当前位置:文档之家› PNP三极管特性(经典)

PNP三极管特性(经典)

PNP三极管特性(经典)
PNP三极管特性(经典)

开关三极管电路图简述

PNP型三极管和NPN型三极管在结构特点和工作原理方面基本上是相同的。只是由于它的三个区掺杂情况与NPN管不同,所以在外加电压、电流方向等方面存在着差别。因为PNP型锗三极管较多,所以这里以锗管为例介绍PNP型三极管的特点。

PNP三极管的内部结构和外加电压

为了保证三极管工作在放大状态,要求发射结正向偏置,集电结反向偏置。因此,外加电压的方向与NPN管相反,即uBE< 0V , uBC>0V,电源VCC和VBB的正极接发射极,负极分别接集电极和基极,见图2。

图1

PNP型三极管发射区和集电区是P型半导体,基区是N型半导体,如图1(a )所示。它的发射区多数载流子(空穴)浓度很高,集电区空穴浓度较低,基区做得很薄、而且多子(自由电子)浓度很低。

在外加电压作用下,发射区向基区发射空穴,形成射极电流IE ,其方向与空穴运动方向相同,即由发射极流入三极管。基极电流IB主要由外电路补充基区复合掉的自由电子形成的,故其方向是由管子流出基极;集电极电流IC主要由收集的空穴流组成,其方向也是由管子流出集电极。

可见,IE、IB和IC的方向正好与NPN管相反,所以PNP三极管的符号如图1 (b) 所示,发射极的箭头方向指向基极和集电极。由图中可以看出,IE、IB和IC 规定的正方向与实际方向相同,而uBE和uBC规定的正方向与实际方向相反,故uBE 和uCE为负值。

PNP三极管的伏安特性

图1是PNP锗管3AX31的输入特性和输出特性。注意两个特性曲线横座标uBE和uCE为负值。

图1

由图1输入特性曲线可以看到,PNP型锗管基极导通电压uBE约为-0.1V。三极管工作在放大状态时uBE约为-0.2V。从输出特性曲线可知,当管子截止时,iB = 0,但iC值还较大,它近似等于穿透电流ICEO,约为几十微安。当管子饱和时,饱和管压降较小,uCES 约为-0.1V。它与NPN 型硅三极管相比,不仅电压、电流方向不同,而且导通电压数值较小。利用这些特点可以实现特殊要求的电路,另外也可以在电路中区分出PNP型锗管。

【例】已知由PNP 管组成的开关电路如图2所示。若导通电压uBE = -0.1V,饱和时uCES= 0.1V, 试问:uI分别为0V、-2V和-5V时,管子的工作状态,对应的uO各是多少伏?

解:( 1 )当u = 0V时,uBE = 0V 大于导通电压-0 . 1V,故管子截止,iC

= 0。故uO = VCC = - 10V

图2

( 2 )当uI = - 2V 时,uBE<-0 . 1V,可见管子已导通。假设三极管已进入饱和

状态,可知:

由于iB<IBS,所以原来假设三极管饱和是不对的.三极管一定工作在放大状态,故

(3)当uI = - 5V 时,根据前面分析,可以湂出基极电流为

可见iB>IBS,三极管已经饱和.故

最新最全pnp三极管

作在放大区时才用直流偏置电路,工作在开关状态时为了能可靠的工作在饱和与截止状态,不需要直流偏置电路. 另外纠正一下,三极管工作在放大区时发射结正偏,集电结反偏, 工作在饱和区时发射结与集电结都正偏, 工作在截止区时发射结反偏即可, 你说的电路中,单片机的IO口上接一个电阻与三极管基极连接,发射 极接地,集电极接负载与正电源相连.这个电阻主要是防止单片机的 输出电压过高而造成三极管基极电流过大而损坏三极管与单片机电 路,当单片机输出低电平时,三极管可靠截止,即工作在载止区,当单片 机输出高电平时,通过基极电阻的限流,三极管的基极电压将达到0.7V以上,它的CE间电压将在0.3V左右,所以两个结都正偏,三极管工作在饱和区. . 补充,你是说单片机的I/O端口接5.1K电阻接PNP三极管基极,发射极接正电源,集电极接一发光二极光并串联一个二极管接地。当单片机输出高电平时,基极电压为高电平,三极管载止,相当于三极管发射结截止,三极管载止,UCE=UCC。当单片机输入低电平时,发射结正偏,三极管导通,此时UCE=0.3V,集电极电位纸比电源电压低0.3V,而基极电位比电源电压低0.7V,所以两个结均正偏,三极管工作在饱和状态。 场效应管和三极管的功能、作用一样,可以用于放大、振荡、开关电路。 N沟道场效应管和NPN三极管类似,工作条件是在 栅极加正向极性控制电压,在漏极加正极性电源电 压,改变栅极电压就可以改变漏极与源极之间的电 流大小。 P沟道场效应管和PNP三极管类似,工作条件是在栅极加负极性控制电压,在漏极加负向极性电源电压,改变栅极电压就可以改变漏极与源极之间的电流大小。 目前应用比较广泛的是N沟道场效应管,就像三极管NPN型应用比较多一样。 1.PNP三极管导通条件是当给它通电时(通电如何通你知道么,就是E加电源电压,如5V,C极过一限流电阻接地),那么如果你给控制端即B极一个低电平,此时就可以导通,导通电压(即CE间电压)至少小于0.2V,如果此时你B极是个高电平,那你再测你的CE间电压,可能就是有比较大的压降,比如5V,那自然就不算通了。简单点理解吧,一个开关闭合以后,它两端触点即使过再大电流压降也会很小,而一个开关,它两端压降自然就为加于它两端的电压,自然就不算通了 2 截止就是BE反偏,即E>B 3 饱和线路就是CE 放大:b极提供信号(输入)c提供能量e输出常用在模电 还有一个重要的特点:Ubc在线性电路中通常为0.7v 这个性质可以稳压稳流等

9012-PNP外延型晶体管(三极管)

9012 - PNP 外延型晶体管(三极管) 9012 - PNP EPITAXIAL SILICON TRANSISTOR 创建时间:2005-12-30 最后修改时间:2006-10-29 简述 9012是一种最常用的普通三极管。 它是一种低电压,大电流,小信号的PNP 型硅三极管 特性 ? 集电极电流Ic :Max -500mA ? 集电极-基极电压Vcbo : -40V ? 工作温度:-55℃ to +150℃ ? 和9013(NPN )相对 ? 主要用途: o 开关应用 o 射频放大 引脚图 9012 SOT-23 引脚图 放大 9012 TO-92 引脚图 放大 生产厂家和规格书 生产厂家 产品编 号 规格 书 Datash Vc bo (V Vc eo (V) Veb o (V) Ic (mA) Pc (W) hFE 封装

eet ) LRC L9012*L T1 pdf -40 -20 -5 -500 0.225 100 ~ 600 SOT-23 WEJ MMBT9012LT1 pdf -40 -20 -5 -500 0.225 30 ~ 300 SOT-23 长电 S9012 pdf -40 -25 -5 -500 0.3 40 ~ 400 SOT-23 UTC MMBT9012 pdf -40 -20 -5 -500 0.625 40 ~ 300 SOT-23 长电 S9012 pdf -40 -25 -5 -500 0.625 40 ~ 400 TO-92 WEJ S9012 pdf -40 -25 -5 -500 0.625 30 ~ 300 TO-92 UTC 9012 pdf -40 -20 -5 -500 0.625 64 ~ 300 TO-92 永盛 9012 pdf -45 -25 -5 -500 0.625 40 ~ 300 TO-92 KEC KEC9012 pdf -40 -30 -5 -500 0.625 64 ~ 246 TO-92 价格 生产厂家 订货型号 价格(元/只) 封装 - MMBT9012LT1 0.15 SOT-23 永盛 9012 0.20 TO-92 KEC 9012 0.25 TO-92 数量 20~99(只) 100~499(只) 500~999(只) 1000(只)~ 折扣率 见表 20% 40% 另行报价 注意:更多型号请来电查询 逆寒制作 QQ:83120895

