当前位置:文档之家› 信令分析案例

信令分析案例

信令分析案例
信令分析案例

1、MS呼叫未接通:

问题描述: 在做DT测试过程中发生了一次未接通,地点是LAC区交接处.在DT测试

的行程中,可能发生数次跨LAC区的切换,极易发生掉话或未接通情况。主要有以下三条信令消息:

UL:CHANNEL REQUEST

DL:IMMEDIATE ASSIGNMENT

UL:CM SERVICE REQUEST

问题分析: (1)在上行的CM SERVICE REQUEST信令发出后,没有下行的响应,通话状

态由起呼直接转为空闲模式(IDLE),由此可以断定发生了一次未接通。由于上行UL:CM SERVICE REQUEST是MS发起的对SDCCH的申请,发出申请后没有应答,没有出现标志

呼叫接通的信令消息,可以断定发生了一次未接通情况。其原因可能为该服务小区的SDCCH 信道拥塞,也可能是由于无线环境的恶化造成SDCCH信令丢失。因为此次DT测试发生在跨数个LAC的路段,而且是上一个通话刚刚结束,起初判断可能是发生了一次位置更新。

(2) 位置更新信令消息如下:

DL:CHANNEL RELEASE

UL:CHANNEL REQUEST(开始位置更新)

DL:IMMEDIATE ASSIGNMENT

UL:LOCATION UPDATING REQUEST

DL:AUTHENTICATION REQUEST

UL:AUTHENTICATION RESPONSE

DL:LOCATION UPDATING ACCEPT

UL:TMSI REALLOCATION COMPLETE

DL:CHANNEL RELEASE

结合此例的第三层信令消息来看,例子中MS发出了UL:CM SERVICE REQUEST,

并不是UL:LOCATION UPDATING REQUEST,由此可以判断出此例并非是位置更新。

2 、位置更新导致数据吞吐量为0

问题描述: 在某路段,进行数据业务测试时,发现MS数据吞吐量变为0,没有了与GPRS网络的连接.

问题分析: (1) 在该路段进行语音业务测试, 确认已经完全覆盖.

(2) 分析当时数据业务测试的层3信令. 当时的信令为:

DL:SYSTEM INFORMATION TYPE 1

UL:LOCATION UPDATING REQUEST

UL:CHANNEL REQUEST

初步定位数据吞吐量变为0的原因是MS执行了一次跨路由区的小区重选

(3) 对比在当时显示图的信令部分可以明显的看出该MS正在做位置更新.

3 、FTP下载中断

问题描述: 在DT FTP下载测试中,MS已成功登陆FTP Server,并已经开始下载数据,FTP下载进度

为9%,在经过一次小区重选后, FTP下载不能继续进行,在一系列的Ping fail后,FTP掉线.

问题分析: (1) 查看层三信令,具体显示如下:

Direction Type Layer 3 Message

UL GPRS SM Deactivate PDP Context Request

DL RR System Information Type 13

UL RR Channel Request

DL RR Immediate Assignment

DL GPRS SM Deactivate PDP Context Accept

发现在事件列表中有PDP Deactivated的消息,在层三消息中可以看到是手机发起的上行消息.

(2)发生这种情况可能有3种原因:

一是手机在测试过程中电缆的某个接口发生了松动,这样手机可能会发出PDP去激活申请。

二是手机本身存在一些问题也可能导致这个问题。

三是测试用的笔记本电脑可能存在一些问题

4、没有物理消息导致切换失败

问题描述: 某地主要由4173、4081小区覆盖,上述两个小区及相邻小区同属于LAC:13588。

DT测

试过程中,MS当前服务小区为4173,当检测到有Level 更强的邻区时,BSC指示MS切换(发起DL:

HANDOVER COMMAND),此时发生了连续的三次切换失败(UL:HANDOVER FAILURE)。虽然本例

中经历了连续三次切换失败,MS仍然没有掉话(MS还在发送测量报告),但是对连续的切换失败应

该给予很大的重视。

问题分析: (1) 查看当时的层三信令, 具体如下:

DL:HANDOVER COMMAND

UL:HANDOVER ACCESS

UL:HANDOVER COMPLETE

UL:MEASUREMENT REPORT

UL:HANDOVER FAILURE

DL:SYSTEM INFORMATION TYPE 5

(2) 从切换的两个小区来看,4173向4081切换,是不同步切换,所以BSC应该在MS发出UL:

HANDOVER ACCESS消息后,接着发出DL:PHYSICAL INFORMATION,指示MS切换至目标小区的

Timing Advance,即MS与切换目标小区的距离。同时,在MS发出UL:HANDOVER COMPLETE 之

后,再发一条DL:PHYSICAL INFORMATION。

(3)但是在本例中BSC没有发出这两条消息,导致发生切换失败。

3.5 MS呼叫失败.

经检查信令发现有立即指派拒绝(immediate assignment reject)消息系统发现无可用信道.很可能是

因为系统拥塞引起的

3.6 参数设置错误导致切换问题

问题描述: 某次路测中发现手机每当起呼占用(BCCH:554,BSIC:52,LAC:9488,CI:29403),其只能一直切换到DCS1800网,通话过程中无法测量到GSM900的频点,一直不能向GSM900网切

换,在测试时不单该小区自己本身不能测量到GSM900的频点,在本次通话过程中的所涉及的所有小

区都不能测量到GSM900的频点,导致在该路段出现弱信号和质差最后导致掉话(虽然在CDD中该

小区的MBCCHNO中有GSM900的频点);

问题分析: (1) 在其他小区进行起呼测试,发现MS 切换到该小区后,则在该小区仍然能测量到GSM900

的频点。切换正常;说明问题出在该小区。

(2) 经仔细检查路测试数据的第三层信息,发现在该小区起呼时,第三层信息没有出现

UL-CLASSMARK CHANGE这条信令且在该小区的SYSTEM INFORMATION TYPE3中发现EARLY SENDING :EXPLICITY FORBIDDEN,导致系统认为手机为1800单频手机;

(3)经检查BSC数据,发现该小区的ECSC 参数设为NO,其它小区该参数设为YES。通过调整该参

数,问题得到解决。

3.7定时器超时,网络进行呼叫释放

问题描述: 在天津进行静态测试,发现MO呼叫30秒后自动中断,网络发送disc消息給MS,后面

进行正常的拆除过程。MT呼叫时,MS可以看到incoming call,连接后显示进入连接状态,但主叫端

仍然只能听到提示音,不能进行正常通话。

问题分析: (1)MO过程如下

MS net

--CM req--------------->

<---ciph cmd-----------

---ciph completed------->

---setup---------------->

<-----call proceding---

<------assignmend cmd---- -----assignmend complete--> <---alerting-----------

<----connect-----------

--------connect ack---->

after 30s

<--------disc-------------

(2)因为connect ack是在FACCH上发送的,怀疑网络未能收到ack消息,因为发送connect 消息

后,网络端将启动一个为期30秒的定时器等待MS的确认,出于某种原因,ack消息未能到达网络,

此定时器超时,网络进行呼叫释放

谈谈信令跟踪.

