当前位置:文档之家› DR74-470电感11.25文号2082下发

DR74-470电感11.25文号2082下发

DR74-470电感11.25文号2082下发
DR74-470电感11.25文号2082下发

Description

?125°C maximum total temperature operation

?Four sizes of shielded drum core inductors ?Inductance range from 0.33uH to 1000uH ?Current range up to 56 Amps peak ?Magnetic shielding ?Secure mounting ?Ferrite core material Applications

?Computer, DVD players, and portable power devices ?LCD panels

?DC-DC converters

?Buck, boost, forward, and resonant converters ?Noise filtering and filter chokes Environmental Data

?Storage temperature range:-40°C to +125°C

?Operating ambient temperature range:-40°C to +125°C (range is application specific)

?Solder reflow temperature:+260°C max.for 10 seconds max.

Packaging

?Supplied in tape and reel packaging, 1350 (DR73),

1100 (DR74), 600 (DR125), and 350 (DR127) per reel

DR Series

High Power Density,

High Efficiency,Shielded Inductors

(1) Open Circuit Inductance T est Parameters:100KHz, 0.25Vrms, 0.0Adc.(2) RMS current for an approximate ?T of 40°C without core loss.It is recommended that the temperature of the part not exceed 125°C.(3) Peak current for approximate 30% roll off at 20°C.(4) DCR limits @ 20°C.

(5) Applied Volt-Time product (V-μS) across the inductor.This value represent the applied V-μS at 100KHz necessary to generate a core loss equal to 10% of the total losses for 40°C temperature rise.

Part Number Rated OCL (1)Irms (2)Isat (3)DCR (4)Volt-uSec (5)

Inductance

+/-20%Amperes Amperes (?)Typ.(μH)(μH)Peak Typ.DR73-R33-R 0.330.306 6.2114.40.0073 1.98DR73-1R0-R 1.000.992 5.287.970.0102 3.56DR73-1R5-R 1.50 1.482 4.67 6.520.0130 4.36DR73-2R2-R 2.20 2.070 4.15 5.520.0165 5.15DR73-3R3-R 3.30 3.540 3.31 4.220.0259 6.73DR73-4R7-R 4.70 4.422 3.09 3.780.02977.52DR73-6R8-R 6.80 6.480 2.55 3.120.04359.11DR73-8R2-R 8.208.930 2.19 2.660.059210.7DR73-100-R 10.010.30 2.08 2.470.065611.5DR73-150-R 15.015.01 1.83 2.050.084413.9DR73-220-R 22.022.65 1.62 1.670.10717.0DR73-330-R 33.034.41 1.31 1.350.16621.0DR73-470-R 47.048.62 1.08 1.140.24124.9DR73-680-R 68.068.910.890.960.35829.7DR73-820-R 82.080.370.860.890.38432.1DR73-101-R 100101.40.730.790.52736.0DR73-151-R 150150.90.580.650.85144.0DR73-221-R 220223.30.520.53 1.0553.5DR73-331-R 330325.50.420.44 1.5964.5DR73-471-R 470465.80.350.37 2.3677.2DR73-681-R 680676.50.290.31 3.4793.1DR73-821-R 820821.70.270.28 3.93103DR73-102-R 1000995.00.260.25 4.34113DR74-R33-R 0.330.294 6.2618.40.0074 1.71DR74-1R0-R 1.000.952 5.3910.20.0099 3.08DR74-1R5-R 1.50 1.422 4.948.350.0118 3.76DR74-2R2-R 2.20 1.986 4.767.060.0126 4.45DR74-3R3-R 3.30 3.396 3.94 5.400.0183 5.81DR74-4R7-R 4.70 5.182 3.34 4.370.02547.18DR74-6R8-R 6.807.344 2.60 3.670.04188.55DR74-8R2-R 8.208.566 2.53 3.400.04419.23DR74-100-R 10.09.882 2.41 3.170.04899.92DR74-150-R 15.016.09 2.11 2.480.063712.7DR74-220-R

22.0

21.73

1.75

2.130.0925

14.7

RoHS 2002/95/EC

(1) Open Circuit Inductance T est Parameters:100KHz, 0.25Vrms, 0.0Adc.(2) RMS current for an approximate ?T of 40°C without core loss.It is recommended that the temperature of the part not exceed 125°C.(3) Peak current for approximate 30% roll off at 20°C.(4) DCR limits @ 20°C.