PNP三极管结构及工作原理解析

PNP三极管工作原理解密 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量,但三极管厉害的地方在于:它可以通过小电流控制大电流。放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 晶体三极管是一种电流控制元件。发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结。晶体三极管按材料分常见的有两种:锗管和硅管。而每一种又有NPN 和PNP两种结构形式,使用最多的是硅NPN和PNP两种,两者除了电源极性不同外,其工作原理都是相同的,三极管工作在放大区时,三极管发射结处于正偏而集电结处于反偏,集电极电流Ic受基极电流Ib的控 制,Ic的变化量与Ib变化量之比称作三极管的交流电流放大倍数β(β=ΔIc/ΔIb,Δ表示变化量。)在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。 要判断三极管的工作状态必须了解三极管的输出特性曲线,输出特性曲线表示Ic随Uce的变化关系(以Ib为参数),从输出特性曲线可见,它分为三个区域:截止区、放大区和饱和区。 根据三极管发射结和集电结偏置情况,可以判别其工作状态: 对于NPN三极管,当Ube≤0时,三极管发射结处于反偏工作,则Ib≈0,三极管工作在截止区;当晶体三极管发射结处于正偏而集电结处于反偏工作时,三极管工作在放大区,Ic随Ib近似作

PNP三极管特性(经典)

开关三极管电路图简述 PNP型三极管和NPN型三极管在结构特点和工作原理方面基本上是相同的。只是由于它的三个区掺杂情况与NPN管不同,所以在外加电压、电流方向等方面存在着差别。因为PNP型锗三极管较多,所以这里以锗管为例介绍PNP型三极管的特点。 PNP三极管的内部结构和外加电压 为了保证三极管工作在放大状态,要求发射结正向偏置,集电结反向偏置。因此,外加电压的方向与NPN管相反,即uBE< 0V , uBC>0V,电源VCC和VBB的正极接发射极,负极分别接集电极和基极,见图2。 图1 PNP型三极管发射区和集电区是P型半导体,基区是N型半导体,如图1(a )所示。它的发射区多数载流子(空穴)浓度很高,集电区空穴浓度较低,基区做得很薄、而且多子(自由电子)浓度很低。 在外加电压作用下,发射区向基区发射空穴,形成射极电流IE ,其方向与空穴运动方向相同,即由发射极流入三极管。基极电流IB主要由外电路补充基区复合掉的自由电子形成的,故其方向是由管子流出基极;集电极电流IC主要由收集的空穴流组成,其方向也是由管子流出集电极。 可见,IE、IB和IC的方向正好与NPN管相反,所以PNP三极管的符号如图1 (b) 所示,发射极的箭头方向指向基极和集电极。由图中可以看出,IE、IB和IC 规定的正方向与实际方向相同,而uBE和uBC规定的正方向与实际方向相反,故uBE 和uCE为负值。 PNP三极管的伏安特性 图1是PNP锗管3AX31的输入特性和输出特性。注意两个特性曲线横座标uBE和uCE为负值。

图1 由图1输入特性曲线可以看到,PNP型锗管基极导通电压uBE约为-0.1V。三极管工作在放大状态时uBE约为-0.2V。从输出特性曲线可知,当管子截止时,iB = 0,但iC值还较大,它近似等于穿透电流ICEO,约为几十微安。当管子饱和时,饱和管压降较小,uCES 约为-0.1V。它与NPN 型硅三极管相比,不仅电压、电流方向不同,而且导通电压数值较小。利用这些特点可以实现特殊要求的电路,另外也可以在电路中区分出PNP型锗管。 【例】已知由PNP 管组成的开关电路如图2所示。若导通电压uBE = -0.1V,饱和时uCES= 0.1V, 试问:uI分别为0V、-2V和-5V时,管子的工作状态,对应的uO各是多少伏? 解:( 1 )当u = 0V时,uBE = 0V 大于导通电压-0 . 1V,故管子截止,iC = 0。故uO = VCC = - 10V 图2 ( 2 )当uI = - 2V 时,uBE<-0 . 1V,可见管子已导通。假设三极管已进入饱和

PNP__NPN__三极管测量技术

结构与操作原理 三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn 两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集极(collector, C),名称来源和它们在三极管操作时的功能有关。图中 也显示出npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为 n型半导体,和二极管的符号一致。在没接外加偏压时,两个pn接面都会形 成耗尽区,将中性的p型区和n型区隔开。 图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。 三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。 EB接面的耗散区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大,故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情况下,电洞和电子的电位能的分布图。三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在于三极管的两个接面相当接近。以上述之偏压在正向活性区之 pnp三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。 IC的大小和BC间反向偏压的大小关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入射极的电子流InB? E