信令跟踪在维护工作中的运用目前移动通信竞争激烈,客户对移动运营商的要求越来越高。运营商对我们的要求也就更高。优质的网络是我们公司发展的基础,确保网络的正常运行是我们公司的立足之本。在这里简要谈谈信令跟踪在网络维护工作中的运用。 所谓信令跟踪分析是指用仪表收集跟踪移动通信的无线链路上的信令数据并加以整理,从中查找出异常的指标数据;利用软件进行分析,找出故障所在,并有效地解决排除,最终达到提高网络运行质量的目的。 信令跟踪在网络优化工作中也是比较重要的一步,它主要用来查找硬件的隐性故障和干扰频点等问题;无线链路上的信令提供了较全面的质量数据。用阿尔卡特公司的DAFNE软件分析的数据中可以看到各频点的上下行接收电平、上下信道质量、上下行信道质量差、上下行路径损耗、上下行路径差、信道质量分布表、时间提前量分布、信令统计等信息。 那么我们怎么通过这些数据来分析网络中的隐藏的故障呢?下面通过对网络中平常的一些隐性故障的处理来介绍一下信令跟踪分析数据的运用。 由于无线环境的恶劣性,移动通信的无线信道无时不经受着来自外界或本身的干扰。我们怎么从信令数据中查找受干扰的频点呢?一般说来,干扰直接影响信道质量的下降,但对信道的电平则没有多大的影响。所以我们可以查看上下行信道的quality值和上下行的路径损耗值(一般要求上下行信道的quality值在0.5以下,假设某个频点的质量较差,而它的上下行路径损耗与其它频点相差不大,那么这个频点受干扰的可能性比较大。 网络设备的硬件隐性故障问题一直是我们维护人员最头痛的,比如说某基站的 无线原因掉话一直很多,我们可以在分析报告中查看路径损耗值及路径损耗差与信道质量。一般路径损耗差在-10至1dB之间(当然也可以将目标定得高一点,信道质量在0.5以下,如果上行损耗过大或下行损耗过大都很容易引起掉话,所以要更换相应频点的硬件。比如义乌小商品市场的一个基站,每天均有10多次的信道掉话,

5G 信令分析指导书

5G 信令分析指导书

目录 1 概述 (1) 2 开机入网 (3) 2.1 小区搜索与选择 (3) 2.2 系统消息广播 (4) 2.2.1 系统消息获取 (6) 2.2.2 系统消息更新 (7) 2.2.3 ODOSI过程 (8) 2.2.4 关键消息解读 (9) 2.2.4.1 MIB (9) 2.2.4.2 SIB1 (11) 2.2.4.3 SI (17) 2.3 随机接入 (18) 2.3.1 基于竞争的随机接入 (20) 2.3.2 基于非竞争的随机接入 (24) 2.4 RRC连接建立 (28) 2.4.1 RRC建立流程 (29) 2.4.2 RRC拒绝过程 (31) 2.4.3 RRC重发处理 (31) 2.4.4 关键消息解读 (33) 2.4.4.1 RRCSetupRequest (33) 2.4.4.2 RRCSetup (34) 2.4.4.3 RRCSetupComplete (36) 2.4.4.4 RRCReject (37) 2.5 注册流程 (37) 3 上下文管理 (38) 3.1 初始上下文建立过程 (38) 3.1.1 安全模式过程 (40) 3.1.2 UE能力查询过程 (42) 3.1.3 关键消息解读 (43) 3.1.3.1 NGAP INITIAL CONTEXT SETUP REQUEST (43)

3.1.3.2 NGAP INITIAL CONTEXT SETUP RESPONSE (44) 3.1.3.3 RRC SecurityModeCommand (45) 3.1.3.4 RRC SecurityModeComplete (45) 3.1.3.5 RRC UECapabilityEnquiry (45) 3.1.3.6 RRC UECapabilityInformation (46) 3.2 UE上下文修改过程 (46) 3.3 UE上下文释放过程 (48) 4 会话管理 (49) 4.1 5G QoS Architecture (49) 4.1.1 概述 (49) 4.1.2 QoS Flow (50) 4.1.3 QoS Parameters (51) 4.1.4 QoS Flow到DRB的映射 (56) 4.2 PDU会话建立过程 (58) 4.3 PDU会话修改过程 (59) 4.4 PDU会话释放过程 (59) 4.5 关键消息解读 (60) 4.5.1 NGAP PDU SESSION RESOURCE SETUP REQUEST (60) 4.5.2 NGAP PDU SESSION RESOURCE SETUP RESPONSE (63) 4.5.3 NGAP PDU SESSION RESOURCE MODIFY REQUEST (63) 4.5.4 NGAP PDU SESSION RESOURCE MODIFY RESPONSE (65) 4.5.5 RRCReconfiguration (65) 4.5.6 RRCReconfigurationComplete (66) 5 寻呼流程 (67) 5.1 5GC寻呼 (67) 5.1.1 信令流程 (68) 5.1.2 关键消息解读 (70) 5.1.2.1 NGAP PAGING (70) 5.1.2.2 RRC PAGING (71) 5.2 RAN寻呼 (71) 5.2.1 信令流程 (72) 5.2.2 关键消息解读 (73) 5.2.2.1 RAN PAGING (73) 5.3 寻呼消息发送 (75) 6 切换流程 (77) 6.1 站内切换 (77) 6.2 Xn切换 (80) 6.3 N2切换 (82) 6.4 LNR切换 (83)