(5) Applied Volt-Time product (V-μS) across the inductor.This value represent the applied V-μS at 100KHz necessary to generate a core loss equal to 10% of the total losses for 40°C temperature rise.

Part Number Rated OCL (1)Irms (2)Isat (3)DCR (4)Volt-uSec (5)

Inductance

+/-20%Amperes Amperes (?)Typ.(μH)(μH)Peak Typ.DR74-330-R 33.033.01 1.41 1.730.14318.1DR74-470-R 47.049.64 1.15 1.410.21622.2DR74-680-R 68.069.67 1.03 1.190.26526.3DR74-820-R 82.080.950.91 1.110.34528.4DR74-101-R 100101.60.860.990.38331.8DR74-151-R 150150.00.690.810.59138.6DR74-221-R 220227.00.560.660.90747.5DR74-331-R 330335.60.450.54 1.4157.8DR74-471-R 470465.30.400.46 1.7468.1DR74-681-R 680671.20.330.38 2.5881.7DR74-821-R 820812.70.310.35 2.9389.9DR74-102-R 100010090.270.31 3.89100DR125-R47-R 0.470.45617.633.00.0018 3.17DR125-1R0-R 1.000.89415.023.60.0024 4.43DR125-1R5-R 1.50 1.47813.818.30.0029 5.70DR125-2R2-R 2.20 2.20810.915.00.0045 6.97DR125-3R3-R 3.30 3.0849.2612.70.00638.23DR125-4R7-R 4.70 5.2747.189.710.010510.8DR125-6R8-R 6.80 6.588 6.648.680.012312.0DR125-8R2-R 8.208.048 5.547.860.017613.3DR125-100-R 10.09.654 5.357.170.018914.6DR125-150-R 15.015.35 4.27 5.690.029818.4DR125-220-R 22.022.36 3.70 4.710.039622.2DR125-330-R 33.033.74 3.28 3.840.050527.2DR125-470-R 47.047.47 2.71 3.240.074032.3DR125-680-R 68.067.91 2.22 2.700.10138.6DR125-820-R 82.086.89 2.05 2.390.12843.7DR125-101-R 100102.7 1.78 2.200.17047.5DR125-151-R 150151.1 1.48 1.810.24857.6DR125-221-R 220216.8 1.19 1.510.38469.0DR125-331-R 330332.6 1.06 1.220.48285.5DR125-471-R 470473.10.87 1.020.718102DR125-681-R 680679.80.700.85 1.10122DR125-821-R 820828.00.600.77 1.49135DR125-102-R 100010080.570.70 1.69149DR125-124-R 1200001206300.0600.0691501521DR127-R47-R 0.470.41917.956.00.00195 3.50DR127-1R0-R 1.000.82115.540.00.00313 4.90DR127-1R5-R 1.50 1.35713.531.10.00341 6.30DR127-2R2-R 2.20 2.02712.525.50.004027.70DR127-3R3-R 3.30 2.83110.521.50.005679.10DR127-4R7-R 4.70 4.8418.2516.50.0091711.9DR127-6R8-R 6.807.3877.3413.30.011614.7DR127-8R2-R 8.208.861 6.3212.20.015716.1DR127-100-R 10.010.47 6.0411.20.017217.5DR127-150-R 15.014.09 5.039.660.024720.3DR127-220-R 22.022.93 4.007.570.039125.9DR127-330-R 33.033.92 3.23 6.220.060031.5DR127-470-R 47.047.05 2.95 5.280.071937.1DR127-680-R 68.066.48 2.44 4.440.10544.1DR127-820-R 82.079.75 2.09 4.060.14348.3DR127-101-R 10099.31 1.96 3.640.16353.9DR127-151-R 150144.9 1.59 3.010.24765.1DR127-221-R 220221.5 1.29 2.430.37680.5DR127-331-R 330323.6 1.04 2.010.57497.3DR127-471-R 470467.10.85 1.680.861117DR127-681-R 680676.70.76 1.39 1.08141DR127-821-R 820818.10.65 1.27 1.47155DR127-102-R

