当前位置:文档之家› 函数与导数性质的综合

函数与导数性质的综合

函数与导数性质的综合
函数与导数性质的综合

1.已知,n k ∈N *,且k n ≤,k C k n n =C 1

1k n --,则可推出

C 12n +C 23n +C 3

n k ++C k n n ++C (n n n =C 01n -+C 1

1n -++C 1

1k n --++C 1

1

)n n --12n n -=?, 由此,可推出C 122n +C 223n +C 32n k +

+C 2k n n ++C n n = .

2.用a ,b ,c 表示空间中三条不同的直线, γ表示平面, 给出下列命题: ① 若a b ⊥, b c ⊥, 则a ∥c ; ② 若a ∥b , a ∥c , 则b ∥c ; ③ 若a ∥γ, b ∥γ, 则a ∥b ; ④ 若a ⊥γ, b ⊥γ, 则a ∥b .

其中真命题的序号是( )

A .① ②

B .② ③

C .① ④

D .② ④

3.已知映射():(,)(,)0,0f P m n P m n m n '→≥≥.设点()3,1A ,()2,2B ,点M 是线段

AB 上一动点,:f M M '→.当点M 在线段AB 上从点A 开始运动到点B 结束时,点M

的对应点M '所经过的路线长度为( ) A .12

π

B .6π

C . 4π

D . 3π

4.

.

8、在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”, 类似的,我们

在平面向量集

上也可以定义一个称“序”的关系,记为“>

>”.定义如下:对于任意两个向量

当且仅当

“”或“

”.按上述定义的关系“>>”,给出如下四个命题:

①若 ;

②若;

③若

,则对于任意;

④对于任意向量.

其中正确命题的个数为

A 、1个

B 、2个

C 、3个

D 、4个

5. 在平面直角坐标系xOy 中,设不等式组11,

02

x y -≤≤??

≤≤?所表示的平面区域是W ,从区域W

中随机取点(),M x y ,则2OM ≤的概率是 . 6. 已知函数()sin 3f x x x π=+-, 则12340292015201520152015f f f f ??

??????++++

? ? ? ?????????

的值为 .

7.(本小题满分14分)

已知数列{}n a 的前n 项和n S 满足:()11

n n a

S a a =--,a 为常数,且0a ≠,1a ≠. (1)求数列{}n a 的通项公式; (2)若13a =,设11

11n n n n n a a b a a ++=-+-,且数列{}n b 的前n 项和为n T ,求证:13n T <.

8.(本小题满分14分)(佛山一模) 数列{}n a 的前n 项和为n S ,已知()()211

,12

n n a S n a n n n N *==--∈. (1)求23,a a .

(2)求数列{}n a 的通项. (3)设1

1n n n b S S +=,数列{}n b 的前n 项和为n T ,证明:52n T <()n N *

∈.

9.(本小题满分14分)已知函数()()

ln x a f x x

-=

. (1)若1a =-,证明:函数()f x 是()0,+∞上的减函数.

(2)若曲线()y f x =在点()()

1,1f 处的切线与直线0x y -=平行,求a 的值.

(3)若0x >,证明:()ln 11

x x x

x e +>-(其中 2.71828e =L 是自然常数).

10.(本小题满分14分)(广东省广州市2015届高三1月模拟数学理)

已知椭圆()2222:10x y C a b a b +=>>的离心率为32

,且经过点()0,1.圆

2222

1:C x y a b

+=+. (1)求椭圆C 的方程;

(2)若直线l ():0y kx m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于

,A B 两点,问AM BM +=0是否成立?请说明理由.