移动主被叫及切换信令流程分析

1、主叫信令流程 移动用户做主叫时的信令过程从MS向BTS请求信道开始,到主叫用户TCH指配完成为止。一般来说,主叫经过几个大的阶段:接入阶段,鉴权加密阶段,TCH指配阶段,取被叫用户路由信息阶段。 接入阶段主要包括:信道请求,信道激活,信道激活响应,立即指配业务请求等几个步骤。经过这个阶段,手机和BTS BSC 建立了暂时固定的关系。 鉴权加密阶段主要包括:鉴权请求,鉴权响应,加密模式命令,加密模式完成,呼叫建立等几个步骤。经过这个阶段,主叫用户的身份已经得到了确认,网络认为主叫用户是一个合法用户允许继续处理该呼叫。 TCH指配阶段主要包括:指配命令,指配完成。经过这个阶段,主叫用户的话音信道已经确定,如果在后面被叫接续的过程中不能接通,主叫用户可以通过话音信道听到MSC的语音提示。 取被叫用户路由信息阶段主要包括:向HLR请求路由信息,HLR向VLR请求漫游号码,VLR回送被叫用户的漫游号码,HLR向MSC回送被叫用户的路由信息(MSRN)。MSC收到路由信息后,对被叫用户的路由信息进行分析,可以得到被叫用户的局向。然后进行话路接续。 主叫接入阶段、鉴权阶段主要信令: 当用户输入被叫号码完毕按下发射按纽后,手机(以下以MS代替)将进行一系列动作,首先MS将在随机接入信道(RACH )向BSS发送信道请求消息,以便申请一个专用信道(SDCCH ),BSC为其分配相应的信道成功后,在接入允许信道(AGCH)中通过立即分配消息通知MS为其分配的专用信道,随后MS将在为其分配的SDCCH上发送一个层三消息 ---CM业务请求消息,在该消息中CM业务类型为移动发起呼叫,该消息被BSS透明的传送至MSC,MSC收到CM业务请求消息后,通过处理接入请求消息通知VLR处理此次MS的接入业务请求,(同时,由于在BSC和MSC之间用到了SCCP有连接服务,为建立SCCP连接,MSC还将向BSC回连接确认消息),收到业务接入请求后,VLR将首先查看在数据库中该MS是否有鉴权三参组,如果有将直接向MSC下发鉴权命令,否则向相应的HLR/AUC请求鉴权参数,从HLR/AUC得到三参组,然后再向MSC下发鉴权命令。MSC收到VLR发送的鉴权命令后,通过BSS向MS下发鉴权请求,在该命令中含有鉴权参数,MS收到鉴权请求后,利

LTE切换失败问答题分析案例分析

X2IPPATH配置问题导致切换不成功 关键字:X2IPPATH 切换 【现象描述】 切换测试时,从站点B1的标口信令跟踪发现站点B1连续出现切换准备失败,HANDOVER_REQUEST消息后出现HANDOVER_PREPARATION_FAILURE,进入该消息中可以看到cause为transport-resource-unavailable,切换不成功,如下图所示。 【原因分析】 对于切换流程失败而言,如果是切换准备阶段的失败,其原因通常为以下几种: (1)传输资源不够用; (2)没有配置IPPATH; (3)IPPATH中的邻居节点配置错误。 由于切换测试阶段的网络业务负载很小,接入用户数少,通过X2口传输的数据不多,一般来说不会出现传输资源不够用的情况。所以可以先重点怀疑IPPATH配置的问题,在处理过程中需要对X2口和IPPATH问题排查处理,一步步解决问题。 【处理过程】 每次切换到目标小区完成后,UE会读取目标小区的系统消息(RRC_SIB_TYPE1),该消息中可以看到目标小区的CGI,通过CGI中的基站ID确认目标基站B2的ID。从该次切换的切换命令 (RRC_CONN_RECFG)可以找到目标小区CELL2的PCI,在目标基站B2中用MML命令查询确实存在小区CELL2,所以接下来可以针对目标基站B2以及源基站B1来检查IPPATH的配置了。 先查看B2基站对应的IPPATH有没有配置,如果配置则确认X2接口ID与IPPATH的邻接点ID是否一致。在webLMT上的命令如下: LST SCTPLNK;检查SCTPLNK是否建立并查看目标基站B2以及源基站B1对应的SCTP链路号SCTP Link No。 DSP X2INTERFACE;检查X2INTERFACE是否配置并根据SCTP链路号SCTP Link No,查看对应X2接口的标识X2InterfaceId。

(整理)华为CDMA信令流程详解.

1 信令分析 在分析问题时,请参照正确的流程,逐步检查到底哪一条消息没有收到,并且分析上一条消息里面携带的内容,从而定位原因所在。 1.1 主被叫呼叫建立流程 1.1.1正常信令 在分析接入问题时,请参照上图所示正确的流程,逐步检查到底哪一条消息没有收到,且分析上一条消息里面携带的内容,从而定位原因所在 【注】Abis-BTS setup消息里面,携带了接入的小区、扇区、walsh码、频点。 关键点1:BSC向MSC发送CM Service Request后,是否收到Assignment Request。如果没有收到MSC发的Assignment Request,等到6s后定时器超时,基站会给手机发送release order.这种情况是A1接口失败。 关键点2:BTS是否向BSC发送Abis-BTS Setup Ack。Abis如有问题,如误码高、信令链路带宽不足等,将会体现为Abis无法建链成功,话统原因“指配资源失败” 关键点3:是否发送ECAM(扩展信道指配消息)消息。如Abis正常建链,但却没有发送ECAM消息,在话统里面会体现为“指配资源失败”,可能原因是walsh、CE、power不足。 关键点4:是否在F-DSCH发送order message,如没有收到,说明捕获业务信道前导帧

失败。 关键点5:是否发送Assignment complete。如发送表明呼叫建立成功。如没有收到,在话统里面体现为“信令交互失败”。 被叫流程与主叫几乎完全一致,被叫中的Paging Response相当于主叫的origination message。 1.1.2典型异常信令 1、A1接口失败。 2、传输误码率高导致指配资源失败

cds测试软件第三信令详细分析

第三层(Layer 3)信令 第三层信令是看网络运行情况的信息层,从第三层可以看到网络的各种动作:如:呼叫流程、拥塞、用户忙、位置更新等,系统信息总共有8个类型,Type1—4只出现在待机状态下,Type5—8只出现在通话状态下: 1、System Information Type1 小区广播信息,有该小区自身的频点,RACH的一些参数设置,祥见上图。 2、System Information Type2