pnp三极管工作原理

pnp三极管工作原理 三极管这类商品是我们日常生活中比较常见的一种商品,虽然用的不多,但是它的作用是很大的。对于一些没接触过它的人来说不知道pnp三极管的作用是什么,以及它的工作原理是怎么的,接下来小编就给大家介绍一下关于pnp三极管工作原理及它的一些基本知识。 1、PNP三极管结构建模 晶体三极管是半导体的基本器件之一。它的主要功能是放大电流和电子电路的核心元件。它的功能是放大电流和开关。其主要结构是在半导体的基本芯片上做两个相似的PN结,然后将正半导体分成三部分。 2、PNP三极管工作原理 晶体三极管可以分为以下两种类型根据材料,即锗管和硅管,无论哪一个结构形式,和我们用的最多的是硅NPN三极管和锗PNP型两种,其工作原理是利用收集电力半导体之间的联系。 点击放大图片 要理解三极管的放大效应,请记住一件事:能量不会无缘无故产生,所以晶体管不会产生能量,三极管的强大之处在于它可以通过小电流来控制大电流。放大原理是:通过小的交流输入,控制大的静态直流。假设三极管是一个水坝,这个水坝的奇怪之处在于它有两个阀门,一个大的和一个小的。小阀门可以人工开启,大阀门非常重,人工无法开启,只有通过液压开启小阀门。因此,正常的工作流程是,当水被排放,人们打开小阀门,小的水涓滴而出。涓涓细流冲击着大阀门的开关,大阀门打开,湍流的河流就顺流而下。如果你不断地改变小阀

门的开启尺寸,那么大阀门也会随之改变。如果你能严格按比例改变它,完美的控制就会完成。 这里,Uber是小电流,uce是大电流,human是输入信号。当然,比较水流和电流会更准确,因为三极管毕竟是一个电流控制元件。如果有一天,天气很干燥,河里没有水,也就是说,在大水流的另一边没有水。这时管理员打开了小阀门。虽然小阀门仍然像往常一样冲击大阀门,使其打开,但是没有水流,因为没有水流。这是三极管的截止区域。 饱和区是一样的,因为河水已经达到了非常大的程度,管理员开启的阀门通径不再有用。如果你不打开阀门,河水就会自己打开。这是二极管的击穿。 在模拟电路中,一般阀门是半开启的,通过控制阀门的开启尺寸来确定输出水量。当没有信号的时候,水就会流动,所以当它不工作的时候,就会有电力消耗。 在数字电路中,阀门是开启或关闭的。不工作时,阀门全关,不耗电。一种 晶体三极管是一种电流控制元件。发射极与基极之间形成的PN结称为发射极结,集电极与基极之间形成的PN结称为集电极结。晶体三极管有两种:锗管和硅管。它们都有NPN和PNP结构。硅NPN和PNP是应用最广泛的。除了电源极性不同外,它们的工作原理是相同的。当三极管工作在放大区域时,三极管的发射极结处于正偏置,而集电极结处于反偏置。基极电流的控制集电极电流IC IB. IC IB变

pnpnpn三极管原理讲解

对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。 但三极管厉害的地方在于:它可以通过小电流去控制大电流。 放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。 所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 结构与操作原理 三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集 极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出npn 与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。 图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。

三极管NPN和PNP开关电路

三极管NPN和PNP开关电路 一、三极管开关属于电流控制开关,Ib控制Ic,与MOSFET管电压控制相反: NPN和PNP的电流方向、电压极性相反。 1)NPN :以B→E 电流控制C→E 电流。正常放大时,即VC > VB > VE 2)PNP :以E→B 电流控制E→C 电流。正常放大时,即VE > VB > VC 总之,VB在中间,VC 和 VE 在两边。而且BJT各极的电压与电流方向是一致的,不会出现电流从低电位处流行高电位的情况。 NPN和PNP区别:箭头所指,即电流流向。如图: NPN:若有一个小电流流入基极, PNP:若有一个小电流流出基极,那么集电极和发射极就会通。那么集电极和发射极就会通。 *因为PNP的反向电流所以使用I/O口直接控制时,因注意I/O口的最大承受电压,最好E极电压等于I/O口的高电平。对于E电压比较大的情况下可以使用文章最后的电源控制电路。 二、NPN、PNP三极管开关形式的典型接法。如图所示: 只有一个上拉下拉电阻的区别。如果是GND~VCC的信号驱动,左图即可。如