1000

1005

0.61

1.14

1.66

172

DR Series

High Power Density,

High Efficiency,Shielded Inductors

BOTTOM VIEW

TOP VIEW

SCHEMA TIC

RECOMMENDED PCB LAYOUT

FRONT VIEW

2

RECOMMENDED PCB LAYOUT

SCHEMATIC

TOP VIEW

FRONT VIEW

BOTTOM VIEW

FRONT VIEW

BOTTOM VIEW

TOP VIEW

RECOMMENDED PCB LAYOUT

SCHEMATIC

2

1

Mechanical Diagrams DR73 Series

BOTTOM VIEW

DR74 Series

DR125 Series

DR127 Series

Dimensions in Millimeters.

### = Inductance value per family chart wwllyy = (date code) R = revision level

OCL vs Isat DR73

010203040506070

80901000

20

40

60

80

100

120

140

160

%of Isat

O C L (%

)

OCL vs Isat DR74

0%of Isat

O C L (%)

OCL vs Isat DR125

010203040506070

80901000

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

%of Isat

O C L (%

)

OCL vs Isat DR127

0%Idc sat

O C L (%)

101001000

99

900%of Applied Volt-μSecond

%o f L o s s e s f r o m I r m s (m a x i m u m )

300K H z

200K H z

100

K H z

50K

H z

25

K H z

Irms DERATING WITH CORE LOSS

92

949698

70

50

30

1080

97

9560

8060403020200

300

400600800Inductance Characteristics

Core Loss

DCDC电容电感计算

BOOST电路的电感、电容计算 升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 其他参数: 电感:L 占空比:D 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd ***************************************************** 1:占空比 稳定工作时,每个开关周期导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*D/(f*L)=(Vo+Vd-Vi)*(1-D)/(f*L),整理后有 D=(Vo+Vd-Vi)/(Vo+Vd),参数带入,D=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量,其值为Vi*(1-D)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*D/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,

当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面 影响取L=60uH, deltaI=Vi*D/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-D)-(1/2)*deltaI, I2= Io/(1-D)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容: 此例中输出电容选择位陶瓷电容,故ESR可以忽略 C=Io*D/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径

电感电容计算

纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。 降压型开关电源的电感选择 为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大纹波电流、占空比。下面以图2为例说明降压型开关电源电感值的计算,首先假设开关频率为300kHz、输入电压范围12V±10%、输出电流为1A、最大纹波电流300mA。 图2:降压型开关电源的电路图。 最大输入电压值为13.2V,对应的占空比为: D=Vo/Vi=5/13.2=0.379 (3) 其中,Vo为输出电压、Vi为输出电压。当开关管导通时,电感器上的电压为: V=Vi-Vo=8.2V (4) 当开关管关断时,电感器上的电压为: V=-Vo-Vd=-5.3V (5) dt=D/F (6) 把公式2/3/6代入公式2得出:

升压型开关电源的电感选择 对于升压型开关电源的电感值计算,除了占空比与电感电压的关系式有所改变外,其它过程跟降压型开关电源的计算方式一样。以图3为例进行计算,假设开关频率为300kHz、输入电压范围5V±10%、输出电流为500mA、效率为80%,则最大纹波电流为450mA,对应的占空比为: D=1-Vi/Vo=1-5.5/12=0.542 (7) 图3:升压型开关电源的电路图。 当开关管导通时,电感器上的电压为: V=Vi=5.5V (8) 当开关管关断时,电感器上的电压为: V=Vo+Vd-Vi=6.8V (9) 把公式6/7/8代入公式2得出: 请注意,升压电源与降压电源不同,前者的负载电流并不是一直由电感电流提供。当开关管导通时,电感电流经过开关管流入地,而负载电流由输出电容提供,因此输出电容必须有足够大的储能容量来提供这一期间负载所需的电流。但在开关管关断期间,流经电感的电流除了提供给负载,还给输出电容充电。