待机模式下小区的测量频点,(同频段,移动网有两个频段,GSM900和DCS1800), 在通话模式下有另外定义的测量频点,也就是说一个小区可以在待机时做测量频点,而通话时不做测量频点,允许小区重选而不允许切换,反之也可以只允许切换不允许小区重选也可以,不过通常情况下待机和通话时的测量频点是一致的。 3、System Information Type2ter 待机模式下小区的测量频点,(异频段,移动网有两个频段,GSM900和DCS1800), 4、System Information Type 3

小区广播信息,可以看到ATT、T3212、ACC、CRO、CRH以及ACCMIN等,祥见上图5、System Information Type 4

小区广播信息,在这里可以看到小区的CRH、CRO、ACCMIN、MAXRET、CB、CBQ、PT 等一些参数的设置值,祥见上图。 6、System Information Type 5

激活模式下服务小区测量频点,(同频段,移动网有两个频段,GSM900和DCS1800) 只有服务小区有做该小区的测量频点,才会测量到该小区的信号,否则在邻区列表中不会看到该小区,也不会切换。在我们平时路测当中,经常遇到强信号不切换,如果做了测量频点,可以很明了地看到有一个强的邻区信号,但是要是没有做测量频点的话就比较隐性。 7、System Information Type 5ter 激活模式下服务小区的测量频点,(异频段,移动网有两个频段,GSM900和DCS1800)8、System Information Type 6

LTE信令流程图(端到端平台)

TDD-LTE 基本信令流程图

1 概述 本文主要针对TD-LTE端到端信令流程图进行分解,为端到端平台提供分析流程呈现依据。由于部分流程无S1口信令支撑,当前根据相关文档进行的绘制,后续具备条件后进行补充调整。

2 TDD-LTE网络结构概述 LTE的系统架构分成两部分,包括演进后的核心网EPC(MME/S-GW)和演进后的接入网E-UTRAN。演进后的系统仅存在分组交换域。 LTE接入网仅由演进后的节点B(evolved NodeB)组成,提供到UE的E-UTRA控制面与用户面的协议终止点。eNB之间通过X2接口进行连接,并且在需要通信的两个不同eNB之间总是会存在X2接口。LTE接入网与核心网之间通过S1接口进行连接,S1接口支持多—多联系方式。 与3G网络架构相比,接入网仅包括eNB一种逻辑节点,网络架构中节点数量减少,网络架构更加趋于扁平化。扁平化网络架构降低了呼叫建立时延以及用户数据的传输时延,也会降低OPEX与CAPEX。 由于eNB与MME/S-GW之间具有灵活的连接(S1-flex),UE在移动过程中仍然可以驻留在相同的MME/S-GW上,有助于减少接口信令交互数量以及MME/S-GW的处理负荷。当MME/S-GW与eNB之间的连接路径相当长或进行新的资源分配时,与UE连接的MME/S-GW 也可能会改变。 E-UTRAN

2.1 EPC 与E-UTRAN 功能划分 与3G 系统相比,由于重新定义了系统网络架构,核心网和接入网之间的功能划分也随之有所变化,需要重新明确以适应新的架构和LTE 的系统需求。针对LTE 的系统架构,网络功能划分如下图: eNodeB 功能: 1) 无线资源管理相关的功能,包括无线承载控制、接纳控制、连接移动 性管理、上/下行动态资源分配/调度等; 2) IP 头压缩与用户数据流加密; 3) UE 附着时的MME 选择; 4) 提供到S-GW 的用户面数据的路由; 5) 寻呼消息的调度与传输; 6) 系统广播信息的调度与传输; 7) 测量与测量报告的配置。 MME 功能: 1) 寻呼消息分发,MME 负责将寻呼消息按照一定的原则分发到相关的 eNB ; 2) 安全控制; E-UTRAN

NGN课设信令追踪与分析sip协议剖析

武 夷 学 院 课程设计报告 数学与计算机学院 课程名称: 软交换与NGN 设计题目: NGN 网络信令跟踪与分析(SIP )协议 学生班级: 13通信工程(1)班 学生姓名: 张骞文 何凯翔 曾德彪 陈永荣 指导教师: 石贵民 完成日期: 2016-06-17

课程设计项目研究报告 目录 第 1 章项目简介 (1) 1.1 项目名称 (1) 1.2 开发人员 (1) 1.3 指导教师 (1) 第 2 章项目研究意义 (1) 2.1 课程设计概述 (1) 2.2 需求分析及研究意义 (1) 2.3 项目内容 (1) 第 3 章采用的技术 (1) 3.1 SOFTX3000实验脚本 (3) 3.2 IAD实验脚本 (5) 第 4 章课程设计项目进度表 (7) 第 5 章课程设计任务分配表 (7) 第 6 章达到的效果 (8) 6.1程序设计思想 (8) 6.2 程序最终结果 (8) 第 7 章设计心得 (21) 第 8 章参考文献 (22)

第 1 章项目简介 1.1 项目名称 NGN网络信令跟踪与分析(SIP)协议 1.2 开发人员 张骞文(组长)、何凯翔、陈永荣、曾德彪 1.3 指导教师 石贵民 第 2 章项目研究意义 2.1 课程设计概述 通过本次实验,让学生加深对语音分组交换的理解并初步掌握SIP协议的各种消息流程以及分组交换消息抓包解析方法。 2.2 需求分析及研究意义 1、SoftX3000 1台; 2、IAD若干台; 3、实验终端电脑若干台; 4、电话机若干部; 2.3 项目内容 SIP协议 会话启动协议SIP(Session Initiation Protocol )是由 IETF 提出并主持研究的一个在IP 网络上进行多媒体通信的应用层控制协议,它被用来创建、修改、和终结一个或多个参加者参加的会话进程。这些会话包括Internet 多媒体会议、Internet 电话、远程教育以及远程医疗等。即所有的因特网上交互式两方或多方多媒体通信活动,统称为多媒体会话。参加会话的成员可以通过组播方式、单播联网方式或者两者结合的方式进行通信。

