当前位置:文档之家› GMSK正交调制的全数字化研究

GMSK正交调制的全数字化研究

GMSK正交调制的全数字化研究
GMSK正交调制的全数字化研究

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

正交频分复用

正交频分复用(OFDM)是多载波传输技术之一,近年来受到广泛关注。目前,这项技术已在许多高速信息传输领域得到应用,并且有可能成为下一代蜂窝移动通信系统的物理层传输技术。本讲座将分3讲来介绍OFDM技术的基本原理及其应用。第1讲首先介绍OFDM的基本原理,第2讲介绍OFDM中的相关信号处理技术,第3讲介绍OFDM中的多址方式及其在通信系统中的应用情况。 1 引言 近些年来,以正交频分复用(OFDM)为代表的多载波传输技术受到了人们的广泛关注。多载波传输把数据流分解为若干个独立的子比特流,每个子数据流将具有低得多的比特速率。用这样低比特率形成的低速率多状态符号去调制相应的子载波,就构成了多个低速率符号并行发送的传输系统。OFDM是多载波传输方案的实现方式之一,在许多文献中,OFDM 也被称为离散多音(DMT)调制。OFDM利用逆快速傅立叶变换(IFFT)和快速傅立叶变换(FFT)来分别实现调制和解调,是实现复杂度最低、应用最广的一种多载波传输方案。除了OFDM方式之外,人们还提出了许多其他的实现多载波调制的方式,如矢量变换方式、基于小波变换的离散小波多音频调制(DWMT)方式等,但这些方式与OFDM相比,实现复杂度相对较高,因而在实际系统中很少采用。 OFDM的思想最早可以追溯到20世纪50年代末期。60年代,人们对多载波调制作了许多理论上的工作,论证了在存在符号间干扰的带限信道上采用多载波调制可以优化系统的传输性能;1970年1月有关OFDM的专利被首次公开发表;1971年,Weinstein和Ebert在IEEE杂志上发表了用离散傅立叶变换实现多载波调制的方法;80年代,人们对多载波调制在高速调制解调器、数字移动通信等领域中的应用进行了较为深入的研究,但是由于当时技术条件的限制,多载波调制没有得到广泛的应用;90年代,由于数字信号处理技术和大规模集成电路技术的进步,OFDM技术在高速数据传输领域受到了人们的广泛关注。今天, OFDM已经在欧洲的数字音视频广播(如DAB和DVB)、欧洲和北美的高速无线局域网系统(如HIPERLAN2、IEEE 802.11a)、以及高比特率数字用户线(如ADSL、VDSL)中得到了广泛的应用。目前,人们正在考虑在基于IEEE 802.16标准的无线城域网、基于IEEE 802.15标准的个人信息网以及未来的下一代无线蜂窝移动通信系统中使用OFDM技术。 OFDM技术得到广泛应用的主要原因在于: (1)OFDM可以有效地对抗多径传播所造成的符号间干扰,其实现复杂度比采用均衡器的单载波系统小很多。 (2)在变化相对较慢的信道上,OFDM系统可以根据每个子载波的信噪比来优化分配每个子载波上传送的信息比特,从而大大提高系统传输信息的容量。 (3)OFDM系统可以有效对抗窄带干扰,因为这种干扰仅仅影响OFDM系统的一小部分子载波。 (4)在广播应用中,利用OFDM系统可实现有吸引力的单频网络。 与传统的单载波传输系统相比,OFDM的主要缺点在于: (1)OFDM对于载波频率偏移和定时误差的敏感程度比单载波系统要高。 (2)OFDM系统中的信号存在较高的峰值平均功率比(PAR)使得它对放大器的线性要求很高。

正交振幅调制

《通信原理》课程设计 报告 二○一三~二○一四学年第一学期 学号 姓名 班级 电子工程系

目录 第一章绪论 (4) 1.1 QAM简介 (4) 第二章正交振幅调制 (5) 2.1 MQAM信号的星座图 (5) 2. 2 QAM的调制解调原理 (6) 第三章 16QAM调制解调系统实现与仿真 (6) 3.1 16QAM 调制模块的模型建立与仿真 (7) 3.1.1 串并转换模块 (7) 3.1.2 2/4电平转换模块 (9) 3.1.3 其余模块与调制部分的结果 (10) 3.2 16QAM解调模块的模型建立与仿真 (11) 3.2.1 相干解调 (11) 3.2.2 4/2电平判决与毛刺消除仿真电路 (11) 3.2.3 并串转换与最终解调结果对比 (13) 第四章仿真结果分析及总结 (15) 4.1 仿真结果分析 (15) 4.2 总结 (15)