2020高考数学 课后作业 3-2 利用导数研究函数的性质

3-2 利用导数研究函数的性质 1.(文)(2020·宿州模拟)已知y=f(x)是定义在R上的函数,且f(1)=1,f′ (x)>1,则f(x)>x的解集是( ) A.(0,1) B.(-1,0)∪(0,1) C.(1,+∞) D.(-∞,-1)∪(1,+∞) [答案] C [解析]令F(x)=f(x)-x,则F′(x)=f′(x)-1>0,所以F(x)是增函数,∵f(x)>x,∴F(x)>0,∵F(1)=f(1)-1=0,∴F(x)>F(1),∵F(x)是增函数,∴x>1,即f(x)>x的解集是(1,+∞). (理)(2020·辽宁文,11)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞) [答案] B [解析]由题意,令φ(x)=f(x)-2x-4,则 φ′(x)=f′(x)-2>0. ∴φ(x)在R上是增函数. 又φ(-1)=f(-1)-2×(-1)-4=0, ∴当x>-1时,φ(x)>φ(-1)=0, ∴f(x)-2x-4>0,∴f(x)>2x+4.故选B. 2.(2020·宁夏石嘴山一模)函数y=2x3-3x2-12x+5在[0,3]上的最大值,最小值分别是( ) A.5,-15 B.5,-4 C.-4,-15 D.5,-16 [答案] A [解析]∵y′=6x2-6x-12=0,得x=-1(舍去)或x=2,故函数y=f(x)=2x3-3x2-12x+5在[0,3]上的最值可能是x取0,2,3时的函数值,而f(0)=5,f(2)=-15,f(3)=-4,故最大值为5,最小值为-15,故选A. 3.(文)已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为( ) A.4 27 ,0 B.0, 4 27 C.-4 27 ,0 D.0,- 4 27

高中数学函数与导数综合复习

高二数学函数与导数综合复习 一、知识梳理: 1.基本初等函数的导数公式和导数的四则运算法则: 常用函数导数公式:='x ; =')(2 x ;=')(3 x ;=')1 (x ; 初等函数导数公式:='c ; =')(n x ;=')(sin x ;=')(cos x ; =')(x a ; =')(x e ;=')(log x a ;=')(ln x ; 导数运算法则:(1)/ [()()]f x g x ±= ;(2))]'()([x g x f ?= ; (3)/ ()[ ]() f x g x = [()0].g x ≠ 2.导数的几何意义:______________________________________________________________________; 曲线)(x f y =在点()(,00x f x )处的切线方程为________________________________________. 3.用导数求函数单调区间的一般步骤: (1)__________________________________; (2)________的解集与定义域的交集的对应区间为增区间;_______的解集与定义域的交集的对应区间为减区间 4. 利用导数求函数的最值步骤: ⑴求)(x f 在(,)a b 内的极值; ⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值. 二.巩固练习: 1.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时 速度是 ( ) A 、 7米/秒 B 、6米/秒 C 、 5米/秒 D 、 8米/秒 2. 在0000()() ()lim x f x x f x f x x ?→+?-'=?中,x ?不可能 ( ) A .大于0 B .小于0 C .等于0 D .大于0或小于0 3. 已知曲线3 2x y =上一点)2,1(A ,则A 处的切线斜率等于 ( ) A .2 B .4 C .6+6x ?+2(x ?)2 D .6 4. 设)(x f y =存在导函数,且满足12) 21()1(lim 0 -=??--→?x x f f x ,则曲线)(x f y =上点))1(,1(f 处的切线 斜率为( ) A .2 B .-1 C .1 D .-2

函数连续性、导数及其应用

§1 函数的连续性定义:设函数y =f (x )在点x 0的某一邻域内有定义,如果那么就称函数f (x )在点x 0连续.)()(lim 00 x f x f x x =→一、连续函数的概念 函数连续要满足三个条件 (1) 在x =x 0有定义; (2) 存在;(3))(lim 0 x f x x →)()(lim 00 x f x f x x =→

例1. 2sin 21 ,0(),0ax x e x f x x a x ?+-≠?=??=? 在(-∞,+ ∞)上连续, 求的值 a 解:

定义:若函数?(x)在开区间(a , b)内的每一点都连续, 则称函数?(x)在开区间(a , b)内连续; 定义:若函数?(x)在开区间(a , b)内连续, 且在左端点a右连续, 在右端点b 左连续, 则称函数?(x) 在闭区间[a , b]内连续. 一个函数在定义域上连续,从图像上看是连 续不断的,“一笔”可以画出来的。