TDLTE信令流程及信令解码详解

TD-LTE信令流程及信令解码 本文主要就PS业务建立流程和LTE系统内切换的信令及信令解码进行重点IE分析,并加以标注,所有信令为eNB侧跟踪的信令。 PS业务建立流程: 1.1RRC Connection Request UE上行发送一条RRC Connection Request消息给eNB,请求建立一条RRC连 接,该消息携带主要IE有: -ue-Identity :初始的UE标识。如果上层提供S-TMSI,侧该值为S-TMSI; 否则从0…240-1中抽取一个随机值,设置为ue-Identity。 -establishmentCause:建立原因。该原因值有emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, spare3, spare2, spare1。其中“mt”代表移动终端,“mo”代表移动始端。 信令解码如下: -RRC-MSG : |_msg : |_struUL-CCCH-Message : |_struUL-CCCH-Message : |_message : |_c1 : |_rrcConnectionRequest : |_criticalExtensions : |_rrcConnectionRequest-r8 : |_ue-Identity : |_establishmentCause : ---- highPriorityAccess(1) |_spare : ---- '0'B(00 ) 04 53 14 97 b7 8c 32 1.2RRC Connection Setup UE初始标识,此处因为上层没有提供S-TMSI,所以为随机值。 建立原因,此处 highPriorityAcces s指的是AC11~AC15

优化考试题库(案例分析-卡特)

目录 1高掉话高分配失败案例 (2) 1.1小区高掉话案例1 (2) 1.2小区高掉话案例2 (2) 1.3小区高掉话案例2 (2) 2信令分析案例 (4) 3区域性掉话案例 (6) 3.1区域性掉话案例1 (6) 3.2区域性掉话案例2 (6) 4切换失败案例 (8) 4.1INTER BSC切换失败高小区检查 (8) 4.2INTRA BSC切换失败高小区检查 (8) 5全网优化案例 (11) 6答案 (13) 6.1高掉话高分配失败案例答案 (13) 6.1.1高掉话高分配失败案例答案1 (13) 6.1.2高掉话高分配失败案例答案2 (13) 6.1.3高掉话高分配失败案例答案2 (13) 6.2信令分析案例答案 (14) 6.3区域性掉话案例分析答案 (14) 6.3.1区域性掉话案例答案1 (14) 6.3.2区域性掉话案例答案2 (14) 6.4切换失败案例答案 (15) 6.4.1INTER BSC切换失败高小区答案 (15) 6.4.2INTRA BSC切换失败高小区检查 (15) 6.5全网优化案例答案 (16)

1高掉话高分配失败案例 1.1小区高掉话案例1 以下是某个小区Abis信令统计数据, 所用频率平均上行 接收电平 平均下行 接收电平 平均上行 接收质量 平均下行 接收质量 平均上行 路径损耗 平均下行 路径损耗 上下行路径 损耗差值 上下行质 量差值 手机平 均发射 功率 基站平 均发射 功率 采样数呼叫 次数 1 -88.84 -73.79 1.0 2 0.32 120.44 112.79 7.65 -0.7 31.61 39 4369 85 91 -85.79 -77.3 3 0.06 0.18 115.7 4 116.33 -0.59 -0.11 29.9 5 34. 6 3023 41 82 -80.64 -76.62 0.15 0.29 106.79 111.59 -4.8 -0.14 26.15 34.9 7 633 19 49 -79.53 -76.71 0.31 1.12 106.46 113.46 -7 -0.81 26.94 36.5 3406 81 TA分布: TA 0 1 2 3 4 5 6 7 百分比11.8% 55.6% 29.4% 0.4% 0.4% 0.0% 0.4% 0.2% 问题1:判断导致该小区高掉话率、TCH高分配失败率的可能原因。 问题2:该小区BCCH是占用哪个频点。 问题3:该小区上下行路径损耗是否正常,路径损耗与哪些因素有关,写出相关的计算公式。 问题4:在空间损耗中,主要损耗原因有哪些?当这些因素扩大一倍,损耗相差几个db? 1.2小区高掉话案例2 现象:某小区的TCH分配失败率及掉话率很高;根据统计报告观察,均为MC736和MC746B掉话和分配失败,且集中在各个TRX上。 问题1:请列出在几种掉话种类及计数器。 问题2:发生此类问题有几种可能。 问题3:碰到此类问题,请列出优化思路及处理方法。 1.3小区高掉话案例2 瓦口1在几个忙时均为坏小区,掉话组成为MC14C,看告警,仅有LOSS-OF-SDCCH,推断为某频点硬件有问题,关跳频、创报告、观察每个频点的占

LTEvolte投诉处理流程大全(SEQ使用方法+信令分析详解+投诉案例处理)-1120

处理流程以及数据提取方法一、投诉处理流程 二、SEQ提取数据方法 VOLTE用户投诉处理(支持实时和历史记录详单) 1、登录后,SQM》投诉用户单据查询 2、投诉用户单据查询-跟踪号码 输入号码136XXXX0505

3、投诉用户单据查询-数据查询结果(均可钻取详单) 4、投诉用户会话跟踪-创建跟踪任务(提取信令) 5、投诉用户会话跟踪-实时跟踪结果 6、信令详单提取

7、语音质量单据查询(这功能暂时我们没权限) 可针对单号码进行语音、视频质量查询,查询单号码某次通话过程中GM\S1-U口丢包情况、是否存在单通、单通时长,同时可以通过5S分片具体定位丢包时间点。

三、VOLTE根据信令分析 TD-LTE__VoLTE-SIP完整信令解析 对关键流程的解释如下表所示: 1)主叫发INVITE消息,触发主叫RRC建立过程,INVITE消息中包含被叫方的号码,主叫方支持的媒体类型和编码等。