第一章绪论 1.1 QAM简介 随着现代通信技术的发展,特别是移动通信技术高速发展,频带利用率问题越来越被人们关注。在频谱资源非常有限的今天,传统通信系统的容量已经不能满足当前用户的要求。正交幅度调制QAM(Quadrature Amplitude Modulation)以其高频谱利用率、高功率谱密度等优势,成为宽带无线接入和无线视频通信的重要技术方案。正交振幅调制QAM(Quadrature Amplitude Modulation)是一种频谱利用率很高的调制方式,其在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。在移动通信中,随着微蜂窝和微微蜂窝的出现,使得信道传输特性发生了很大变化。作为国际上移动通信技术专家十分重视的一种信号调制方式之一,正交振幅调制(QAM)在移动通信中频谱利用率一直是人们关注的焦点之一。 正交振幅键控是将两种调幅信号(2ask和2psk)汇合到一个信道的方法,因此会双倍扩展有效带宽。正交调幅被用于脉冲调幅,特别是在无线网络应用。正交调幅信号有两个相同频率的载波,但是相位相差90度(四分之一周期,来自积分术语)。一个信号叫I 信号,另一个信号叫Q信号。从数学角度将一个信号可以表示成正弦,另一个表示成余弦。两种被调制的载波在发射时已被混和。到达目的地后,载波被分离,数据被分别提取然后和原始调制信息相混和。 QAM是用两路独立的基带信号对两个相互正交的同频载波进行抑制载波双边带调幅,利用这种已调信号的频谱在同一带宽内的正交性,实现两路并行的数字信息的传输。该调制方式通常有二进制QAM(4QAM)、四进制QAM(l6QAM)、八进制QAM(64QAM)、…,对应的空间信号矢量端点分布图称为星座图,分别有4、16、64、…个矢量端点。电平数m 和信号状态M之间的关系是对于4QAM,当两路信号幅度相等时,其产生、解调、性能及相位矢量均与4PSK相同。正交振幅调制QAM(Quadrature Amplitude Modulation)是一种频谱利用率很高的调制方式,其在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。 第二章正交振幅调制 2.1 MQAM信号的星座图 正交振幅调制(QAM)是一种矢量调制,它是将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号。正交调幅信号有两个相同频率的载波,但是相位相差90度(四分之一周期,来自积分术语)。一个信号叫I信号,另一个信号叫Q 信号。从数学角度将一个信号可以表示成正弦,另一个表示成余弦。两种被调制的载波在发射时已被混和。到达目的地后,载波被分离,数据被分别提取然后和原始调制信息相和。这样与之作幅度调制(AM)相比,其频谱利用率高出一倍。

GMSK调制解调原理及仿真

1.为什么采用GMSK调制方式 子网选择nrf2401射频芯片采用的通信调制方式就是GMSK,GMSK(Gaussian filtered MSK)调制具有优良的功率谱特性:功率谱旁瓣快衰减快,在对信号频带严格限制的各种数字通信领域中得到广泛的应用。为了躲避干扰,我们需要采取跳频策略,NRF2401工作在2.4G的免费频段,将2.4G-2.4835Ghz 划分为125个信道(而zigbee只划分为16个信道),nrf2401划分的信道多,必然信道带宽就小。为了防止信道之间的干扰,我们采取GMSK的调制解调方式。 2.GMSK的调制原理 传统调制方法: GMSK正交调制调制原理图 d(t) r(t)=h(t)*d(t) NRZ编码将1对应1,将0对应-1,得到信号的d(t),d(t)经过高斯低通滤波器和高斯低通滤波器的单位冲击响应卷积得到r(t)=h(t)*d(t) ,然后进入积分器进行积分得到相位函数:

高斯低通滤波器特性:带宽窄而带外截止尖锐,以抑制不需要的高频分量,脉冲响应的冲量较小,防止调制器产生不必要的瞬时偏移。 求解过程: 1. 定义矩形脉冲函数 1 |t|<()20 others b T rect t ? ??? =?????? 2. 高斯滤波器的矩形脉冲响应 ()()*() g t h t r e c t t = 高斯滤波器的冲击响应 计算得到 ()b g t T ∞ -∞ =? ()g t 数据在有限个周期内有效,一般取5个周期 3. 输入序列的表示 ()(T ) 2 b k b k T d t a rect t k ∞ ==-- ∑ 4. 序列通过高斯低通滤波器后得到 00 ()()*()(T )*()(T )22b b k b k b k k T T r t d t h t a rect t k h t a g t k ∞ ∞ ====--=--∑∑

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

DBPSK调制解调实验

班级:2016112 学号:20161223 姓名:谢峻漪 实验三DBPSK调制/解调实验 一、实验目的 1、了解BPSK差分解调的基本工作原理; 2、掌握DBPSK数据传输过程; 二、预备知识 1、差分BPSK的解调基本工作原理; 2、软件无线电的基本概念; 三、实验仪器 1、J H5001-4实验箱一台; 2、20MHz示波器一台; 四、实验原理 差分BPSK是相移键控的非相干形式,它不需要在接收机端恢复相干参考信号。非相干接收机容易制造而且便宜,因此在无线通信系统中被广泛使用。在DBPSK系统中,输入的二进制序列先差分编码,然后再用BPSK调制器调制。差分编码后的序列﹛a n﹜是通过对输入b n与a n-1进行模2和运算产生的。如果输入的二进制符号b n为0,则符号a n与其前一个符号保持不变,而如果b n为1,则a n与其前一个符号相反。 差分编码原理为: n ) a⊕ - = n a b ( ( )1 (n ) 其实现框图如图4.3-1所示: 图4.3-1 差分编码示意图 一个典型的差分编码调制过程如4.3-2图所示:

图4.3-2 差分编码与载波相位示意图 在DBPSK 中,其不需要进行载波恢复,但位定时仍是必须的。在DPSK 中如何恢复位定时信号,初看起来比较复杂。我们仍按以前的信号定义,如图4.3-3所示: 图4.3-3 位定时误差信号提取 实际上其与相干BPSK 中的位定时恢复是一样的,由由其存在一个较小的系统剩余频差(发送中频与接收本地载波的频差,其与码元速率相比而言一般较小),结果是在每个剩余频差的周期中,具有很多有码元信号(例如对于64KBPS 的速、剩余频差为1KHZ ,则每个剩频差的周期中可包含64个码元符号)。从这些码元信号中可以根据下面的公式对位定时误差的大小进行计算: )]2()2()[()(+--=n S n S n S n e b 当然在剩余载波发生正负变化时,按上式提取的位定时误差信号可能出现不正确的情况,但只要在位定时误差信号的输出端加一滤波器,就可以克服在DBPSK 中剩余载波的影响(在相对剩余载波不大时)。 对位定时的调整如下:如果0)(>n e b ,则位定时抽样脉冲向前调整;反之应向后调整。 对DBPSK 的解调是通过比较接收相邻码元信号(I ,Q )在星座图上的夹角,如果大于900 则为1,否则为0,如图4.3-4所示:

幅度调制与相位调制

幅度/相位调制 过去几十年随着数字信号处理技术与硬件水平的发展,数字收发器性价比已远远高于模拟收发器,如成本更低,速度更快,效率更高。更重要的是数字调制比模拟调制有更多优点,如高频谱效率,强纠错能力,抗信道失真以及更好的保密性。正是因为这些原因,目前使用的无线通信系统都是数字系统。 数字调制和解调的目的就是将信息以比特形式(0/1)通过信道从发送机传输到接收机。数字调制方式主要分为两类:1)幅度/相位调制和2)频率调制。两类调制方式分别又成为线性调制和非线性调制,在优劣势上也各有不同,因此,调制方式的选择最终还需要取决于多方面的最佳权衡。 本文就对幅度/相位调制加以讨论,全文整体思路如下: 1 信号空间分析 在路径损耗与阴影衰落中已提出发送信号与接收信号的模型以复信号的实部来表示,而在本文中为了便于分析各调制解调技术,我们必须引入信号的几何表示。 数字调制将信号比特映射为几种可能的发送信号之一,因此,接收机需要对各个可能的发送信号做比较,从而找出最接近的作为检测结果。为此我们需要一个度量来反映信号间的距离,即将信号投影到一组基函数上,将信号波形与向量一一对应,这样就可以利用向量空间中的距离概念来比较信号间的距离。 1.1 信号的几何表示 向量空间中各向量可由其基向量表示,而在无线通信中,我们也可把信号用其相应的基函数来表示。本文我们讨论的幅度/相位调制的基函数就是由正弦和余弦函数组成的: 21()()cos (2)c t g t f t φπ=(1) 22()()sin (2)c t g t f t φπ=(2) 其中g (t )是为了保证正交性,即保证 220()cos (2)1T c g t f t dt π=? (3) 20()cos(2)sin(2)0T c c g t f t f t dt ππ=? (4) 则信号可表示为 12()()cos(2)()sin(2)i i c i c s t s g t f t s g t f t ππ=+ (5) 则向量s i =[s i1,s i2]T 便构成了信号s i (t )的信号星座点,所有的星座点构成信号星座图,我们把信号s i (t )用其星座点s i 表示的方法就叫做信号的几何表示。而两个星座点s i 和s k 之间的距离就是采用向量中长度的定义,这里不再赘述。 2 幅度/相位调制 相位/幅度调制主要分为3种: 1)脉冲幅度调制(MPAM):只有幅度携带信息;

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

通信原理实验 QPSK调制解调实验

HUNAN UNIVERSITY 课程实验报告 题目:十QPSK调制解调实验 指导教师: 学生姓名: 学生学号: 专业班级:

实验10 QPSK调制解调实验 一、实验目的 1. 掌握QPSK调制解调的工作原理及性能要求;了解IQ调制解调原理及特性 2. 进行QPSK调制、解调实验,掌握电路调整测试方法了解载波在QPSK相干及非相干时的解调特性 二、实验原理 1、QPSK调制原理 QPSK又叫四相绝对相移调制,它是一种正交相移键控。QPSK利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。 用调相法产生QPSK调制原理框图如图所示,QPSK的调制器可以看作是由两个BPSK调 制器构成,输入的串行二进制信息序列经过串行变换,变成两路速率减半的序列,电平发生器分别产生双极性的二电平信号I(t)和Q(t),然后对Acosωt和Asinωt进行调制,相 加后即可得到QPSK信号。 二进制码经串并变换后的码型如图所示,一路为单数码元,另外一路为偶数码元,这两个支路互为正交,一个称为同相支路,即I支路;另外一路称为正交支路,即Q支路

2、QPSK解调原理 由于QPSK可以看作是两个正交2PSK信号的合成,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK信号相干解调器构成,其原理框图如图 三、实验步骤 在实验箱上正确安装基带成形模块(以下简称基带模块)、IQ调制解调模块(以下简称IQ模块)、码元再生模块(以下简称再生模块)和PSK载波恢复模块。 1、QPSK调制实验 a、关闭实验箱总电源,用台阶插座线完成连接 * 检查连线是否正确,检查无误后打开电源。 b、按基带成形模块上“选择”键,选择QPSK模式(QPSK指示灯亮)。 c、用示波器观察基带模块上“NRZ-I,I-OUT,NRZ-Q,Q-OUT”的信号;并分别与“NRZ IN”信号进行对比,观察串并转换情况。 NRZ-I 与NRZ IN I-OUT与NRZ IN NRZ-Q 与NRZ IN Q-OUT与NRZ IN d、观测IQ调制信号矢量图。

GMSK调制解调原理

编制部门:通信工程系 编制人:杨巧莲 编制日期:2006.2 深 圳 职 业 技 术 学 院 Shenzhen Polytechnic 实 训(验)项 目 单 Training Item