电阻、电感和电容的等效电路

2. 电阻、电感和电容的等效电路   实际的电阻、电感和电容元件,不可能是理想的,存在着寄生电容、寄生电感和损耗。下图是考虑了各种因素后,实际电阻R、电感L、电容C元件的等效电路   图2-17 电阻R、电感L、电容C元件的等效电路 (1) 电阻   同一个电阻元件在通以直流和交流电时测得的电阻值是不相同的。在高频交流下,须考虑电阻元件的引线电感L0和分布电容C0的影响,其等效电路如图2-17(a)所示,图中R为理想电阻。由图可知此元件在频率f 下的等效阻抗为 (2-53) 上式中ω=2πf, Re和Xe分别为等效电阻分量和电抗分量,且 (2-54) 从上式可知Re除与f有关外,还与L0、C0有关。这表明当L0、C0不可忽略时,在交流下测此电阻元件的电阻值,得到的将是Re而非R值。(2) 电感   电感元件除电感L外,也总是有损耗电阻RL和分布电容CL。一般情况下RL和CL的影响很小。电感元件接于直流并达到稳态时,可视为电阻;若接于低频交流电路则可视为理想电感L和损耗电阻RL的串联;在高频时其等效电路如图2-17(b)所示。比较图2-17(a)和图2-17(b)可知二者实际上是相同的,电感元件的高频等效阻抗可参照式(2-53)来确定,

(2-55) 式中 Re和Le分别为电感元件的等效电阻和等效电感。 从上式知当CL甚小时或RL、CL和ω都不大时,Le才会等于L或接近等于L。   (3) 电容   在交流下电容元件总有一定介质损耗,此外其引线也有一定电阻Rn和分布电感Ln,因此电容元件等效电路如图2-17(c)所示。图中C是元件的固有电容,Rc是介质损耗的等效电阻。等效阻抗为 (2-56) 式中Re和Ce分别为电容元件的等效电阻和等效电容,由于一般介质损耗甚小可忽略(即Rc→∞),Ce可表示为 (2-57) 。 从上述讨论中可以看出,在交流下测量R、L、C,实际所测的都是等效值Re、Le、Ce;由于电阻、电容和电感的实际阻抗随环境以及工作频率的变化而变,因此,在阻抗测量中应尽量按实际工作条件(尤其是工作频率)进行,否则,测得的结果将会有很大的误差,甚至是错误的结果。

电容、电感以及复阻抗

电容、电感以及复阻抗 电容器的实质就是两个靠的很近但相互绝缘的导电面,其基本作用是存储电荷(电能)。如果电容器的电容量为C ,给它施加一个直流电压V ,则电容被充电,充入的电量为Q=CV ;当断开这个电压V 时,电容中的电荷Q 还将继续保存在电容中。 电感器实际上就是线圈,也具有储能作用。如果电感器的电感量为L ,使其间通以电流I ,则线圈中就会产生磁链Ψ(磁通Φ与匝数N 的乘积,即Ψ=ΦN ,参见有关教科书),且:Ψ=LI 。即电能转化成磁能的形式存储在电感中,当突然切断电流I 时,该能量将释放,产生很高的自感电动势ε,该自感电动势经常就是击穿电路中半导体元件的元凶。 但是,在电子电路中,电容和电感往往不是用作储存电能,而是作为交流电路中的“阻抗”元件,起到滤波、隔离直流(或交流)、调谐等作用。分析含有电容、电感的交流电路,需要涉及复数或向量的计算,请读者参阅有关的教科书。本书仅就与故障诊断直接相关的知识作必要的阐述。 (1) 电容的串联与并联 将几个电容器(C1、C2……、Ci )串联连接时,其等效电容C 、电量Q 、电压V 与各个电容上的电量Qi 、电压Vi 有如下关系: Ci C C C 121111+??++= Vi V V V +??++=21 Qi Q Q Q =??===21 结论:电容串联后总容量减少;耐压提高。 将几个电容(C1、C2……、Ci )并联连接时,其等效电容C 、电量Q 、电压V 与各个电容上的电量Qi 、电压Vi 有如下关系: Ci C C C +??++=21 Vi V V V =??===21 Qi Q Q Q +??++=21 结论:通过电容的并联可以增大电容量。 (2) 复阻抗、容抗、感抗 如果引入数学中复数的概念,就可以将电阻、电感、电容用相同的形式复阻抗来表示。既:电阻仍然是实数R (复阻抗的实部),电容、电感用虚数表示,分别为: c j jXc ω1=; L j jX L ω-=- 其中:ω=2πf 是交流信号的角频率,Xc 、X L 分别称为容抗和感抗,可见容抗和感抗