果是强弱电流驱动,选右图。 NPN适合做低端驱动,PNP适合做高端驱动。类似的NMOS和PMOS也是如此。因此,为了获得相应的控制电位差,把npn的射级对地,你比较容易获得一个开启信号。如果你把npn的集电极直接接vcc,那么你就需要VCC甚至VCC以上的信号才能开启,驱动起来不方便,更重要的是,随着负载上电压的变化,你的Ib 不稳定。因此一般来说,低端关在低端高端管在高端。有没有特殊情况呢?是有的,比如npn在高端加自举电路维持一个稳定的ib。暂不讨论。 说明:大多数的小信号硅质三极管在饱和时,VCE(饱和) 值约为0.2V,纵使是专为开关应用而设计的交换三极管,其VCE(饱和) 值顶多也只能低到0.1V左右,而且负载电流一高,VCE(饱和) 值还会有些许的上升现象,虽然对大多数的分析计算而言,VCE(饱和) 值可以不予考虑,但是,必须明白VCE(饱和) 值并非真的是0。

NPN三极管及PNP三极管

半导体三极管又称“晶体三极管”或“晶体管”。在半导体锗或硅的单晶上制备两个能相互影响的PN结,组成一个PNP(或NPN)结构。中间的N区(或P区)叫基区,两边的区域叫发射区和集电区,这三部分各有一条电极引线,分别叫基极B、发射极E和集电极C,是能起放大、振荡或开关等作用的半导体电子器件。 NPN三极管及PNP三极管 三极管的种类很多,并且不同型号各有不同的用途。三极管大都是塑料封装或金属封装,常见三极管的外观,有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。实际上箭头所指的方向是表示电流的方向。 双极面结型晶体管两个类型:NPN和PNP NPN类型包含两个n型区域和一个分隔它们的p型区域;PNP类型则包含两个p型区域和一个分隔它们的n型区域,图2和图3分别是它们的电路符号。以下的说明将集中在NPN 三极管。 图2: NPN 三极管的电路符号 图3: PNP 本极管的电路符号 三极管工作于三种不同模式:截止模式、线性放大模式及饱和模式,见图4。 图4 三种工作模式

截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,即为三极管的截止状态。开关三极管处于截止状态的特征是发射结,集电结均处于反向偏置。 放大状态:当加在三极管发射结的电压大于PN结的导通电压,同时发射结正向偏置且集电结反向偏置,此时集电极电流会随着基极电流的增大而增大。 饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并且当基极的电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不再怎么变化,此时三极管失去电流放大作用,集电极和发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态,即为三极管的饱和导通状态。开关三极管处于饱和导通状态的特征是发射结,集电结均处于正向偏置。而处于放大状态的三极管的特征是发射结处于正向偏置,集电结处于反向偏置。开关三极管正是基于三极管的开关特性来工作的。 参数含义注释: 特征频率fT:当f= fT时,三极管完全失去电流放大功能。如果工作频率大于fT,电路将不正常工作;工作电压/电流:用这个参数可以指定该管的电压电流使用范围;hFE:电流放大倍数;VCEO:集电极发射极反向击穿电压,表示临界饱和时的饱和电压;PCM:最大允许耗散功率;封装形式:指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现。

pnp三极管工作原理

pnp三极管工作原理 这类商品是我们日常生活中比较常见的一种商品,虽然用的不多,但是它的作用是很大的。对于一些没接触过它的人来说不知道pnp三极管的作用是什么,以及它的工作原理是怎么的,接下来小编就给大家介绍一下关于pnp 三极管工作原理及它的一些基本知识。 一、pnp三极管的结构造型 晶体三极管是半导体的基本器材之一,主要作用是电流放大的作用,主要是电子电路的核心元件,它的功能就是电流放大和开关的作用;主要结构是半导体的基本片上制作两个相近的PN结,然后再将正块半导体分成三部分组成。 二、pnp三极管的工作原理

晶体三极管按照材料可以分为以下两种,分别是锗管和硅管,不管哪一种的结构形式,而我们使用最多的就是硅NPN和锗PNP两种三极管,其工作原理主要的是利用的半导体之间的连接进行集电工作。 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量,但三极管厉害的地方在于:它可以通过小电流控制大电流。放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。如果不停地改变小阀门开启的大小,

