则 (6) 6测试仪器、测试工具、测试环境 (7) 6.1 测试仪器 (7) 6.2 测试工具 (7) 6.3 测试环境 (7) 7测试项目、测试说明、测试方法、判定标准 (7) 7.1基本性能测试 (7) 7.1.1 直流输入电压范围和过欠压测试 (7) 7.1.2 电网电压响应测试 (8) 7.1.3 电网频率响应测试 (9) 7.1.4 并网电流直流分量 (10) 7.1.5 并网电压的不平衡度测试 (10) 7.1.6 功率因数测试 (10) 7.1.7 效率测试 (11) 7.1.8 最大功率点跟踪(MPPT)测试 (11) 7.1.9 并网电流谐波测试 (13) 7.1.10 噪声测试 (13) 7.1.11 检测和显示精度测试 (14) 7.1.12 母线软启动及浪涌电流测试 (15) 7.1.13 自动开关机测试 (15) 7.1.14 逆变软启动测试 (16) 7.1.16 PV输入限流测试 (16) 7.1.18 输出隔离变压测试 (16) 7.1.19 恢复并网保护测试 (17) 7.1.20 输出过流保护测试 (17) 7.1.21 防反放电保护测试 (18) 7.1.22 极性反接保护测试 (18) 7.1.23 输入过载保护测试 (19) 7.1.24 孤岛保护测试 (19) 7.1.25 逆向功率保护测试 (21) 7.1.26 EPO紧急关机测试 (22) 7.1.29 EPO关机驱动电压测试 (22) 7.1.30 电容放电时间测试 (23) 7.1.31 死区时间测试 (23) 7.1.33 母线电容纹波电流测试 (23) 7.1.34 逆变滤波电容纹波电流测试 (24) 7.1.35 逆变电感纹波电流测试 (24) 7.2 故障模拟测试 (24) 7.2.1 母线软启动失败测试 (24) 7.2.3 输出变压器和电抗器过温模拟测试 (25) 7.2.5 逆变晶闸管/接触器开路故障模拟测试 (25) 7.2.7 风扇故障模拟测试 (26) 7.2.8 输出相序接反保护测试 (26)

单机版-研旭光伏并网逆变器说明书_图文(精)

研旭光伏并网逆变器 YXSG-2.5KSL , YXSG-3KSL , YXSG-5KSL 安装使用手册 目录 1、安全说 明 (3) 2、产品描 述 (5) 2.1光伏并网系 统 .................................................................................................................... 6 2.2电路结构 ............................................................................................................................ 7 2.3特点 . .. (7)

2.4逆变器外观描 述 (8) 3、安 装 .......................................................................................................................................... 10 3.1 安装须 知 ......................................................................................................................... 10 3.2 安装流程说明 .. (11) 3.3安装准备 .......................................................................................................................... 12 3.4 选择合适的安装场 地 ..................................................................................................... 12 3.5 安装逆变 器 (14) 3.6 电气连 接 (14) 4、 LCD 操作说 明 . ......................................................................................................................... 21 4.1 按键功能说明 .. (21) 4.2 界面介 绍 (22) 5、故障排 除 (27) 5.1 初始化失败 ..................................................................................................................... 27 5.2 LCD 显示故 障 (27)