各种电抗器的计算公式

各种电抗器的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此:电感量(mH) = 阻抗 (ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入: zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位 F 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l

电感的计算方法和BOOST升压电路的电感、电容计算

电感计算方法 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗 (ohm) ?(2*3.14159) ?F (工作频率) = 360 ?(2*3.14159) ?7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ?圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ?2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈)

电感电容电阻滤波电路

电感电容电阻滤波电路 在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感,电感的定义是L=phi/i, 单位是韦伯。 电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 。 电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生。 电阻-电容组合起低通滤波作用,这时输入端是两个元件两端,输出端是电容两端,对于后级电路来说,低、高频信号可以过去,但高频信号被电容短路了。(电容通高频信号,阻低频信号,通交流信号,阻直流信号,对于高频信号,电容现在相当与一根导线,所以将高频信号短路了) 对于电容-电阻组合则起高通滤波作用,这时输入端是两个元件两端,输出端是电阻两端,对于后级电路来说,低频信号由于电容存在,过不去,到不了后级电路(电容通高频信号,阻低频信号,通交流信号,阻直流信号),而高频信号却可以通过,所以为高通滤波。 如上图所示为10MHz低通滤波电路。该电路利用带宽高达100MHz的高速电流反馈运算放大器OPA603组成二阶巴特沃斯低通滤波器。转折频率为f0=1/2πRC,按图中所示参数,f0=10MHz,电路增益为1.6。 如上图所示为有源高通滤波电路。该电路的截止频率fc=100Hz。电路中,R1与R2之比和C1与C2之比可以是各种值。该电路采用R1=R2和C1=2C2。采用C1=C2和R1=2R2也可以。

滤波电路分类详解 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量。 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数 S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R 值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。 (A)电容滤波(B)C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S' (C)L-C电感滤波(D)π型滤波或叫C-L-C滤波

RLC串联谐振频率及其计算公式

R L C串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q I2X L = I2 X C也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C Q T=Q L Q C=0 6. 串联谐振电路之频率: (1) 公式:

(2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r ,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L X C) 当 f = f r时,Z = R 为最小值,电路为电阻性。 当f >f r时,X L>X C,电路为电感性。

详解滤波电容的选择及计算

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可 以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载 上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.

BOOST升压电路的电感、电容计算

BOOST升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 1:占空比 稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即 Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有 don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量 其值为Vi*(1-don)/(f*2*Io) ,参数带入,Lx=38.5uH, deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显, 当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小, 由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH, deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容:

此例中输出电容选择位陶瓷电容,故 ESR可以忽略 C=Io*don/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径 其他参数: 电感:L 占空比:don 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd

电感阻抗的计算公式

电感阻抗的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此:电感量(mH) = 阻抗(ohm) ÷(2*3.14159) ÷ F (工作频率) = 360 ÷(2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH

电容和电感要点

电感 电感是闭合回路的一种属性,是一个物理量。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”,以美国科学家约瑟夫·亨利命名。它是描述由于线圈电流变化,在本线圈中或在另一线圈中引起感应电动势效应的电路参数。 电感是自感和互感的总称。提供电感的器件称为电感器。[1]中文名 电感 外文名 inductance 实质 闭合回路的一种属性,一种物理量 单位 亨利(H) 目录 1. 1定义 2. ?自感 3. ?互感 1. 2单位及换算 2. 3计算公式

3. ?自感 1. ?互感 2. ?三相制均衡输电线的电感 定义编辑 导体的一种性质,用导体中感生的电动势或电压与产生此电压的电流变化率之比来量度。稳恒电流产生稳定的磁场,不断变化的电流(交流)或涨落的直流产生变化的磁场,变化的磁场反过来使处于此磁场的导体感生电动势。感生电动势的大小与电流的变化率成正比。比例因数称为电感,以符号L表示,单位为亨利(H)。[2] 电感是闭合回路的一种属性,即当通过闭合回路的电流改变时,会出现电动势来抵抗电流的改变。这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutual inductance)。自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。

电感和电容的计算

当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。我们把这种电流与线圈的相互作用关系称其为电的感抗,也就是电感。电容(或电容量,Capacitance)指的是在给定电位差下的电荷储藏量。 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 电容功率计算公式: P=1/2 * C * V2 * F 电感功率计算公式: P=1/2 * L * I2 * F 电容上携带的能量(焦耳),是二分之一乘以电容量(法拉)再乘以电容电压(伏特)的平方。 硅芯片功率的计算存在一个公式:功率=C(寄生电容)*F(频率)*V2(工作电压的平方)。对于同一种核心而言,C(寄生电容)是一个常数,所以硅芯片功率跟频率成正比,跟工作电压的平方也成正比 1法拉5V的电容携带的能量为12.5焦耳。1焦耳=1瓦每秒 全新1.2伏1.8A时的镍氢充电电池充满后携带的能量为1.2*1.8*3600=7776焦耳。在现在的商业环境条件下,镍氢充电电池和法拉电容的体积能量比为250:1,价格比为1:2。另外电容放电需要特殊的恒压输出调整电路。

电阻、电感和电容的等效电路(新、选)

2. 电阻、电感和电容的等效电路 实际的电阻、电感和电容元件,不可能是理想的,存在着寄生电容、寄生电感和损耗。下图是考虑了各种因素后,实际电阻R 、电感L 、电容C 元件的等效电路 图2-17 电阻R 、电感L 、电容C 元件的等效电路 (1) 电阻 同一个电阻元件在通以直流和交流电时测得的电阻值是不相同的。在高频交流下,须考虑电阻元件的引线电感L0和分布电容C0的影响,其等效电路如图2-17(a)所示,图中R 为理想电阻。由图可知此元件在频率f 下的等效阻抗为 e e e jX R R C C L C R C L L j R C C L R C j L j R C j L j R Z +=+---++-=+++=2 020020200202020020000)()1()1()()1(11 ) (ωωωωωωωωωω (2-53) 上式中ω=2πf , Re 和Xe 分别为等效电阻分量和电抗分量,且 2 02002)()1(R C C L R R e ωω+-= (2-54) 从上式可知Re 除与f 有关外,还与L0、C0有关。这表明当L0、C0不可忽略时,在交流下测此电阻元件的电阻值,得到的将是Re 而非R 值。 (2) 电感 电感元件除电感L 外,也总是有损耗电阻RL 和分布电容CL 。一般情况下RL 和CL 的影响很小。电感元件接于直流并达到稳态时,可视为电阻;若接于低频交流电路则可视为理想电感L 和损耗电阻RL 的串联;在高频时其等效电路如图2-17(b)所示。比较图2-17(a)和图2-17(b)可知二者实际上是相同的,电感元件的高频等效阻抗可参照式(2-53)来确定,

电容计算公式

教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己!慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数 并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。 3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法? 答:C=KVar/(U×U×2×π×f×0.000000001) =30/(450×450×2×3.14×50×0.000000001)≈472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大?还有"ε"是什么,与电容有什么关系?再请问在计算中应注意什么?电容是如何阻直通交的呢? 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知 第 2 页共 3 页 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中,