2)主叫建立SRB2信令无线承载,QCI9默认承载和QCI5 SIP信令无线承载。例如在本例中,信令无线承载SRB-ID=2;QCI=9的默认承载的eps-BearerID=5,DRB-ID=3;QCI=5的SIP信令承载的eps-BearerID=6,DRB-ID=4 3)核心网侧收到主叫的INVITE消息以后,给主叫发送INVITE的应答消息,INVITE 100表示正在处理中。 4)核心网向处于空闲态的被叫发INVITE消息,由于被叫处于空闲态,所以核心网侧触发寻呼消息,寻呼处于空闲态的被叫用户 5)被叫建立SRB2信令无线承载,QCI9默认承载和QCI5 SIP信令无线承载 6)核心网在QCI5 RB承载上,给被叫用户发送INVITE消息 7)被叫对INVITE消息的响应 被叫收到寻呼但未收到INVITE请求,核心网问题 8)被叫方通知主叫方,自己所支持的媒体类型和编码。 9)主叫建立QCI1的数据无线承载,用于承载语音数据,使用UM方式。例如本例中,eps-BearerID=7,DRB-ID=5。关键参数包括头压缩参数,TTI Bundling,SPS。DRX参数也会按照语音业务的要求进行重新配置。 10)被叫建立QCI1的数据无线承载。例如本例中QCI1承载的eps-BearerID=7,DRB-ID=5。 11)核心网通知主叫终端的SM层,建立QCI=1的承载,例如:eps-BearerID=7 12)主叫收到被叫的INVITE 183消息 被叫上发sip183后,在激活EPS承载之前,终端上报了1条A3测报,激活EPS后,发生切换重配置消息中释放了QCI=1的DRB。起呼时MME进行激活EPS承载流程过程中,恰好发生S1切换时,由于EPS承载建立未完成,MME在切换准备阶段,对下发到目标小区的切换准备的请求消息中不携带QCI=1的VOLTE专载,导致VOLTE专载源小区完成的情况下,在目标小区被释放,切换完成后呼叫中断,重配置消息释放DRB承载,无线网与核心网配合问题 13)核心网通知被叫终端的SM层,建立qci=1的承载 14)主叫收到INVITE 183消息以后,发送确认消息PRACK,启动资源预留过程, 15)被叫收到主叫的PRACK以后,返回PRACK 200响应,启动资源预留过程, 16)主叫收到被叫的PRACK 200以后,发送UPDATE消息,标明资源预留成功。

信令跟踪

ATU指标保障信令跟踪 1.提前远程登录到当次所跑网格范围内的所有BSC服务器 以衡阳网格2为例,所需登录的BSC有281,282,283,284,285,286这6台服务器。中兴信令跟踪的命令为: telnet ip地址 gomcr gomcr123 ls cd ums-svr cd tools ls cd zxgomcr-sigtrace ls cd server ls ./server.sh 运行结果如下图: 出现connected则连接成功。

2.登录信令跟踪 用户名、密码不变,服务器地址为所要登录的BSC服务器IP地址,端口号不变。 登陆界面 登录后界面如下: 点击齿轮状图标进入跟踪设置界面,如下图

选择BSC然后更新配置,勾选MS选项进入IMSI号设置界面 添加所要跟踪的ATU主被叫IMSI号,完成设置。 当ATU设备开始测试时,信令会自动刷新,这时要过滤出我们所需要用的6条信令:信道请求,DTAP消息,切换执行,切换命令,清除命令和释放完成。 在出现信令时右键单击选择过滤,如下图。

单击过滤后出现过滤器,选中所需要的信令如下图。

从信道请求,DTAP消息,清除命令,释放完成这四条信令中我们可以看到一次通话的完整过程,若挂机时在DTAP消息中的拆链未出现而直接出现清除命令和释放完成,则是非正常挂机,即掉话。若在DTAP消息中出现连接后直接出现清除命令和释放完成则是未接通。 从切换执行中,我们可以看到每次ms切换时的当前小区和目的小区以及切换理由,如下图 从切换命令中,可看到BSC间的切换,这时就需要切换到另一个BSC进行跟踪。

GSM信令分析及流程详解大全

Layer 3信令分析及流程详解 汇编 Layer 3信令是看网络运行情况的信息层,从第三层可以看到网络的各种动作:如:呼叫流程、拥塞、用户忙、位置更新等,并且可以对路测中的各种问题如掉话、切换失败等网络事件的原因进行准确的分析。 系统信息一般有8个类型,分别是1、2、3、4、5、6、7、8,Type 1~4只出现在待机状态下,Type 5~6只出现在通话状态下,明白这点,对以后的分析至关重要。其中2中含有:2、2bis、2ter, 5中含有5、5bis、5ter,所以总共有12种系统信息,系统信息1仅用于跳频,所以称为选择项。其中1、2、3、4、 2bis、 2ter 、7、8都在BCCH上发送,由IDLE模式下的移动台接收。5、5bis、5ter、6在SACCH上发送,由ACTIVE模式下的移动台接收。一般来说所有系统信息在连续的8个51复帧中发送完,如下图示:上图中的TC表示复帧序列号,可以看出,当TC=4、5时,发送的内容是可选的,其它是固定的。 TC=0固定发送跳频信息,当出现上图示的1(3)时,表示跳频时发类型1,不跳频时发类型3 当类型4中发送的关于小区重选信息不够完整时,由类型7、8补充。且在TC=7、3时发送(上图示) 对于类型5、6在下行的SACCH上发送,并没有复帧规范,除非切换完成后要立即发送类型5、6。 1、System Information Type1 说明:系统信息类型 1 (频率信息) 此类型仅用于跳频时,发送内容为: 第一、小区信道描述。用于通知移动,小区采用的频带与可以供跳频用的频点。对于GSM900与GSM1800采用的格式是不同的。对于GSM900: 有一个BIT MAP 0(比特位图)用于描述两方面信息,分别为: CA-NO,取值分别为:0、1、2,代表,GSM900、GSM1800、GSM1900。 CA-ARFCN,采用的有效射频频点,当为GSM900,将有一个相应于124个频点的124位图,当某个频点被采用时,相应的比特位被置为1,否则将被置为0.

非常详细的LTE信令流程

LTE信令流程

目录 第一章协议层与概念 (5) 1.1控制面与用户面 (5) 1.2接口与协议 (5) 1.2.1NAS协议(非接入层协议) (7) 1.2.2RRC层(无线资源控制层) (7) 1.2.3PDCP层(分组数据汇聚协议层) (8) 1.2.4RLC层(无线链路控制层) (8) 1.2.5MAC层(媒体接入层) (9) 1.2.6PHY层(物理层) (10) 1.3空闲态和连接态 (12) 1.4网络标识 (13) 1.5承载概念 (14) 第二章主要信令流程 (16) 2.1 开机附着流程 (16) 2.2随机接入流程 (19) 2.3 UE发起的service request流程 (23) 2.4寻呼流程 (26) 2.5切换流程 (27) 2.5.1 切换的含义及目的 (27) 2.5.2 切换发生的过程 (28) 2.5.3 站内切换 (28) 2.5.4 X2切换流程 (30) 2.5.5 S1切换流程 (32) 2.5.6 异系统切换简介 (34) 2.6 CSFB流程 (35) 2.6.1 CSFB主叫流程 (36) 2.6.2 CSFB被叫流程 (37) 2.6.3 紧急呼叫流程 (39) 2.7 TAU流程 (40) 2.7.1 空闲态不设置“ACTIVE”的TAU流程 (41)

