当前位置:文档之家› Q67041-A4712-A2中文资料

Q67041-A4712-A2中文资料

Q67041-A4712-A2中文资料
Q67041-A4712-A2中文资料

Fast S-IGBT in NPT-technology

? 75% lower E off compared to previous generation combined with

low conduction losses

? Short circuit withstand time – 10 μ

s ?

Designed for:

- Motor controls - Inverter

? NPT-Technology for 600V applications offers:

- very tight parameter distribution

- high ruggedness, temperature stable behaviour - parallel switching capability

Type V CE I C V CE(sat )T j Package Ordering Code SGP20N60SGB20N60SGW20N60600V

20A

2.4V

150°C

TO-220AB TO-263AB TO-247AC

Q67041-A4712-A2Q67041-A4712-A4Q67040-S4236

Maximum Ratings Parameter

Symbol Value Unit Collector-emitter voltage V C E 600V DC collector current T C = 25°C T C = 100°C

I C

4020

Pulsed collector current, t p limited by T jmax I C p u l s 80Turn off safe operating area V CE ≤ 600V, T j ≤ 150°C -80A

Gate-emitter voltage

V G E ±20V Avalanche energy, single pulse I C = 20 A, V CC = 50 V, R GE = 25 ?,start at T j = 25°C

E A S

115

mJ

Short circuit withstand time 1)

V GE = 15V, V CC ≤ 600V, T j ≤ 150°C

t S C 10μs Power dissipation T C = 25°C

P t o t 179W Operating junction and storage temperature

T j , T s t g

-55...+150

°C

Thermal Resistance Parameter Symbol

Conditions

Max. Value

Unit

Characteristic

IGBT thermal resistance,junction – case R t h J C

0.7

Thermal resistance,junction – ambient

R t h J A

TO-247AC

40

K/W

Electrical Characteristic, at T j = 25 °C, unless otherwise specified Value

Parameter

Symbol

Conditions

min.

Typ.

max.

Unit

Static Characteristic

Collector-emitter breakdown voltage V (B R )C E S V G E =0V, I C =500μA 600

--Collector-emitter saturation voltage

V C E (s a t )

V G E = 15V, I C =20A T j =25°C T j =150°C

1.7-2

2.4 2.42.9Gate-emitter threshold voltage V G E (t h )I C =700μA,V C E =V G E 3

4

5

V

Zero gate voltage collector current

I C E S

V C E =600V,V G E =0V T j =25°C T j =150°C

----402500μA

Gate-emitter leakage current I G E S V C E =0V,V G E =20V --100nA Transconductance g f s

V C E =20V, I C =20A

-14

-S

Dynamic Characteristic Input capacitance C i s s -11001320Output capacitance

C o s s -107128Reverse transfer capacitance C r s s V C E =25V,V G E =0V,f =1MHz

-6376pF

Gate charge

Q G a t e V C C =480V, I C =20A V G E =15V -100

130

nC Internal emitter inductance

measured 5mm (0.197 in.) from case

L E

TO-247AC Fehler!

Verweisquelle konnte nicht gefunden werden.

--713

-nH

Short circuit collector current

1)

I C (S C )

V G E =15V,t S C ≤10μs V C C ≤ 600V,T j ≤ 150°C

-200-A

Switching Characteristic, Inductive Load, at T j =25 °C Value

Parameter

Symbol

Conditions

min.

typ.

max.

Unit

IGBT Characteristic Turn-on delay time t d (o n )-3646Rise time

t r -3036Turn-off delay time t d (o f f )-225270Fall time t f -5465ns

Turn-on energy E o n -0.440.53Turn-off energy E o f f -0.330.43Total switching energy

E t s

T j =25°C,

V C C =400V,I C =20A,V G E =0/15V,R G =16?,

Energy losses include “tail” and diode reverse recovery.

-0.77

0.96

mJ Switching Characteristic, Inductive Load, at T j =150 °C Value

Parameter

Symbol

Conditions

min.

typ.

max.

Unit

IGBT Characteristic Turn-on delay time t d (o n )-3646Rise time

t r -3036Turn-off delay time t d (o f f )-250300Fall time t f -6376ns

Turn-on energy E o n -0.670.81Turn-off energy E o f f -0.490.64Total switching energy

E t s

T j =150°C V C C =400V,I C =20A,V G E =0/15V,R G =16?