那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 晶体三极管是一种电流控制元件。发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结。晶体三极管按材料分常见的有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,使用最多的是硅NPN和PNP两种,两者除了电源极性不同外,其工作原理都是相同的,三极管工作在放大区时,三极管发射结处于正偏而集电结处于反偏,集电极电流Ic受基极电流Ib的控

PNPNPN三极管原理讲解

P N P N P N三极管原理讲 解 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。? 但三极管厉害的地方在于:它可以通过小电流去控制大电流。? 放大的原理就在于:通过小的交流输入,控制大的静态直流。? 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。? 所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。? 如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。? 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。? 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。? 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。?

在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。? 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。? 结构与操作原理? 三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集? 极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极体的符号一致。在没接外加偏压时,两个pn 接面都会形成耗尽区,将中性的p型区和n型区隔开。? ? 图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。?

PNP双极型晶体管的设计

目录 1.课程设计目的与任务 (2) 2.设计的内容 (2) 3.设计的要求与数据 (2) 4.物理参数设计 (3) 4.1 各区掺杂浓度及相关参数的计算 (3) 4.2 集电区厚度Wc的选择 (6) 4.3 基区宽度WB (6) 4.4 扩散结深 (10) 4.5 芯片厚度和质量 (10) 4.6 晶体管的横向设计、结构参数的选择 (10) 5.工艺参数设计 (11) 5.1 工艺部分杂质参数 (11) 5.2 基区相关参数的计算过程 (11) 5.3 发射区相关参数的计算过程 (13) 5.4 氧化时间的计算 (14) 6.设计参数总结 (16) 7.工艺流程图 (17) 8.生产工艺流程 (19) 9.版图 (28) 10.心得体会 (29) 11.参考文献 (30)

PNP 双极型晶体管的设计 1、课程设计目的与任务 《微电子器件与工艺课程设计》是继《微电子器件物理》、《微电子器件工艺》和《半导体物理》理论课之后开出的有关微电子器件和工艺知识的综合应用的课程,使我们系统的掌握半导体器件,集成电路,半导体材料及工艺的有关知识的必不可少的重要环节。 目的是使我们在熟悉晶体管基本理论和制造工艺的基础上,掌握晶体管的设计方法。要求我们根据给定的晶体管电学参数的设计指标,完成晶体管的纵向结构参数设计→晶体管的图形结构设计→材料参数的选取和设计→制定实施工艺方案→晶体管各参数的检测方法等设计过程的训练,为从事微电子器件设计、集成电路设计打下必要的基础。 2、设计的内容 设计一个均匀掺杂的pnp 型双极晶体管,使T=300K 时,β=120,V CEO =15V,V CBO =80V.晶体管工作于小注入条件下,最大集电极电流为I C =5mA 。设计时应尽量减小基区宽度调制效应的影响。 3、设计的要求与数据 (1)了解晶体管设计的一般步骤和设计原则。 (2)根据设计指标设计材料参数,包括发射区、基区和集电区掺杂浓度N E , N B , 和N C ,根据各区的掺杂浓度确定少子的扩散系数,迁移率,扩散长度和寿命 等。 (3)根据主要参数的设计指标确定器件的纵向结构参数,包括集电区厚度W c , 基本宽度W b ,发射区宽度W e 和扩散结深X jc ,发射结结深X je 等。 (4)根据扩散结深X jc ,发射结结深X je 等确定基区和发射区预扩散和再扩散的扩 散温度和扩散时间;由扩散时间确定氧化层的氧化温度、氧化厚度和氧化 时间。 (5)根据设计指标确定器件的图形结构,设计器件的图形尺寸,绘制出基区、 发射区和金属接触孔的光刻版图。

NPN和PNP型三极管及光电开关详解(摘)

开关三极管的工作原理: 截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,即为三极管的截止状态饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并丐当基极的电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不再怎么变化,此时三极管失去电流放大作用,集电极和发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态,即为三极管的导通状态。开关三极管正是基于三极管的开关特性来工作的。 PNP型三极管: 由2块P型半导体中间夹着1块N型半导体所组成的三极管,称为PNP型三极管。也可以描述成,电流从发射极E流入的三极管. PNP型三极管发射极电位最高,集电极电位最低,UBE<0.