二、函数的间断点极其类型(1)在x =x 0没有定义; (2)虽在x = x 0有定义,但不存在;(3)虽在x = x 0有定义,且存在,但则函数f (x )在点x 0为不连续,而点x 0称为函数f (x )的不连续点或间断点. )(lim 0 x f x x →)(lim 0 x f x x →)()(lim 00 x f x f x x ≠→

x 1 A 2A 0 x 0 x 1 A 2A 0 x A x 1 A 2A 0 x 1 A 0 x

间断点? ? ???? ???????振荡间断点极限为无穷的间断点无穷间断点第二类间断点存在,但不相等)跳跃间断点(左右极限相等)可去间断点(左右极限第一类间断点)(例2.解:

高中数学利用导数研究函数的性质( 极值与最值)

3.2利用导数研究函数的性质 第2课时导数与函数的极值、最值 一、基础知识 1.函数的单调性(复习) 在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减. 2.函数的极值 (1)一般地,求函数y=f(x)的极值的方法 解方程f′(x)=0,当f′(x0)=0时: ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值. (2)求可导函数极值的步骤 ①求f′(x); ②求方程f′(x)=0的根; ③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 知识拓展 (1)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件. (2)函数的极大值不一定比极小值大.

(3)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的必要不充分要条件. 二、基本题型 1.根据函数图象判断极值 【例1-1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( ) A .函数f (x )有极大值f (2)和极小值f (1) B .函数f (x )有极大值f (-2)和极小值f (1) C .函数f (x )有极大值f (2)和极小值f (-2) D .函数f (x )有极大值f (-2)和极小值f (2) 答案 D 解析 由题图可知,当x <-2时,f ′(x )>0;当-22时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【变式1-1】函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ) A .无极大值点、有四个极小值点 B .有三个极大值点、一个极小值点 C .有两个极大值点、两个极小值点 D .有四个极大值点、无极小值点 【答案】 C 【解析】 导函数的图象与x 轴的四个交点都是极值点,第一个与第三个是极大值点,第二个与第四个是极小值点. 2.求函数的极值和极值点 【例2-1】设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12 为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 【答案】 D 【解析】 f ′(x )=-2x 2+1x =x -2x 2(x >0),当02时,f ′(x )>0, ∴x =2为f (x )的极小值点.

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

几个常见函数的导数1

几个常见函数的导数制作人:徐凯精讲部分: 年级:高三科目:数学类型:同步难易程度:易建议用时:20-25min 一.知识点: 知识点一几个常用函数的导数 知识点二基本初等函数的导数公式

二.典例分析: 题型一 利用导数公式求出函数的导数 例1 求下列函数的导数: (1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x ;(6)y =1-2sin 2x 2 . 解 (1)y ′=0;(2)y ′=(5x )′=5x ln 5;(3)y ′=? ?? ??1x 3′=(x -3)′=-3x -4 ; (4)y ′=(4 x 3 )′=(x 34)′=1 434x -=344 x ;(5)y ′=(log 3x )′=1 x ln 3; (6)y =1-2sin 2 x 2 =cos x ,y ′=(cos x )′=-sin x . 反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 题型二 利用导数公式解决切线有关问题 例2 (1)已知P ,Q 为抛物线y =12x 2 上两点,点P ,Q 横坐标分别为4,-2,过P ,Q 分别 作抛物线的切线,两切线交于点A ,则点A 的坐标为________. 答案 (1,-4) 解析 y ′=x ,k PA =y ′|x =4=4,k QA =y ′|x =-2=-2. ∵P (4,8),Q (-2,2),∴PA 的直线方程为y -8=4(x -4),

即y =4x -8, QA 的直线方程为y -2=-2(x +2),即y =-2x -2,联立方程组??? ? ? y =4x -8,y =-2x -2,得 ????? x =1, y =-4. ∴A (1,-4). (2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处两条曲线的切线互相垂直并说明理由. 解 设存在一个公共点(x 0,y 0)使两曲线的切线垂直, 则在点(x 0,y 0)处的切线斜率分别为k 1=y ′|0x x ==cos x 0,k 2=y ′|0x x ==-sin x 0, 要使两切线垂直,必须k 1k 2=cos x 0(-sin x 0)=-1, 即sin 2x 0=2,这是不可能的. ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直. 反思与感悟 1.利用导数的几何意义解决切线问题的两种情况 (1)若已知点是切点,则在该点处的切线斜率就是该点处的导数. (2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 2.求过点P 与曲线相切的直线方程的三个步骤 题型三 利用导数公式求最值问题 例3 求抛物线y =x 2 上的点到直线x -y -2=0的最短距离. 解 设切点坐标为(x 0,x 2 0),依题意知与直线x -y -2=0平行的抛物线y =x 2 的切线的切点到直线x -y -2=0的距离最短.