2.7.2 空闲态设置“ACTIVE”的TAU流程 (43) 2.7.3 连接态TAU流程 (45) 2.8专用承载流程 (46) 2.8.1 专用承载建立流程 (46) 2.8.2 专用承载修改流程 (48) 2.8.3 专用承载释放流程 (50) 2.9去附着流程 (52) 2.9.1 关机去附着流程 (52) 2.9.1 非关机去附着流程 (53) 2.10 小区搜索、选择和重选 (55) 2.10.1 小区搜索流程 (55) 2.10.1 小区选择流程 (56) 2.10.3 小区重选流程 (57) 第三章异常信令流程 (60) 3.1 附着异常流程 (61) 3.1.1 RRC连接失败 (61) 3.1.2 核心网拒绝 (62) 3.1.3 eNB未等到Initial context setup request消息 (63) 3.1.4 RRC重配消息丢失或eNB内部配置UE的安全参数失败 (64) 3.2 ServiceRequest异常流程 (65) 3.2.1 核心网拒绝 (65) 3.2.2 eNB建立承载失败 (66) 3.3 承载异常流程 (68) 3.3.1核心网拒绝 (68) 3.3.2 eNB本地建立失败(核心网主动发起的建立) (68) 3.3.3 eNB未等到RRC重配完成消息,回复失败 (69) 3.3.4 UE NAS层拒绝 (70) 3.3.5上行直传NAS消息丢失 (71) 第四章系统消息解析 (72) 4.1 系统消息 (73) 4.2 系统消息解析 (74) 4.2.1 MIB (Master Information Block)解析 (74) 4.2.2 SIB1 (System Information Block Type1)解析 (75) 4.2.3 SystemInformation消息 (77) 第五章信令案例解析 (83) 5.1实测案例流程 (84)

LTE信令跟踪说明

1.1 在eNodeB下进行实时性能监控和测试 在“信令跟踪管理”界面下,还可以进行eNodeB传输性能、小区性能、用户性能和RRU性能的监控和测试。 图 1 eNodeB性能监控和测试功能 1.1.1监控小区性能 小区性能监控功能主要监控项有业务满意率监控、总吞吐量监控、业务数/用户数监控、RB使用情况监控、RSSI统计监控、ICIC监控、虚拟MIMO监控、干扰检测监控等,DBR统计和被调度用户统计。 小区性能监控任务登记,需要设置被监控小区的Local Cell ID,可以设置监控周期和文件保存的路径,文件保存的格式有“csv”和“mmf”两种。 图 2 小区性能监控

常用小区性能监控项有总吞吐量监控、用户数监控、RB使用情况监控和RSSI统计监控。 1.1.2监控扇区性能 扇区监控主要监控上行宽频扫描功能 图 1 扇区监控性能 1.1.3传输监控性能 传输性能监控主要包括IP链路监控、IP PATH性能监控、IP性能监控、SCTP性能监控、UDP 灌包测试监控、本地流过路流监控和资源组监控。 图 2 传输监控性能 1.1.4用户监控性能 用户性能测试功能主要监控项有下行RSRP/RSRQ监控、误码率监控、Power Headroom监控、信道质量监控、调度监控、RLC业务量监控、吞吐量监控、AQM监控、上行功控监控、下行功

控监控、上行ICIC监控和按MCS阶数统计监控。 图 3 用户性能测试 用户性能测试功能任务登记,需要选择被测量的基站(站点数目最多可以选择30个),设置跟踪用户的信息,监控周期和文件保存的路径,文件保存的格式有“csv”和“mmf”两种。 1.1.5R RU监控性能 该任务用于监测RRU输出功率和温度的性能状况,每个RRU最多能启动的监测任务为:●一个输出功率监测任务(注:SPC310之前的版本该项监控不准) ●一个温度监测任务 图 4 RRU监控性能

5G 信令分析指导书

5G 信令分析指导书 5G 信令分析指导书 文档版本01 发布日期2019-08-02

目录 1 概述 (1) 2 开机入网 (3) 2.1 小区搜索与选择 (3) 2.2 系统消息广播 (4) 2.2.1 系统消息获取 (6) 2.2.2 系统消息更新 (7) 2.2.3 ODOSI过程 (8) 2.2.4 关键消息解读 (9) 2.2.4.1 MIB (9) 2.2.4.2 SIB1 (11) 2.2.4.3 SI (17) 2.3 随机接入 (18) 2.3.1 基于竞争的随机接入 (20) 2.3.2 基于非竞争的随机接入 (24) 2.4 RRC连接建立 (28) 2.4.1 RRC建立流程 (29) 2.4.2 RRC拒绝过程 (31) 2.4.3 RRC重发处理 (31) 2.4.4 关键消息解读 (33) 2.4.4.1 RRCSetupRequest (33) 2.4.4.2 RRCSetup (34) 2.4.4.3 RRCSetupComplete (36) 2.4.4.4 RRCReject (37) 2.5 注册流程 (37) 3 上下文管理 (38) 3.1 初始上下文建立过程 (38) 3.1.1 安全模式过程 (40) 3.1.2 UE能力查询过程 (42) 3.1.3 关键消息解读 (43) 3.1.3.1 NGAP INITIAL CONTEXT SETUP REQUEST (43)