NPN型三极管: 由2块N型半导体中间夹着一块P型半导体所组成的三极管,称为NPN型三极管. 也可以描述成,电流从发射极E流出的三极管.

两者的区别: NPN和PNP主要就是电流方向和电压正负不同,说得“丏业”一点,就是“极性”问题。 NPN 是用 B→E 的电流(IB)控制 C→E 的电流(IC),E极电位最低,丐正常放大时通常C极电位最高, 即 VC > VB > VE。 PNP 是用 E→B 的电流(IB)控制 E→C 的电流(IC),E极电位最高,丐正常放大时通常C极电位最低, 即 VC < VB < VE。

PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种状态,属于开关型传感器。但输出信号是截然相反的,即高电平和低电平。NPN输出是低电平0,PNP输出的是高电平1。 接近开关: 接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP 型,它们的接线是不同的。请见下图所示: 三线制简单的讲就是信号输出分PNP型(24V输出)和NPN型(0V输出)。

pnp三极管工作原理

PNP三极管工作原理 一、pnp三极管的结构造型 晶体三极管是半导体的基本器材之一,主要作用是电流放大的作用,主要是电子电路的核心元件,它的功能就是电流放大和开关的作用;主要结构是半导体的基本片上制作两个相近的PN结,然后再将正块半导体分成三部分组成。 二、pnp三极管的工作原理 晶体三极管按照材料可以分为以下两种,分别是锗管和硅管,不管哪一种的结构形式,而我们使用最多的就是硅NPN和锗PNP两种三极管,其工作原理主要的是利用的半导体之间的连接进行集电工作。

对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量,但三极管厉害的地方在于:它可以通过小电流控制大电流。放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。

关于PNP型三极管9015

关于PNP型三极管9015(贴片) 三极管9015管脚图 9015是一种常用的普通三极管。 它是一种小电压,小电流,小信号的PNP型硅三极管特性: ?集电极电流Ic:Max -100mA ?集电极-基极电压Vcbo:-50V ?工作温度:-55℃ to +150℃ ?和9014(NPN)相对 ?主要用途: ?开关应用 ?射频放大 引脚图 特性 ?集电极电流Ic:Max 500mA ?集电极-基极电压Vcbo:40V ?工作温度:-55℃ to +150℃ ?和9012(PNP)相对

?主要用途: ?开关应用 ?射频放大 贴片三极管型号查询 直插封装的型号贴片的型号 9011 1T 9012 2T 9013 J3 9014 J6 9015 M6 9016 Y6 9018 J8 S8050 J3Y S8550 2TY 8050 Y1 8550 Y2 2SA1015 BA 2SC1815 HF

MMBT3904 1AM MMBT3906 2A MMBT2222 1P MMBT5401 2L MMBT5551 G1 MMBTA42 1D MMBTA92 2D BC807-16 5A BC807-25 5B BC807-40 5C BC817-16 6A BC817-25 6B BC817-40 6C BC846A 1A BC846B 1B BC847A 1E BC847B 1F BC847C 1G BC848A 1J BC848B 1K BC848C 1L BC856A 3A BC856B 3B BC857A 3E BC857B 3F BC858A 3J BC858B 3K BC858C 3L 2SA733 CS UN2111 V1 UN2112 V2

pnp三极管工作原理

Pnp 三极管是由两个p 型半导体夹在一个n 型半导体中构成的三极管,因此被称为pnp 三极管。它也可以被描述为电流从发射极e 流出的三极管。.Pnp 三极管的结构建模是半导体的基本设备之一,其主要功能是电流放大,电流放大是电子电路的核心部件,其功能是电流放大和开关,其主要结构是在半导体的基本芯片上制作两个相似的pn 结,然后将正半导体分成三部分。其次,pnp 三极管的工作原理按材料可分为锗管和硅管两大类,无论是哪种结构形式,最常用的晶体管是矽npn 和锗pnp,它们的工作原理主要是利用半导体之间的连接来收集电能。 了解三极管的放大效果,重要的是要记住,不会无缘无故地产生能量,所以三极管不会产生能量,但三极管的优点是它可以通过小电流控制大电流。放大原理是通过小的交流输入来控制大的静态直流电。假设三极管是一个水坝。这座大坝奇怪的地方在于它有两个阀门,一个大阀门和一个小阀门。小阀门可以人工开启,而大阀门太重,人工不能开启,只能用小阀门的液压动力开启。 因此,正常的工作流是,每当水被释放,人们打开小阀门,和小水流出。这涓涓细流影响着大阀门的开启和关闭,然后大阀门被打开,汹涌的河水顺流而下。如果小阀门的开口尺寸是不断变化的,那么大阀门也是相应地不断变化的。如果可以严格按比例改变,那么完美的控制就完成了。在这里,ube 是一个小水流,uce 是一个大水流,人