基本初等函数的导数公式及导数运算法则综合测试题(附答案)

基本初等函数的导数公式及导数运算法则综合测试题(附答案) 选修2-21.2.2第2课时基本初等函数的导数公式及导数运算法则 一、选择题 1 .函数y = (x+ 1)2(x—1)在x= 1处的导数等于() A.1B.2 C. 3 D. 4 答案]D 解析]y = (x+1)2]'—x1 )+(x+ 1)2(x—1)' =2(x + 1)?(x—1) + (x+ 1)2= 3x2 + 2x—1, y‘ =1= 4. 2.若对任意x€ R, f‘ =)4x3, f(1) = —1,则f(x)=() A. x4 B. x4— 2 C. 4x3—5 D. x4+ 2 答案]B 解析]丁f‘(=4x3.f(x) = x4+c,又f(1) = — 1 ? ? ? 1 + c= — 1 ,? ? ? c= —2,—f(x) = x4 — 2. 3 .设函数f(x) = xm + ax 的导数为f‘ =)2x+1,则数列{1f(n)}(n € N*) 的前n 项和是() A.nn+1 B.n+2n+1 C.nn—1 D.n+1n 答案]A 解析]T f(x) = xm+ ax 的导数为f‘(x)2x + 1,

/. m = 2, a= 1,二f(x) = x2+ x, 即f(n) = n2+n=n(n+ 1), 二数列{1f(n)}(n € N*)的前n项和为: Sn= 11 X2 12X3 13 x+…+ 1n(n+ 1) =1 —12+ 12—13+…+ 1n —1n + 1 =1 —1n+ 1= nn+ 1, 故选 A. 4.二次函数y = f(x)的图象过原点,且它的导函数y= f‘的)图象是过第 一、二、三象限的一条直线,贝卩函数y= f(x)的图象的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案]C 解析]由题意可设f(x)= ax2 + bx, f' (=2ax + b,由于f‘(的图象是过第一、二、三象限的一条直线,故2a>0, b>0,则f(x) = ax+ b2a2—b24a, 顶点—b2a,—b24a 在第三象限,故选 C. 5 .函数y = (2 + x3)2的导数为() A. 6x5+ 12x2 B. 4+ 2x3 C. 2(2+ x3)2 D. 2(2+ x3)?3x 答案]A 解析]t y= (2+ x3)2= 4+ 4x3+ x6, /. y = 6x5 + 12x2.

导数研究函数性质

1.导数与导函数的概念 (1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数(derivative),记作f ′(x 0). (2)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ). 2.导数的几何意义 函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0). 3.基本初等函数的导数公式 4.导数的运算法则 若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );

(3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )g 2(x ) (g (x )≠0). 5.复合函数的导数 若y =f (u ),u =ax +b ,则y ′x =y ′u ·u ′x ,即y ′x =y ′u ·a . 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为 ________. 2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是________. 3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________. 4.已知点P 在曲线y = 4e x +1 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是__________. 5.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.

高等数学习题及解答(极限-连续与导数)

高等数学习题库 淮南联合大学基础部 2008年10月

第一章 映射,极限,连续 习题一 集合与实数集 基本能力层次: 1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B 解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }. 2: 证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2=4n 2+4n+1,不能被2整除,故p =2n 。即结论成立。 基本理论层次: 习题二 函数、数列与函数极限 基本能力层次 1: 解: 2: 证明:由得cxy ay ax b -=+即 ay b x cy a += -,所以 ()x f y = 所以命题成立