光伏并网逆变器控制策略的研究

题目:光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究 摘要 世界环境的日益恶化和传统能源的日渐枯竭,促使了对新能源的开发和发展。具有可持续发展的太阳能资源受到了各国的重视,各国相继出台的新能源法对太阳能发展起到推波助澜的作用。其中,光伏并网发电具有深远的理论价值和现实意义,仅在过去五年,光伏并网电站安装总量已达到数千兆瓦。而连接光伏阵列和电网的光伏并网逆变器便是整个光伏并网发电系统的关键。 本文通过按主电路分类、按功率变换级数分类和按变压器分类的三大类划分逆变器的方法分别介绍了每个逆变器电路的拓扑结构。之后本文首先介绍了国内外并网逆变器的研究状况以及相关并网技术标准,比较了当前主流的控制技术。然后,详细的阐述了光伏并网发电逆变器系统的整体设计和各单元模块的设计,其中包括太阳能电池组、升压斩波电路、逆变电路和傅里叶变换。 在简要介绍了系统的结构拓扑和控制要求之后,论文重点研究了基于电流闭环的矢量控制策略,阐述了其拓扑结构、工作原理及运行模式。为了深入研究控制策略,分别建立了基于电网电压定向的矢量控制和基于虚拟磁链定向的矢量控制。最后,本文针对几种产生谐波的原因,对L、LC、LCL 三种滤波器进行了比较分析。 最后,本文对光伏并网的总系统进行了MATLAB仿真,由于时间的限制,只做出了通过间接控制电流从而达到控制有功无功公功率的仿真。 关键词:光伏并网,逆变器电路拓扑,电流矢量控制,谐波

PHOTOVOLTAIC (PV) GRID INVERTER CONTROL STRATEGY RESEARCH Abstract World deteriorating environment and the increasing depletion of traditional energy sources prompted the development of new energy and development. Solar energy resources for sustainable development has been national attention, solar countries have contributed to the severity of the introduction of the new energy law developments. Among them, the photovoltaic power generation has profound theoretical and practical significance, only in the past five years,the total installed photovoltaic power plant has reached thousands of megawatts. Connected PV array and grid PV grid-connected inverter is the whole key photovoltaic power generation system. Based classification by main circuit and the power level classification and Division of three categories classified by transformer inverter of methods each inverters circuit topologies are introduced.This article introduces the domestic and foreign research on grid-connected inverters and related technical standards for grid-connected, compared the current mainstream technology.Then detail a grid-connected photovoltaic inverter system design and the modular design, including solar arrays, chop-wave circuit, inverter circuits and Fourier transform. Briefly introduces the system topology and control requirements, this paper focuses on the current loop-based vector control strategies, describes the topological structure, working principle and its operating mode.In order to study the control strategies were established based on power system voltage oriented vector control based on virtual flux-oriented vector control.Finally, for several reasons for harmonic, l, LC, LCL compares and analyses the three types of filters. Keywords:Photovoltaic, inverters circuit topologies, current vector control, harmonic

(完整word版)光伏发电系统逆变器结构特点

光伏发电系统逆变器结构特点 提出问题: 1.光伏发电系统并网时的主要部件是什么? 2.光伏逆变器如何分类?其电路如何构成? 3.IGBT是什么,有什么特点,主要参数? 4.电力MOSFET是什么,主要参数和特性? 5.逆变器的常用电路有哪些,各自的接线和特点是什么? 6.常用逆变器的形式有哪些,各自特点是什么,主要生产厂家? 1?光伏发电系统并网时的主要部件是什么? 光伏发电系统并网时的主要部件是逆变器。 无论是太阳能电池、风力发电还是新能源汽车,其系统应用都需要把直流电转换为交流电,承担这一任务的部件为逆变器。 逆变器乂称电源调整器、功率调节器,是光伏系统必不可少的一部分。通常,物理上把将直流电能变换成交流电能的过程称为逆变,把实现逆变过程的装置称为逆变设备或逆变器。逆变器的名称由此而來。光伏逆变器最主要的功能是把太阳能电池板所发的直流电转化成家电使用的交流电。 逆变器是光伏系统的心脏,太阳能电池板所发的电全部都要通过逆变器的处理才能对外输出,逆变器对于整套系统的运行起着重要的作用,逆变器的核心器件是IGBT(绝缘栅双极型晶体管),也是价格最高的部件之一。