(4)也可在“07号”界面中,将“旋钮”设置为“标记”,按“返回”键进入“06号”界面,按“开始” 键进行频谱测量,这时可通过旋转旋转编码器使光标在频谱曲线上滑动,同时左边实时显示光标所在处的频谱幅值,还可在“07号”界面中设置“标记”为“粗调”或“细调”来调节光标的步进大小,“粗调”光标步进为6kHz,“细调”光标步进为1kHz。 3、观察经GMSK调制后的同相、正交分量和差分分量 (1)观察同相和正交分量 用双踪示波器同时观察发射信号经GMSK调制后的同相分量和正交分量。 测试点:对比IP_TX和QP_TX;对比IN-TX和QN-TX 测试方法:使GMS实验箱处于同步工作模式,用示波器探头同时测IP_TX和QP_TX,画出波 形示意图。另外使用示波器单踪,X-Y方式来观察IP_TX和QP_TX的相位差,90度﹑270度 的相位关系的李沙育图理论上是圆形,180度的李沙育图理论上是斜线。 IN-TX和QN-TX的测试同上。 (2)观察经差分电路后的差分分量 同相分量分量形成的差分信号分别为IP-TX和IN-TX,正交分量形成的差分信号分别为QP-TX 和QN-TX,观察它们的波形和相位差。 4、观察接收信号经正交解调后同相和正交分量 (1)用双踪示波器同时观察接收信号正交解调后同相分量和正交分量。 测试点:I_RX和Q_RX 测试方法:使手机入网,并使手机与GSM实验箱之间处于通话状态,用示波器探头同时测I_RX 和Q_RX两个测试点。比较接收的模拟信号与第三步中测试的发射模拟信号波形有何不同? 四、实训报告 1、记录每一步实验所观测到的波形图,并作好相应的比照分析,阐述其中的原理。 2、深刻体会GSM调制与解调的基本过程,作图解释。 五、评分方法 1.操作是否符合规范(40分) 2.结果是否正确(30分) 3.分析是否准确(30分)

正交频分复用(OFDM)原理及其实现.

正交频分复用(OFDM)原理及其实现 高建勤熊淑华 (四川大学电子信息学院成都610064 ) 摘要本文介绍了正交频分复用(OFDM)技术的基本原理,讨论了OFDM系统的实现方法,并简要分析了OFDM系统的性能特点。 关键词正交频分复用(OFDM)调制解调 The Fundamental and Implementation of OFDM Gao Jianqin Xiong Shuhua (College of Electronics & Information Engineering, Sichuan University, Chengdu 610064 ) Abstract:In this paper, the principle of OFDM (Orthogonal Frequency Division Multiplexing) is firstly introduced, and then its methods to implement are discussed. Finally, the performance properties of OFDM system are given briefly. Key words:Orthogonal Frequency Division Multiplexing (OFDM) Modulation Demodulation 1.引言 在现代通信系统中,如何高速和可靠地传输信息成为人们关注的一个焦点。虽然现在数据传输理论和实践已经取得了相当大的进展,但是随着通信的发展,特别是无线通信业务的增长,可以利用的频率资源日趋紧张。OFDM调制技术的出现为实现高效的抗干扰调制技术和提高频带利用率开辟了一条的新路径。OFDM调制技术的应用可以追溯到二十世纪60年代,主要用于军用的高频通信系统,也曾被考虑应用于高速调制解调器。目前OFDM技术已经被广泛应用于广播式的音频和视频领域和民用通信系统中,主要的应用包括:非对称的数字用户环路(ADSL)、ETSI标准的数字音频广播(DAB)、数字视频广播(DVB)、高