开关电源PFC电容电感计算

4KW PFC 相关电容电感计算 1. 输入电容计算 参阅IR1153应用规格书2000W PFC 计算如下: 因为()()2L IN RMS MAX IN I sw IN RMS MIN I C k f r V π?=??? ,所以需要先求()IN RMS MAX I ,参阅IR1153应用 规格书2000W PFC 计算如下: 当P OUT =4000W 时,() ()400043480.92 O MAX IN MAX MIN P W P W η===; 因为一般需要对市电220VAC (﹣10%,+15%)变动范围内的PFC 运行情况进行确认是否存在异常,即198V~254VAC ,所以()198IN RMS MIN V V =。假设当PFC 在4000W

负载情况下运行功率因数cos φ为0.998,则: () ()()400022()0.921980.998 O MAX IN RMS MAX MIN IN RMS MIN P W I A V PF V η===??; ()()2231.1IN PEAK MAX IN RMS MAX I A A ===; 综上所述,高频输入电容计算如下所示: ()()2235% 3.12222.29%198L IN RMS MAX IN I sw IN RMS MIN I A C k uF f r V kHz V ππ?==?=??????; 所以一个标准的3.3uF 或者2.2uF ,630V 的聚酯(薄膜)电容可以选用。 2. 输出电容计算 参阅IR1153应用规格书2000W PFC 计算如下: 由计算公式:()22() 2O OUT MIN O O MIN P t C V V ???=- ,当P OUT =4000W 时,对于50Hz 的市电来讲, 20t ms ?=,380O V V =,()285O MIN V V =?,将各个参数代入得: ()2224000201601602533(380)(285)1444008122563175 OUT MIN W ms C uF V V ??====--,增加20%余量:() 25333166.25110.2 OUT MIN OUT TOL C uF C uF C ===-?-; 所以4个680uF /450V 的电容并联使用达2720uF 可以满足4000W PFC 的需要。

波通过串联电感和并联电容

波通过串联电感和并联电容 在电力系统中,电感和电容是常见的元件,如载波通信用的高频扼流线圈和限制短路电流用的扼流线圈、电容式电压互感器和载波通信用的耦合电容器等。由于电感中的电流和电容上的电压均不能突变,这就对经过这些元件的折射波和反射波产生影响,使波形变化。下面应用彼得逊等值电路来分析串联电感和并联电容对波过程的影响。为了便于说明基本概念,原始的入射波仍采用无限长直角波。 2 ) (a 1 2 ) (b 图2-16 行波经过串联电感 如图2-16所示,无穷长直角波入射到接有电感的线路,其等值电路如图2-16( b )所示。由此可以写出回路方程 dt di L Z Z i U 2 2120)(2++= (2-23) 解之得 ) 1(22 10 2L T t e Z Z U i --+= (2-24) )1()1(202 120222L L T t T t e U e Z Z Z U Z i u ---=-+?==α (2-25) 其中,2 1Z Z L T L += 为电路的时间常数; α = 2 12 2Z Z Z +为没有电感时电压的折射系数。 2 2) (a ) (b 图2-17行波经过并联电容 再考虑波经过并联电容的情况。如图2-17所示,无穷长直角波入射到具有并联电容的