Energy losses include “tail” and diode reverse recovery.

- 1.12

1.45

mJ

I C , C O L L E C T O R C U R R E N T

10Hz

100Hz 1kHz 10kHz 100kHz

0A

10A 20A 30A 40A 50A 60A 70A 80A 90A

100A 110A

I C , C O L L E C T O R C U R R E N T

1V

10V

100V

1000V

0.1A

1A

10A

100A

f , SWITCHING FREQUENCY

V CE , COLLECTOR -EMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency

(T j ≤ 150°C, D = 0.5, V CE = 400V,V GE = 0/+15V, R G = 16?)

Figure 2. Safe operating area (D = 0, T C = 25°C, T j ≤ 150°C)

P t o t , P O W E R D I S S I P A T I O N

25°C

50°C

75°C

100°C

125°C

0W 20W 40W 60W 80W 100W 120W 140W

160W

180W 200W I C , C O L L E C T O R C U R R E N T

25°C

50°C 75°C 100°C 125°C

0A

10A

20A

30A

40A

50A

T C , CASE TEMPERATURE

T C , CASE TEMPERATURE

Figure 3. Power dissipation as a function of case temperature (T j ≤ 150°C)Figure 4. Collector current as a function of case temperature

(V GE ≤ 15V, T j ≤ 150°C)

I C , C O L L E C T O R C U R R E N T

0V

1V 2V 3V 4V 5V

0A 10A 20A 30A 40A 50A 60A

I C , C O L L E C T O R C U R R E N T

0V

1V 2V 3V 4V 5V

0A 10A

20A

30A

40A

50A

60A

V CE , COLLECTOR -EMITTER VOLTAGE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 5. Typical output characteristics (T j = 25°C)Figure 6. Typical output characteristics (T j = 150°C)

I C , C O L L E C T O R C U R R E N T

0V

2V 4V 6V 8V 10V

0A 10A 20A 30A 40A 50A 60A

70A V C E (s a t ), C O L L E C T O R -E M I T T E R S A T U R A T I O N V O L T A G E

-50°C 0°C 50°C 100°C 150°C

1.0V

1.5V

2.0V

2.5V

3.0V

3.5V

4.0V

V GE , GATE -EMITTER VOLTAGE

T j , JUNCTION TEMPERATURE

Figure 7. Typical transfer characteristics

(V CE = 10V)

Figure 8. Typical collector-emitter

saturation voltage as a function of junction temperature (V GE = 15V)

t , S W I T C H I N G T I M E S

10A 20A 30A 40A

10ns

100ns

t , S W I T C H I N G T I M E S

0?

10?20?30?40?50?60?

10ns

100ns

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 9. Typical switching times as a function of collector current

(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 16?)Figure 10. Typical switching times as a function of gate resistor

(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 20A)

t , S W I T C H I N G T I M E S

0°C

50°C 100°C 150°C

10ns

100ns

V G E (t h ), G A T E -E M I T T E R T H R E S H O L D V O L T A G E

-50°C

0°C

50°C

100°C

150°C 2.0V

2.5V

3.0V 3.5V

4.0V 4.5V

5.0V 5.5V

T j , JUNCTION TEMPERATURE

T j , JUNCTION TEMPERATURE

Figure 11. Typical switching times as a function of junction temperature

(inductive load, V CE = 400V, V GE = 0/+15V,I C = 20A, R G = 16?)

Figure 12. Gate-emitter threshold voltage as a function of junction temperature (I C = 0.7mA)

E , S W I T C H I N G E N E R G Y L O S S E S

0A

10A 20A 30A 40A 50A

0.0mJ

0.5mJ

1.0mJ

1.5mJ

2.0mJ

2.5mJ

3.0mJ

E , S

W I T C H I N G E N E R G Y L O S S E S

0?

10?20?30?40?50?60?