实验-正交幅度调制16QAM

实验五正交幅度调制16QAM 一概述 由于通信信道受频带的限制,必须不断提高频带利用率,如M(M>2)调制方式的研究。一般说来,多进制都能在相同频带内以更快的速率来传递信息,但是,随着M的增加,信号空间图中的各点最小距离减小,相应的判决区也减小,从而信号的可靠性降低了。要保证可靠性,必须提高发射功率。 振幅相位联合键控(APK)在M较大的情况下,不仅可以提高系统的频带利用率,且设备简单。16QAM是APK的一种实现方式,是用两路数字信号分别对两个互相正交的同频载波进行同步调制,再将两个已调的双边带信号合成后进行传输。由于采用了幅度调制与解调,不但设备简单,且在频带和功率利用上也最有效。但16QAM不属于恒定包络调制方式,因而不适用于具有非线性部件的信道。 二原理及框图 16QAM第i个信号的表达示为:Si(t)=Aicos(ω 0t+ φ i) I=1,2,…. 1 调制部分:16QAM的产生有两种方法: 正交调幅法:它是用两路正交的4电平ASK信号叠加而成; 复合相移法:它是用两路正交的4电平PSK信号叠加而成; 在这里采用正交调幅法。 原理框图如下: 2解调部分 由于是采用正交调幅法,所以它的解调器必是一个正交相干解调器。 三步骤 1根据16QAM调制解调原理,用Systemview软件建立一个仿真电路:

2元件参数配置 Token0,3 基带信号—PN码序列(频率=50HZ;电平=2) Token 2,5,7,8 相乘器 Token 4,15 载波(频率=1000HZ,[4]正弦,[15]余弦) Token 9,10 模拟低通滤波器(极点数=9,截止频率=275HZ) Token 6 相加器 Token 1,11,12,13,14 信号观察点—分析窗 3运行时间设置运行时间= 1秒;采样频率=8000HZ 4运行系统 在系统窗运行系统后,转到分析窗观察所设五个点的波形。 5在分析窗内绘出星座图 四16QAM运行结果 1 调制信号波形放大后如图: 2 原信号和解调后的信号

信号的GMSK调制与解调

信号的调制解调 一、概述 ●调制就是对信号源的编码信息进行处理,使其变为适合于信道的形式的过程。 一般来说,信号源的编码信息(信源)含有直流分量和频率较低的频率分量,称为基带信号。 ●基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带 频率而言频率非常高的的带通信号以适用于信道传输。这个带通信号叫做已调信号,而基带信号叫做调制信号。 ●调制是通过改变高频载波的幅度、相位或者频率,使其随着基带信号的变化 而变化来实现的。而解调则是将基带信号从载波中提取出来以便预定的接受者(信宿)处理和理解的过程。 ●在移动通信环境中,移动台的移动使电波传播条件恶化,特别是快衰落的影 响使接收场强急剧变化。在选择调节方式时,必须考虑采取抗干扰能力强的调制方式,能适用于快衰落信道,占有较小的带宽以提高频谱利用率,并且带外辐射要小,以减小对邻近波道的干扰。 二、目的: 解决微弱缓变信号的放大及信号的传输问题。 三、方法: 现将微弱信号加载到高平交流信号中去,然后利用交流放大器进行放大, 最后再放大器的输出信号中取出放大的缓变信号。称为调制解调 四、典型调制方式: GMSK(高斯滤波最小频移键控) GMSK

GMSK 简介 GMSK 调制技术是在MSK 基础上经过改进得到的,MSK (Minimum Frequency Shift Keying ,最小频移键控)是二进制连续相位FSK (Frequency Shift Keying ,频移键控)的一种改进形式。在FSK 方式中,每一码元的频率不变或者跳变一个固定值,在两个相邻的频率跳变码元信号之间,其相位通常是不连续的。MSK 就是FSK 信号的相位始终保持连续变化的调制方式。采用高斯滤波器制作前基带滤波器,将基带信号成型为高斯脉冲,在进行MSK 调制,称为GMSK 调制。 GMSK 特点: MSK ()t f f c - 图2 从图中可看出,MSK 调制方式具有恒定的振幅,信号功率频谱在主瓣以外衰减较快。MSK 信号的功率更加紧凑,占用的带宽窄,抗干扰性强,是适合在窄带信道传输的一种调制方式。在移动通信系统中,对信号带外辐射功率的限制十分严格,比如衰减要求在70~80dB 以上。MSK 信号不能满足这样的苛刻要求,而高斯最小频移键控(GMSK )往往可以满足要求。GMSK 调制基本框图如下: 功率 谱密度

FSK调制解调实验

实验报告册课程:通信系统原理教程 实验:FSK调制解调实验 班级: 姓名: 学号: 指导老师: 日期:

实验四:FSK 调制解调实验 一、实验目的: 1、了解对FSK 信号调制解调原理; 2、根据其原理设计出2FSK 信号的调制解调电路,在对电路进行仿真,观察 其波形,从而检验设计出的调制解调器是否符合要求。 二、实验原理: 2FSK 信号调制: 又称数字调频,它是用两种不同的载频1ω ,2ω来代表脉冲调制信号1 和0,而载波的振幅和相位不变。如果载波信号采用正弦型波,则FSK 信号可表示为: 2FSK 信号()t S 分解为信号()t S 1与()t S 2之和,则有:()()()t S t S t S 21+= 其中:()()()t U t S m 11cos ω=,代表数字码元“1” ()()()t U t S m 22cos ω=,代表数字码元“0” 2FSK 信号调制器模型如下图: 如上图,两个独立的振荡器产生不同频率的载波信号,当输入基带信号()1=t S 时,调制器输出频率为f1的载波信号,当()0=t S 时,反相器的输出()t S 调制器输出频率为f2的载波信号。f1和f2都取码元速率的整数倍。 2FSK 信号的带宽为:B f f B FSK 221+-= 其中:f 1为对应脉冲调制信号1的载波频率;f 2为对应脉冲调制信号0的载波频率。 2FSK 信号解调: 是调试的相反过程。由于移频键控调制是将脉冲调制信号“1”用FSK 信号()t S 1,而“0”用()t S 2表示,那么在接收端,可从FSK 信号中恢复出其基带信号。本设计采用了普通鉴频法进行解调,将()t S 1恢复成码元1,把()t S 2恢复成码元0 。 2FSK 信号的解调可以采用相干解调,也可以采用包络解调。 实验中采用相干解调,解调器模型如下图: ) 2 2cos(2)(2t f b T t πφ= 号 号调制器

OFDM正交频分复用技术

正交频分复用技术及其应用 摘要:简述了正交频分复用技术的发展及特点,论述了其 原理及实现方法,构建了OFDM系统的实现框图,并进行了计算机仿真。最后介绍了几种典型应用。 关键词:正交频分复用(OFDM)多载波调制 随着通信需求的不断增长,宽带化已成为当今通信技术领域的主要发展方向之一,而网络的迅速增长使人们对无线通信提出了更高的要求。为有效解决无线信道中多径衰落和加性噪声等问题,同时降低系统成本,人们采用了正交频分复用(OFDM)技术。OFDM是一种多载波并行传输系统,通过延长传输符号的周期,增强其抵抗回波的能力。与传统的均衡器比较,它最大的特点在于结构简单,可大大降低成本,且在实际应用中非常灵活,对高速数字通信量一种非常有潜力的技术。 1 正交频分复用(OFDM)技术的发展 OFDM的概念于20世纪50~60年代提出,1970年OFDM的专利被发表[1],其基本思想通过采用允许子信道频谱重叠,但相互间又不影响的频分复用(FDM)方法来并行传送数据。OFDM早期的应用有AN/GSC_10(KATHRYN)高频可变速率数传调制解调器等[1]。 在早期的OFDM系统中,发信机和相关接收机所需的副载波阵列是由正弦信号发生器产生的,系统复杂且昂贵。1971年Weinstein和Ebert提出了使用离散傅立叶变换实现OFDM系统中的全部调制和解调功能[3]的建议,简化了振荡器阵列以及相关接收机中本地载波之间严格同步的问题,为实现OFDM的全数字化方案作了理论上的准备。 80年代以后,OFDM的调制技术再一次成为研究热点。例如在有线信道的研究中,Hirosaki于1981年用DFT 完成的OFDM调制技术,试验成功了16QAM多路并行传送19.2kbit/s的电话线MODEM[4]。 1984年,Cimini提出了一种适于无线信道传送数据的OFDM方案[5]。其特点是调制波的码型是方波,并在码元间插入了保护间隙,该方案可以避免多径传播引起的码间串扰。 进入90年代以后,OFDM的应用又涉及到了利用移动调频(FM)和单边带(SSB)信道进行高速数据通信、陆地移动通信、高速数字用户环路(HDSL)、非对称数字用户环路(ADSL)、超高速数字用户环路(VHDSL)、数字声广播(DAB)及高清晰度数字电视(HDTV)和陆地广播等各种通信系统。