3: (1)2 2x y -= (2)lg(sin )y x = (3 []y x = (4)0,01,0x y x ≥?? =??取N =[1 ω ],则当n>N 时,就有 11|1|n n n ω--=<有定义变知1lim 1n n n →∞-=成立 5:求下列数列的极限 (1)lim 3n n n →∞ (2)222 3 12lim n n n →∞+++ (3) (4)lim n 解:(1) 233n n n n <,又 2lim 03n n x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n →∞=0 (2)由于 222 3 312(1)(21)111 (1)(2)6n n n n n n n n n ++ +++= =++ 又因为:1111 lim (1)(2)63 n n n n →∞++=,所以:2223121 lim 3 n n n →∞+++ (3)因为: 所以: (4) 因为:111n n ≤+,并且1 lim(1)1n n →∞+=, 故由夹逼原理得 1n =

《导数在研究函数中的应用—函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿 周国会 一、教材分析 1教材的地位和作用 “函数的单调性和导数”这节新知识是在教材选修1—1,第三章《导数及其应用》的函数的单调性与导数.本节计划两个课时完成。在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。培养学生数形结合思想、转化思想、分类讨论的数学思想。能利用导数研究函数的单调性;会求函数的单调区间.在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。 (一)知识与技能目标: 1、能探索并应用函数的单调性与导数的关系求单调区间; 2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。 (二)过程与方法目标: 1、通过本节的学习,掌握用导数研究函数单调性的方法。 2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。 (三)情感、态度与价值观目标: 1、通过在教学过程中让学生多动手、多观察、勤思考、善总结, 2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。(四)教学重点,难点 教学重点:利用导数研究函数的单调性、求函数的单调区间。 教学难点:探求含参数函数的单调性的问题。 二、教法分析 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。解关于含参数的问题,注意分类讨论点的确认,灵活应用已知函数的单调性求参数的取值范围。采用启发式教学,强调数形结合思想、转化思想、分类讨论的数学思想的应用,培养学生的探究精神,提高语言表达和概括能力,

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

常见函数的导数

常见函数的导数 学习目标:能根据定义求几个简单函数的导数,加深对导数概念的理解,同时体会算法的 思想并熟悉具体的操作步骤。 学习重难点:利用导数公式求一些函数的导数 一、 知识点梳理 1. 基本初等函数,有下列的求导公式 '1.()(,)kx b k k b +=为常数 '2.()1x = 2'3.()2x x = 4.()0C '= 3'2 5.()3x x = ' 2 116.()x x =- '= 1 8.()x x ααα-'=(α为常数) 9.()ln (01)x x a a a a a '=>≠, a a 1110.(log x)log e (01)x xlna a a '= =>≠, x x 11.(e )e '= 112.(lnx)x '= 13.(sinx)cosx '= 14.(cosx)sinx '=- 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。 二、典例讲解 例1、求下列函数导数。 练习:(1)5 -=x y (2) 、x y 4= (3)、x x x y = (4)、x y 3 l o g = (5)、)100() 1(l o g 1 ≠>>-= x a a x a y x ,,, (6)、y=sin( 2π+x) (7)y=sin 3 π (8)、y=cos(2π-x) (9)、y=(1)f ' 例2、1.求过曲线y=cosx 上点P( 2π ,0 ) 的切线的直线方程. 2. 若直线y x b =-+为函数1 y x = 图象的切线,求b 的值和切点坐标. (1)(23)(2)(2)(3)3x x '-+='-='=4 (4)y x =3(6)y x -==0(5)sin 45y

第16课时利用导数研究函数的性质

第16 课时 利用导数研究函数的性质 编者:仇小华 审核:刘智娟 第一部分 预习案 一、知识回顾 1. f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的 条件. 2. f (x )在(a ,b )上是增函数的充要条件是 . 3. 对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件 对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的 条件,但并不 . 4. 如果不间断的函数f (x )在区间(a ,b )内只有一个极值点,那么这个极值点就是最值点.在解决实际问题中经常用到这一结论. 二、基础训练 1. 已知函数f (x )=ln a +ln x x 在[1,+∞)上为减函数,则实数a 的取值范围为__________. 2. 设函数f (x )=ax 3-3x +1 (x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 3. 若函数f (x )的导函数为f ′(x )=-x (x +1),则函数g (x )=f (log a x )(0