3.1.3.2 NGAP INITIAL CONTEXT SETUP RESPONSE (44) 3.1.3.3 RRC SecurityModeCommand (45) 3.1.3.4 RRC SecurityModeComplete (45) 3.1.3.5 RRC UECapabilityEnquiry (45) 3.1.3.6 RRC UECapabilityInformation (46) 3.2 UE上下文修改过程 (46) 3.3 UE上下文释放过程 (48) 4 会话管理 (49) 4.1 5G QoS Architecture (49) 4.1.1 概述 (49) 4.1.2 QoS Flow (50) 4.1.3 QoS Parameters (51) 4.1.4 QoS Flow到DRB的映射 (56) 4.2 PDU会话建立过程 (58) 4.3 PDU会话修改过程 (59) 4.4 PDU会话释放过程 (59) 4.5 关键消息解读 (60) 4.5.1 NGAP PDU SESSION RESOURCE SETUP REQUEST (60) 4.5.2 NGAP PDU SESSION RESOURCE SETUP RESPONSE (63) 4.5.3 NGAP PDU SESSION RESOURCE MODIFY REQUEST (63) 4.5.4 NGAP PDU SESSION RESOURCE MODIFY RESPONSE (65) 4.5.5 RRCReconfiguration (65) 4.5.6 RRCReconfigurationComplete (66) 5 寻呼流程 (67) 5.1 5GC寻呼 (67) 5.1.1 信令流程 (68) 5.1.2 关键消息解读 (70) 5.1.2.1 NGAP PAGING (70) 5.1.2.2 RRC PAGING (71) 5.2 RAN寻呼 (71) 5.2.1 信令流程 (72) 5.2.2 关键消息解读 (73) 5.2.2.1 RAN PAGING (73) 5.3 寻呼消息发送 (75) 6 切换流程 (77) 6.1 站内切换 (77) 6.2 Xn切换 (80) 6.3 N2切换 (82) 6.4 LNR切换 (83)

CSFB失败原因与信令分析指导书

CSFB失败原因与信令特征对应表 版本号:V1.0 中国移动通信集团公司网络部监控处 2014年6月

目录 1概述 (4) 1.1前言 (4) 2失败类型:CSFB主叫失败 (4) 2.1失败原因:终端回落到了弱覆盖的2G小区,终端在2G的接续过程中掉话 (4) A接口: (6) 3失败类型:CSFB被叫失败 (7) 3.1失败原因:用户处在2个TA重叠的覆盖范围, 经常在两个TA之间来回重选, 做被叫时正在重选过程中导致的CSFB被叫时失败 (7) 3.2失败原因:未部署MTRF功能情况下 UE跨MSC Pool回落,导致的CSFB被叫失 败7 3.3失败原因:诺西ENodeB的CSFB功能未打开,导致的CSFB被叫失败 (8) 3.4失败原因:阿朗ENodeB的CSFB LICENSE功能未打开,导致的CSFB被叫失败。 9 3.5失败原因:诺西MME软件缺陷,当用户正在进行X2切换时,MME并没有等待该 切换完成后重新下发Paging消息,最终导致寻呼未正常下发.诺西计划在14年6月的NS31中解决。 (11) 3.6失败原因:手机终端设置黑名单或来电防火墙引起CSFB被叫失败 (12) 3.7失败原因:回落2G后发生LAC改变,改变后的LAC所属BSC(华为)的GSM小区 未开启CSFB功能,导致主叫失败 (13) 3.8失败原因:阿朗ENODEB采用BitMap方式下发GSM回落频点导致CSFB接通失败 15 3.9失败原因: .回落邻区漏配、少配或者优先级不当引起回落失败 (16) 3.10失败原因:诺西MME的BUG造成7108D等单卡双待手机存在联合附着. 引起 双待手机被叫失败 (17) 3.11失败原因: ENODEB将ESR(TAU)错误分发至另外一个SGSN,引起被叫无法接 续(大唐、中兴ENDOBE) (17) 3.12失败原因:伪基站干扰,CSFB手机做被叫时回落至伪基站,造成被叫失败 19 3.13失败原因: 4G网络弱覆盖寻呼无响应造成被叫失败。 (20) 3.14失败原因: 4G网络SINR值差,导致iPhone手机终端无法收到Paing消息造 成被叫失败。 (21) 3.15失败原因:华为MME流程冲突导致的CSFB被叫失败 (23) 4失败类型:CSFB呼叫时延过大 (24) 4.1失败原因:用户在主叫回落前和回落后所处的TAC/LAC不一致,导致回落后先 发起位置更新,再进行主被叫流程,造成时延增加两秒左右。 (24) 5失败类型:其他 (26)

层3信令分析及详解

Layer 3信令分析及流程详解汇编

Layer 3信令是看网络运行情况的信息层,从第三层可以看到网络的各种动作:如:呼叫流程、拥塞、用户忙、位置更新等,并且可以对路测中的各种问题如掉话、切换失败等网络事件的原因进行准确的分析。 系统信息一般有8个类型,分别是1、2、3、4、5、6、7、8,Type 1~4只出现在待机状态下,Type 5~6只出现在通话状态下,明白这点,对以后的分析至关重要。其中2中含有:2、2bis、2ter,5中含有5、5bis、5ter,所以总共有12种系统信息,系统信息1仅用于跳频,所以称为选择项。其中1、2、3、4、2bis、2ter 、7、8都在BCCH上发送,由IDLE模式下的移动台接收。5、5bis、5ter、6在SACCH上发送,由ACTIVE模式下的移动台接收。一般来说所有系统信息在连续的8个51复帧中发送完,如下图示: 上图中的TC表示复帧序列号,可以看出,当TC=4、5时,发送的内容是可选的,其它是固定的。 TC=0固定发送跳频信息,当出现上图示的1(3)时,表示跳频时发类型1,不跳频时发类型3 当类型4中发送的关于小区重选信息不够完整时,由类型7、8补充。且在TC=7、3时发送(上图示) 对于类型5、6在下行的SACCH上发送,并没有复帧规范,除非切换完成后要立即发送类型5、6。 1、System Information Type1

说明:系统信息类型1 (频率信息) 此类型仅用于跳频时,发送内容为: 第一、小区信道描述。用于通知移动,小区采用的频带与可以供跳频用的频点。对于GSM900与GSM1800采用的格式是不同的。对于GSM900: 有一个BIT MAP 0(比特位图)用于描述两方面信息,分别为: CA-NO,取值分别为:0、1、2,代表,GSM900、GSM1800、GSM1900。 CA-ARFCN,采用的有效射频频点,当为GSM900,将有一个相应于124个频点的124位图,当某个频点被采用时,相应的比特位被置为1,否则将被置为0. 对于GSM1800情况点不同。由于频点太多,不用位图,而用别的编码方式,FORMAD-IND=?来描述编码方式,后面跟一串编码比特来表示。 第二、RACH控制参数,描述的两个数据为;ACC、EC,ACC称为接入控制等级,分为0-9与11-15,0-9表示普通级,所有移动台被定义为0-9,11-15为优先级,10表示EC,如果此位取0,表示所有移动台允许进行紧急呼叫,取1时,只有11-15优先级的移动台可以进行紧急呼叫。 CB——小区禁止标志,用一个比特表示。

相关主题
文本预览
相关文档 最新文档