2.光伏逆变器如何分类?其电路如何构成? 光伏逆变器的分类如下图: 逆变器的分类 输出波形运行方式输出交流电相数功率流动方向方波逆变器阶梯波 逆变器正弦波逆变 器 离网逆变器并网逆 变器 单相逆变器三相 逆变器 单向逆变器双向逆 变器 功率较小(<4kW)的光伏发电系统一般采用正弦波逆变器。逆变器的显示功能主要包括:直流输入电斥?和电流的测量值,交流输出电床和电流的测最值,逆变器的工作状态(运行、故障、停机等)。 光伏逆变器的电路构成如下图所示: 控制电路: 逆变器的控制电路主要是为主逆变电路提供一系列的控制脉冲來控制逆变开关器件的导通与关断,配合主逆变电路完成逆变功能。 辅助电路: 辅助电路主要是将输入电压变换成适合控制电路工作的直流电压。辅助电路还包含多 并网逆变器 Sd Conriectca Convener s?. AC Elecincrty Q 电网s >

解读光伏发电系统中逆变器的原理与应用

解读光伏发电系统中逆变器的原理与应用 目前我国光伏发电系统主要是直流系统,即将太阳电池发出的电能给蓄电池充电,而蓄电池直接给负载供电,如我国西北地区使用较多的太阳能户用照明系统以及远离电网的微波站供电系统均为直流系统。此类系统结构简单,成本低廉,但由于负载直流电压的不同(如12V、24V、48V等),很难实现系统的标准化和兼容性,特别是民用电力,由于大多为交流负载,以直流电力供电的光伏电源很难作为商品进入市常另外,光伏发电最终将实现并网运行,这就必须采用成熟的市场模式,今后交流光伏发电系统必将成为光伏发电的主流。 在应用中对逆变器的要求: 1.要求具有较高的效率。由于目前太阳电池的价格偏高,为了最大限度地利用太阳电池,提高系统效率,必须设法提高逆变器的效率。 2.要求具有较高的可靠性。目前光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器具有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热、过载保护等。 3.要求直流输入电压有较宽的适应范围,由于太阳电池的端电压随负载和日照强度而变化,蓄电池虽然对太阳电池的电压具有重要作用,但由于蓄电池的电压随蓄电池剩余容量和内阻的变化而波动,特别是当蓄电池老化时其端电压的变化范围很大,如12V蓄电池,其端电压可在10V~16V之间变化,这就要求逆变器必须在较大的直流输入电压范围内保证正常工作,并保证交流输出电压的稳定。 4.在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。这是由于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的要求,当中、大容量的光伏发电系统并网运行时,为避免与公共电网的电力污染,也要求逆变器输出正弦波电流。 逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交

200-500KW光伏发电逆变器说明书

https://www.doczj.com/doc/9a12473102.html, Content PV Solar System (1) I.PV Grid-Connected System (1) 1.String PV Grid-Connected Inverter (1) (1)Transformerless Type (1) (2)Transformer Type (3) 2.Power Plant PV Grid-Connected Inverter (4) (1)10-30KW Transformer Power Plant (4) (2)50-100KW Transformer Power Plant (6) (3)250KW Transformer Power Plant (8) (4)250-500KW Transformerless Power Plant (10) II.PV Off-Grid Inverter (12) III.PV Grid-Connected Fittings (14) 1.PV Combiner Box (14) 2.DC Distribution Cabinet (15) 3.AC Distribution Cabinet (15) 4.Monitor Software (16) 5.Data Acquisition (17) IV.System Integration (18) https://www.doczj.com/doc/9a12473102.html,rge And Middle Scale PV Power Station (19) 2.Small Scale PV Power System (19) 3.BIPV&BAPV (20)

光伏并网逆变器控制与仿真设计

光伏并网逆变器控制与仿真设计 为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。 ?近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。逆变器的主电路拓扑直接决定其整体性能。因此,开发出简洁、高效、高性价比的电路拓扑至关重要。 ?1 逆变器原理 ?该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻

光伏逆变器安装施工方案

20MV太阳能发电项目光伏场区

一、工程概况 1、工程概况 华润安达1号太阳能发电项目位于安达市西南部约18km处,项目所在地北侧为规划高速公路,东侧与中和砖厂相邻,项目所在地区平坦开阔,地势较低,无不良地质现象,场地布置条件较好。场地为盐碱地。施工时将场地挖填平整、并填土至沟塘形成相对平坦地貌以利于工艺布置及场地排水,即可形成良好的施工场地,场地布置条件较好。 本期光伏厂区内占地面积为633790叭共安装18组1MW太阳能子阵,总容量为 20.16MWp施工道路与永久道路可结合。通过平整场地,用砂石铺垫,作为施工道路使用。待施工结束后,完善道路二侧边沟系统、路面养护后可作为永久道路使用。 安达市位于黑龙江省西南部,地处大庆市与肇东市之间。属中温带大陆性季风气候,冬季 (11月至次年3月)被强大的蒙古高压控制,在其影响下多偏北风,天气干燥严寒;夏季 (6月至8月)受副热带海洋气团的影响,降水集中,光照充足气候温热、湿润。春季(4月至5月)多偏南大风,降水较少,易发生春旱;秋季(9月至10月)天高气爽,降温较快,常有早霜危害。气候基本特点是:冬长雪少,天气寒冷;夏短湿热,降水集中;春季风大,气候干燥;秋凉气爽,时有早霜。全年降水较少,平均气温在3C左右。年平均无霜期较短,在170d左右。 2、太阳能资源 黑龙江省年太阳总辐射量为4400?5400MJ/ m2 (相当于1222?1500kWh/ m2。太阳直接辐射年总量为2526?3162 MJ/ m2直接辐射在总辐射中所占比例较大,在0.57?0.63 之间,年日照时数在2242?2842小时。 华润安达光伏发电项目所在地年均太阳辐射量1357.70kWh/m2年均日照时数2681.97h, 日照时间较长,利用太阳能资源的条件较好。场址地区水平面日平均辐照度为 3.72 kWh/m2d项目场址在我国属于太阳能“资源丰富”地区,具备一定开发价值。从太阳能 资源利用角度说,此地区适合建设太阳能光伏发电站。 3、气象条件 安达市位于黑龙江省西南部、松嫩平原中部,东经124°3'至125°5',北纬46°1 '至47°1',地势东部略高,西部略低,平坦开阔,平坦地面下沉积着新老地层,储藏着丰富的水、石油和天然气等资源。安达市地处中纬度寒温带大陆性季风气候,年平均气温为 4.2 C,最热月(7月)平均气温为32.1度,最冷月份(1月)平均气温为-18.7度,历年

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器 设计方案 目录 1. 百千瓦级光伏并网特点 (2) 2 光伏并网逆变器原理 (3) 3 光伏并网逆变器硬件设计 (3) 3.1主电路 (6) 3.2 主电路参数 (7) 3.2.1 变压器设计............................................................................. 错误!未定义书签。 3.2.3 电抗器设计 (7) 3.3 硬件框图 (10) 3.3.1 DSP控制单元 (11) 3.3.2 光纤驱动单元 (11) 3.3.2键盘及液晶显示单元 (13) 3 光伏并网逆变器软件 (13)

1. 百千瓦级光伏并网特点 2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。 百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。 在技术指标上,主要会影响: 1.并网电流畸变率 在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。 2.电磁噪声 由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。 在技术指标上,主要考虑: 1)主电路工艺结构设计 2)散热工艺结构设计 3)驱动方式设计

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

太阳能逆变器开发思路和方案

太阳能逆变器开发思路和方案 内容摘要:摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 关键词:光伏并网发电系统;逆变器;拓扑结构;最大功率点跟踪;孤岛效应 O 引言由于传统能源的枯竭和人们对环境的重视,电力系统正面临着巨大变革,分布式发电将成为未来电力系统的发展方向。其中,光伏发电以其独特的优点,被公认为技术含量高.最有发展前途的技术之一。但是光伏发电系统存在着初期投资大.成本较高等缺点,因而探索高性能.低造价的新型光电转换材料与器件是其主要研究方向之一。另一方面,进一步减