0.0mJ

0.5mJ

1.0mJ

1.5mJ

2.0mJ

2.5mJ

3.0mJ

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 13. Typical switching energy losses as a function of collector current

(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 16?)Figure 14. Typical switching energy losses as a function of gate resistor

(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C

= 20A)

E , S W I T C H I N G E N E R G Y L O S S E S

0°C

50°C 100°C 150°C

0.0mJ

0.2mJ 0.4mJ 0.6mJ 0.8mJ 1.0mJ 1.2mJ 1.4mJ

1.6mJ

Z t h J C , T R A N S I E N T T H E R M A L I M P E D A N C E

1μs

10μs 100μs 1ms 10ms 100ms 1s

10-4

10-3

10-2

10-1

100

T j , JUNCTION TEMPERATURE

t p , PULSE WIDTH

Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V,I C = 20A, R G = 16?)

Figure 16. IGBT transient thermal

impedance as a function of pulse width (D = t p / T )

V G E , G A T E -E M I T T E R V O L T A G E

0nC

25nC 50nC 75nC 100nC 125nC

0V 5V

10V 15V

20V

25V

C , C A P A C I T A N C E

0V

10V 20V 30V

10pF

100pF

1nF

Q GE , GATE CHARGE

V CE , COLLECTOR -EMITTER VOLTAGE Figure 17. Typical gate charge (I C = 20A)

Figure 18. Typical capacitance as a function of collector-emitter voltage (V GE = 0V, f = 1MHz)

t s c , S H O R T C I R C U I T W I T H S T A N D T I M E

10V

11V 12V 13V 14V 15V

0μs 5μs

10μs

15μs

20μs

25μs

I C (s c ), S H O R T C I R C U I T C O L L E C T O R C U R R E N T

10V

12V 14V 16V 18V

20V

0A 50A 100A 150A 200A 250A 300A 350A

V GE , GATE -EMITTER VOLTAGE

V GE , GATE -EMITTER VOLTAGE

Figure 19. Short circuit withstand time as a function of gate-emitter voltage (V CE = 600V, start at T j = 25°C)Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (V CE ≤ 600V, T j = 150°C)

dimensions

symbol

[mm]

[inch]

min

max min max A 9.7010.300.38190.4055B 14.8815.950.58580.6280C 0.650.860.02560.0339D 3.55 3.890.13980.1531E 2.60 3.000.10240.1181F 6.00 6.800.23620.2677G 13.0014.000.51180.5512H 4.35 4.750.17130.1870K 0.380.650.01500.0256L 0.95

1.32

0.0374

0.0520

M 2.54 typ.0.1 typ.N 4.30 4.500.16930.1772P 1.17 1.400.04610.0551T

2.30

2.72

0.0906

0.1071

TO-220AB

dimensions

symbol

[mm]

[inch]

min

max min max A 9.8010.200.38580.4016B 0.70 1.300.02760.0512C 1.00 1.600.03940.0630D 1.03 1.070.04060.0421E 2.54 typ.0.1 typ.F 0.650.850.02560.0335G 5.08 typ.

0.2 typ.

H 4.30 4.500.16930.1772K 1.17 1.370.04610.0539L 9.059.450.35630.3720M 2.30 2.500.09060.0984N 15 typ.0.5906 typ.

P 0.000.200.00000.0079Q 4.20 5.200.16540.2047R 8° max 8° max

S 2.40 3.000.09450.1181T 0.40

0.60

0.0157

0.0236

U 10.800.4252V 1.150.0453W 6.230.2453X 4.600.1811Y 9.400.3701TO-263AB (D 2Pak)

dimensions

symbol

[mm]

[inch]

min

max min max A 4.78 5.280.18820.2079B 2.29 2.510.09020.0988C 1.78 2.290.07010.0902D 1.09 1.320.04290.0520E 1.73 2.060.06810.0811F 2.67 3.180.10510.1252G 0.76 max 0.0299 max

H 20.8021.160.81890.8331K 15.6516.150.61610.6358L 5.21 5.720.20510.2252M 19.8120.680.77990.8142N 3.560

4.9300.14020.1941?P 3.610.1421

Q

6.12 6.22

0.2409

0.2449

TO-247AC

Figure A. Definition of switching times

τ1τ2nτ

r r r

Figure D. Thermal equivalent circuit

Figure B. Definition of switching losses

Published by

Infineon Technologies AG,

Bereich Kommunikation

St.-Martin-Strasse 53,

D-81541 München

? Infineon Technologies AG 2000

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect

human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

相关主题
文本预览
相关文档 最新文档