们是输入信号。当然,比较水流和电流更准确,因为三极管毕竟是电流控制元件。如果有一天,天气非常干燥,河流没有了,也就是说,大水流是空的。这时,管理员打开了小阀门。虽然小阀门继续冲击大阀门,使其打开,但是没有水流,所以没有水流出来。这是三极管的截止区域。 饱和面积是相同的,因为这时河流达到了很大的程度,而管理员开启的阀门的大小是无用的。如果你不打开阀门,河水就会自己爆裂,这就是二极管的崩溃。在模拟电路中,阀门一般为半开式,输出水流量通过控制其开口大小来确定。当没有信号时,水就会流动,所以当它不工作时就会有电力消耗。在数字电路中,阀门处于开启或关闭状态。当不工作时,阀门完全关闭,没有能源消耗。晶体管是一种电流控制元件。发射极与基极之间形成的pn 结称为发射极结,而集电极与基极之间形成的pn 结称为集电极结。 根据材料的不同,有两种常见的晶体管: 锗管和硅管。每个都有npn 和pnp 结构,最常用的是硅npn 和pnp。他们的工作原理是相同的,除了他们不同的权力极性。当三极管在放大区工作时,三极管的发射极结处于正向偏压,集电极结处于反向偏压,集电极电流ic 由基极电流ib 控制。在实际应用中,三极管的ic 变化与ib 变化的比率称为交流电流增益(= ic/ib,表示变化) ,三极管的电流放大通常通过电阻转换为电压放大。

pnp三极管工作原理

pnp三极管工作原理: 1.PNP管放大原理: 当PNP管的VCVB,且VE>VB时,集电结和发射结都正偏,管子工作于饱和状态,此时管子的管压降约为0.1-0.3V。IC=VCC/RC ,即,集电极电流基本取决于集电极电源和集电极电阻,与IB无关,相当于一个闭合的开关。 当VC

PNP型三极管发射极电位最高,集电极电位最低,UBE<0. 三极管按结构分,可分为NPN型三极管和PNP型三极管. 右图PNP型三极管. 三极管导通时IE=(放大倍数+1)*IB和ICB没有关系,ICB=0 ICB>0时,可能三极管就有问题,所以三极管在正常工作时,不管是工作在放大区还是饱和区ICB=0 当UEB>0.7V(硅)(锗0.2V),RC/RB<放大倍数时,三极管工作在饱和区,反之就工作在放大区 PNP型三极管与NPN型三极管区别 2个PN结的方向不一致。 PNP是共阴极,即两个PN结的N结相连做为基极,另两个P 结分别做集电极和发射极;电路图里标示为箭头朝内的三极管。 NPN则相反 工作原理: 晶体三极管按材料分有两种:锗管和硅管。而每一种又有NPN 和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN 硅管的电流放大原理。 对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b 和集电极c。

PNP贴片三极管数据手册

MMBT3906 PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR ·Epitaxial Planar Die Construction ·Complementary NPN Type Available (MMBT3904) ·Ideal for Medium Power Amplification and Switching · Available in Lead Free/RoHS Compliant Version (Note 2) Features Maximum Ratings @ T A = 25°C unless otherwise specified Mechanical Data ·Case: SOT-23 ·Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0 ·Moisture Sensitivity: Level 1 per J-STD-020C ·Terminal Connections: See Diagram ·Terminals: Solderable per MIL-STD-202, Method 208·Also Available in Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe). Please see Ordering Information, Note 5, on Page 2·Marking (See Page 2): K3N ·Ordering & Date Code Information: See Page 2· Weight: 0.008 grams (approximate) Notes: 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at https://www.doczj.com/doc/9611520465.html,/datasheets/ap02001.pdf. 2. No purposefully added lead. SPICE MODEL: MMBT3906

相关主题
文本预览
相关文档 最新文档