导数综合讲义(教师版).pdf

导数综合讲义 第1讲导数的计算与几何意义 (3) 第2讲函数图像 (4) 第3讲三次函数 (7) 第4讲导数与单调性 (8) 第5讲导数与极最值 (9) 第6讲导数与零点 (10) 第7讲导数中的恒成立与存在性问题 (11) 第8讲原函数导函数混合还原(构造函数解不等式) (13) 第9讲导数中的距离问题 (17) 第10讲导数解答题 (18) 10.1 导数基础练习题 (21) 10.2 分离参数类 (24) 10.3 构造新函数类 (26) 10.4 导数中的函数不等式放缩 (29) 10.5 导数中的卡根思想 (30) 10.6 洛必达法则应用 (32) 10.7 先构造,再赋值,证明和式或积式不等式 (33) 10.8 极值点偏移问题 (35) 10.9 多元变量消元思想 (37) 10.10 导数解决含有ln x与e x的证明题(凹凸反转) (39) 10.11 导数解决含三角函数式的证明 (40) 10.12 隐零点问题 (42) 10.13 端点效应 (44) 10.14 其它省市高考导数真题研究 (45)

导数 【高考命题规律】 2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高考考查了导数判断函数的单调性,含参零点的分类讨论。近四年的高考试题基本形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。预测 2018 年高考导数大题以对数函数、指数函数、反比例函数以及一次函数、二次函数中的两个或三个为背景,组合成一个函数,考查利用导数研究函数的单调性与极值及切线,不等 式结合考查恒成立问题,另外 2016 年全国卷 1 理考查了极值点偏移问题,这一变化趋势应引起考生注意。 【基础知识整合】 1、导数的定义: f ' (x ) = lim f (x 0 + ?x ) - f (x 0 ) , f ' (x ) = lim f (x + ?x ) - f (x ) 0 ?x →0 ?x ?x →0 ?x 2、导数的几何意义:导数值 f ' (x ) 是曲线 y = f (x ) 上点 (x , f (x )) 处切线的斜率 3、常见函数的导数: C ' = 0 ; (x n )' = nx n -1 ; (sin x )' = cos x ; (cos x )' = -sin x ; (ln x )' = 1x ; (log a x )' = x ln 1 a ; (e x )' = e x ; (a x )' = a x ln a 4、导数的四则运算: (u ± v )' = u ' ± v ' ;; (u ?v )' = u ' v + v ' u ; (u )' = u 'v -2 v 'u v v 5、复合函数的单调性: f ' x (g (x )) = f ' (u )g ' (x ) 6、导函数与单调性:求增区间,解 f ' (x ) > 0 ;求减区间,解 f ' (x ) < 0 若函数在 f (x ) 在区间 (a , b ) 上是增函数 ? f ' (x ) ≥ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上是减函数 ? f ' (x ) ≤ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在增区间 ? f ' (x ) > 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在减区间 ? f ' (x ) < 0 在 (a , b ) 上恒成立; 7、导函数与极值、最值:确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题:强化变形技巧、巧妙构造函数、一定要多练记题型,总结方法

函数连续与导数

第三讲 函数连续与导数 一、一点连续的定义 1、 设f 在某0()U x 内有定义且0 0lim ()()x x f x f x →=,则称f 在0x 连续; 2、 设f 在某00()(())U x U x +-内有定义且0000()()(()())f x f x f x f x +=-=,则称f 在0x 右(左)连续; 3、 f 在0x 连续000,0:|||()()|x x f x f x εδδε??>?>-?>∈?-<; f 在0x 左连续000,0:(,)|()()|x U x f x f x εδδε-??>?>∈?-<. 4、0 00 00(,) (,) lim ()lim sup (),lim ()lim inf ()x x x U x x x x U x f x f x f x f x δδδδ→→+→+∈→∈==; 00,(,) ()lim ()lim ()lim sup (()())f x x x x x x U x x f x f x f x f x δδω→→+'→∈'=-=-; f 在0x 连续0()0f x ω?=. 5、 间断点: 1) 第一类间断点:可去间断点:0 0lim ()()x x f x f x →≠;跳跃间断点00()()f x f x +≠-; 2) 第二类间断点:0()f x +与0()f x -至少有一个不存在. 二、性质: 1、 局部有界性: 2、 局部保号性: 3、 四则运算: 4、 复合函数连续性:若f 在0x 连续,g 在00()u f x =连续,则g f 在0x 连续. 5、 区间上的单调函数只有跳跃间断点. 三、区间上连续函数及性质 1、 若函数f 在区间I 上的每一点都连续(对于区间端点单边连续),则称f 为区间I 上的连续函数。 2、 闭区间上连续函数的性质: 1)(最大与最小值定理)若([,])f C a b ∈,则f 在[,]a b 上有最大与最小值. 2)(有界性定理) 若([,])f C a b ∈,则f 在[,]a b 上有界. 3)(介值定理)若([,])f C a b ∈,则([,])f a b 为闭区间. 4)(反函数的连续性)若f 在[,]a b 上严格单调且连续,则1 f -在闭区间([,])f a b 上连续. 四、一致连续