线路,其等值电路如图2-17( b )所示。由此可得 221102Z i Z i U += (2-26) dt di CZ i dt du C i i 222221+=+= (2-27) 联立上述两个方程,消去i 1 ,得 dt di Z CZ Z Z i U 2 2 12120)(2++= (2-28) 解联立方程,得 ) 1()1(202 120222C C T t T t e U e Z Z Z U Z i u ---=-+?==α (2-29) 其中,2 12 1Z Z Z CZ T C += 为电路的时间常数。 从式(2-25)和(2-29)可以看出,波通过串联电感和并联电容时,折射电压的解的形式完全相同。 分析解的形式,可以得到以下结论: (1) 波经过串联电感或并联电容后,电流或电压不能突变。 在t = 0时,折射电压为零。以后随着时间的增加,折射电压按指数规律增大,从直角波变为按指数曲线缓缓上升的指数波,最后到达由Z 1导线和Z 2导线之间的折射系数所决定的稳定状态αU 0 。指数波的最大陡度发生在 t = 0时。由式(2-25)可知,在串联电感的情况下,波的最大陡度为 L Z U dt du dt du t 2 00 2max 22= = = (2-30) 由式(2-29)可知,在并联电容的情况下,波的最大陡度为 C Z U dt du dt du t 10 2max 22= = = (2-31) 因此,只要增加L 或C 的值,就能把陡度限制在一定的程度。在防雷保护中常用这一原理来减小雷电波的陡度,以保护电机的匝间绝缘。 (2) 串联电感和并联电容的存在不会影响折射波的最后稳态值。当t =∞ 时,u 2=αU 0,这是因为在直流电压作用下,电感相当于短路,电容相当于开路。 电感使折射波波头陡度降低的物理概念是,由于电感不允许电流突然变化,所以当波作用到电感时的第一个瞬问,电感就像电路开路—样将波完全反射回去,即此时电流i 2将为零,因而u 2 将为零,以后u 2 再随着流过电感电流的逐渐增大而增大。波通过电感时的折、反射如图2-18( a ) 所示。 电容使折射波波头陡度降低的物理概念是,由于电容上的电压不能突然变化,波作用到电容上的第一个瞬间,电容就像电路短路一样,这同样将使u 2 和i 2 为零,u 2 将随着电容的逐渐充电而增大。波旁过电容时的折、反射如图2-18( b ) 所示。

最全电抗器参数计算公式总结

最全电抗器参数计算公式总结 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位F 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD 为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后)

电阻、电感和电容的串联电路

RLC 串联交流电路》教 案 、教学目的 1、理解并掌握RLC串联交流电路中电压与电流的数值、相位关系 2、理解电压三角形和阻抗三角形的组成 3、熟练运用相量图计算RLC串联电路中的电流和电压 、教学重点 1、掌握RLC串联电路的相量图 2、理解并掌握RLC串联电路端电压与电流的大小关系三、教学难点 1、RLC串联电路电压与电流的大小和相位关系四、教学课时 五、教学过程 一)复习旧课,引入新课: 1 、复习单一参数交流电路

i i 2、引出问题 正弦交流电路一定是单一参数特性吗 分析: 1、实际电路往往由多种元件构成,不同元件性质不同。例如,荧光灯电路 2、交流电路中的实际元件往往有多重性质,如电感线圈存在一定的电阻, 匝与匝之间还有电容效应 因此,单一参数交流电路知识一种理想情况,具有多元件、多参数的 电路模型更接近于实际应用的电路。 3、新的学习任务 研究多元件、多参数的交流电路 (二)新课讲授 沌电客宏涼电路 U U = /R U —jXJ B

图1 RLC串联交流电路 1、电压与电流的关系 i =T. sin fttf 以电流作为参考,设表达式为 U R三f稱Rsinet Uf=I^X,sm(eut + 90') 叱血(曲 由基尔霍夫第二定律可知,U U R U L U C u l m Rsin t I m X L sin( t 90 ) I m X C sin( t 90 ) 同频率正弦量的和仍为同频率的正弦量,因此电路总电压U也是频率为的正弦量。 正弦量可以用矢量表示,则⑴式为: U U R U L U C 由单一元件交流电路中电压申.流的矢S关系; =iR - jXJ =[尺 +丿(X) = 二RZjXJ 負阻抗Z 这是RLC串联电路中总电压和总电流的关系,形式和欧姆定律类似,所以 也称相量形式的欧姆定律。 RLC串联电路中总电压和总电流的数值关系: U J u R (U L U C)2 U R j(X L X c) I (R jX)l IZ

相关主题
文本预览
相关文档 最新文档