少光伏发电系统自身损耗.提高运行效率,也是降低其发电成本的一个重要途径。逆变器效率的高低不仅影响其自身损耗,还影响到光电转换器件以及系统其他设备的容量选择与合理配置。 因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素,研究其结构与控制方法对于提高系统发电效率.降低成本具有极其重要的意义 [5] 。 本文从电网.光伏阵列以及用户对于并网逆变器的要求出发,分析了不同的逆变器拓扑结构与控制方法,比较了其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的技术问题进行了综合,进一步指出了光伏发电系统中并网逆变器高效可靠运行的发展方向。 1 光伏发电系统对逆变器的要求光伏并网发电系统一般由光伏阵列.逆变器和控制器3 部分组成。逆变器是连接光伏阵列和电网的关键部件,它完成控制光伏阵列最大功率点运行和向电网注入正弦电流两大主要任务。 1 .1 电网对逆变器的要求逆变器要与电网相连,必须满足电网电能质量. 防止孤岛效应和安全隔离接地3 个要求。 为了避免光伏并网发电系统对公共电网的污染,逆变器应输出失真度小的正弦波。影响波形失真度的主要因素之一是逆变器的开关频率。在数控逆变系统中采用高速 DSP 等新型处理器,可明显提高并网逆变器的开关频率性能,它已成为实际系统广泛采用的技术之一;同时,逆变器主功率元件的选择也至关重要。小

光伏逆变器测试实验室 PV inverter testing lab

? T üV , T U E V a n d T U V a r e r e g i s t e r e d b r a n d m a r k s . A n y u s e a n d a p p l i c a t i o n r e q u i r e s p r i o r a p p r o v a l . P 1S B 046z h e n G C 12081.0 光伏逆变器测试实验室PV inverter testing lab 光伏逆变器一站式认证服务 One-stop PV Inverter Certification Service PRODUCTS ? ELECTRICAL TUVdotCOM,展示企业与产品的竞争优势TUVdotCOM.The visible difference. TUVdotCOM 使您的产品在激烈竞争中与众不同。您可以随时随地通过该平台进行查询,所有经德国莱茵TüV 测试的产品、服务、公司、体系或人员信息将一览无余,充分展示客户产品及公司体系的质量和安全性。 The TUVdotCOM Internet platform makes the difference visible: All products, services, companies, systems, personnel certifications tested by TüV Rheinland– extremely well documented and globally-accessible. 我们是全球光伏产品检测和认证的领导者,拥有近30年的丰富经验 我们全球光伏产品测试网络拥有250多名专家,为全球各个地区提供专业服务我们全球6所顶尖光伏产品检测中心拥有最强的测试能力和最大的测试容量我们的光伏逆变器实验室采用国际先进的自动化仪器设备实现快捷、高效、专业检测服务 我们光伏逆变器实验室通过了全球CB 认证体系IECEE 的认可,是中国第一家CBTL 认可的光伏逆变器测试实验室,同时获得CNAS 、CGC 、TAF 、OSHA 、SCC 、DAkkS 等多项资质认可 TüV Rheinland is a global leader in the provision of testing and certification services for PV products, with nearly 30 years of experience Our unique global network backed by more than 250 experts provides professional service to various regions of the world We have six world-class solar energy assessment centres with the strongest testing capabilities and capacity worldwide Our PV inverter testing lab uses advanced automatic equipment to achieve fast, efficient and professional testing results Our lab has been accredited by the IECEE under the CB scheme. It is the first CBTL certified testing laboratory for PV inverters in China, and is recognised by CNAS, CGC, TAF, OSHA, SCC, DAkkS, etc.

相关主题
文本预览
相关文档 最新文档