高中数学高考总复习利用导数研究函数的性质习题及详解

高中数学高考总复习利用导数研究函数的性质习题及详解 一、选择题 1.(文)函数y =ax 3 -x 在R 上是减函数,则( ) A .a =1 3 B .a =1 C .a =2 D .a ≤0 [答案] D [解析] y ′=3ax 2-1, ∵函数y =ax 3-x 在R 上是减函数, ∴3ax 2-1≤0在R 上恒成立,∴a ≤0. (理)(2010·瑞安中学)若函数f (x )=x 3+x 2+mx +1是R 上的单调递增函数,则实数m 的取值范围是( ) A.? ???? 13,+∞ B.? ???? -∞,13 C.???? ??13,+∞ D. ? ?? ?? -∞,13 [答案] C [解析] f ′(x )=3x 2+2x +m ,由条件知,f ′(x )≥0恒成立,∴Δ=4-12m ≤0,∴m ≥1 3 ,故选C. 2.(文)(2010·柳州、贵港、钦州模拟)已知直线y =kx +1及曲线y =x 3+ax +b 切于点(1,3),则b 的值为( ) A .3 B .-3 C .5 D .-5 [答案] A [解析] 由条件知(1,3)在直线y =kx +1上,∴k =2. 又(1,3)在曲线y =x 3+ax +b 上,∴a +b =2, ∵y ′=3x 2+a ,∴3+a =2,∴a =-1,∴b =3. (理)(2010·山东滨州)已知P 点在曲线F :y =x 3-x 上,且曲线F 在点

P处的切线及直线x+2y=0垂直,则点P的坐标为( ) A.(1,1) B.(-1,0) C.(-1,0)或(1,0) D.(1,0)或(1,1) [答案] C [解析] ∵y′=(x3-x)′=3x2-1,又过P点的切线及直线x+2y=0垂直,∴y′=3x2-1=2,∴x=±1,又P点在曲线F:y=x3-x上,∴当x=1时,y=0,当x=-1时,y=0,∴P点的坐标为(-1,0)或(1,0),故选C. 3.(2010·山东文)已知某生产厂家的年利润y(单位:万元)及年产量 x(单位:万件)的函数关系式为y=-1 3 x3+81x-234,则使该生产厂家获 取最大的年利润的年产量为( ) A.13万件B.11万件 C.9万件D.7万件 [答案] C [解析] 由条件知x>0,y′=-x2+81,令y′=0得x=9,当x∈(0,9)时,y′>0,函数单调递增,当x∈(9,+∞)时,y′<0,函数单调递减,∴x=9时,函数取得最大值,故选C. [点评] 本题中函数只有一个驻点x=9,故x=9就是最大值点. 4.(文)(2010·四川双流县质检)已知函数f(x)的定义域为R,f′(x)为其导函数,函数y=f′(x)的图象如图所示,且f(-2)=1,f(3)=1,则不等式f(x2-6)>1的解集为( ) A.(2,3)∪(-3,-2) B.(-2,2) C.(2,3) D.(-∞,-2)∪(2,+∞)

考点06 函数与导数的综合运用(1)(解析版)

考点06 函数与导数的综合应用(1) 【知识框图】 【自主热身,归纳提炼】 1、(2016南京学情调研)已知函数f (x )=1 3x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值 范围为________. 【答案】???? 32,4 【解析】因为函数f (x )在(1,2)上有极值,则需函数f (x ) 在(1,2)上有极值点. 解法 1 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1?(1,2),因此则需10,解得3 2

相关主题
相关文档 最新文档