正交调制解调

多进制正交振幅调制技术及其在衰落信道下实现 1.背景: 在数字通信中.调制解调方式有三种基本方式:振幅键控、频移键控和相位键控。但单纯的这三种基本方式在实际应用中都存在频谱利用率低、系统容量少等不足。而在现代通信系统中,通信用户数量不仅在不断增加,人们亦不满足传统通信系统的单一语音服务,希望进行图像、数据等多媒体信息的通信。因此,传统通信调制解调方式的容量已经越来越不能满足现代通信的要求。近年来,如何在有限的频率资源中提供高容量、高速率和高质量的多媒体综合业务,是数字通信调制解调领域中一个令人关注的课题。 通过近十多年来的研究,分别针对无线通信信道和有线通信信道的特征,提出了不同的高频谱利用率和高质量的调制解调方案。其中的QAM调制解调方案为:发送数据在比特/符号编码器内被分成速率各为原来1/2的两路信号,分别与一对正交调制分量相乘,求和后输出。接收端完成相反过程,解调出两个正交码流.均衡器补偿由信道引起的失真,判决器识别复数信号并映射回二进制信号。不过.采用QAM调制技术,信道带宽至少要等于码元速率,为了码元同步,还需要另外的带宽,一般要增加15%左右。 2.QAM基本原理: 在QAM(正交幅度调制)中,数据信号由相互正交的两个载波的幅度变化表示。模拟信号的相位调制和数字信号的PSK(相移键控)可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。因此,模拟信号相位调制和数字信号的PSK(相移键控)也可以被认为是QAM的特例,因为其本质上就是相位调制。 QAM是一种矢量调制,将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部,也就是水平和垂直方向)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(coswt和sinwt)上。这样与幅度调制(AM)相比,其频谱利用率将提高1倍。QAM是幅度、相位联合调制的技术,它同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下可实现更高的频带利用率,QAM最高已达到1024-QAM(1024个样点)。样点数目越多,其传输效率越高,例如具有16个样点的16-QAM信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM 的每个符号和周期传送4比特。 QAM调制器的原理是发送数据在比特/符号编码器(也就是串–并转换器)内被分成两

GMSK调制解调原理及仿真分析

四川师范大学成都学院专科毕业设计 GMSK调制解调原理及仿真分析设计 学生姓名刘俊岑 学号 2010208016 所在系通信工程系 专业名称计算机通信 班级2009级计通班 指导教师万载莲 四川师范大学成都学院

GMSK调制解调原理及仿真分析设计 学生:刘俊岑指导教师:万载莲 内容摘要:随着现代通信技术的发展,许多优秀的调制技术应运而生,其中高斯最小频移键控(GMSK)技术是无线通信中比较突出的一种二进制调制方法,它具有良好的功率谱特性和较好的抗干扰性能,特别适用于无线通信和卫星通信。目前,很多通信标准都采用了GMSK技术,例如,GSM,DECT等。 本文首先介绍了MSK的一般原理以及MSK的调制解调方法,接着重点对GMSK的调制原理和调制方法进行了阐述,然后,研究了GMSK的差分解调方法并进行了比较,最后用Matlab软件进行仿真及结果分析。 关键词:高斯最小频移键控调制差分解调 Matlab

Alarm circuit design, microcontroller-based security Abstract: Along with the development of the communication technology,the mobile communication technology has been developing rapidly.A lot of excellent modulation technology has emerged as the times require,Gaussian Minimum frequency shift keying(GMSK)is one of the most outstanding technology in radio communication.It is especially used in radio and satellite communication for its nice spectrum characteristic and anti-jamming capability. At present , many communication system has employed the GMSK,for instance,the GSM,DECT. In this paper,the MSK which is the base of GMSK was introduced firstly,and then the modulation principle and methods of GMSK was analyzed, and the several differentially demodulation methods of GMSK was studied and compared emphatically.Finally using Matlab software simulate and results analysis. Keywords:Gaussian Minimum Shift Keying Modulation Differential DemodulationMatlab

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

相关主题
文本预览
相关文档 最新文档