当前位置:文档之家› 课堂六_卢瑟福背散射_280505226

课堂六_卢瑟福背散射_280505226

RBS卢瑟福背散射-实验报告

实验报告 卢瑟福背散射分析(RBS)实验 姓名: 学号: 院系:物理学系

实验报告 一、实验名称 卢瑟福背散射分析(RBS)实验 二、实验目的 1、了解RBS实验原理、仪器工作结构及应用; 2、通过对选定的样品的实验,初步掌握RBS实验方法及谱图分析; 3、学习背散射实验的操作方法。 三、RBS实验装置 主要包括四个部分: 1、一定能量离子束的的产生装置----加速器 2、离子散射和探测的地方----靶室 3、背散射离子的探测和能量分析装置 4、放射源RBS 图1 背散射分析设备示意图 1.离子源 2.加速器主体 3.聚焦系统 4. 磁分析器 5.光栅 6. 靶室 7.样品 8.真空泵9.探测器10.前置放大器11.主放大器12. 多道分析器13. 输出 四、实验原理 当一束具有一定能量的离子入射到靶物质时,大部分离子沿入射方向穿透进去,并与靶原子电子碰撞逐渐损失其能量,只有离子束中极小部分离子与靶原子核发生大角度库仑散射而离开原来的入射方向。入射离子与靶原子核之间的大角度库仑散射称为卢瑟福背散射(记为RBS)。 用探测器对这些背散射粒子进行侧量,能获得有关靶原子的质量、含量和深度分布等信息。入射离子与靶原子碰撞的运动学因子、散射截面和能量损失因子是背散射分析中的三个主要参数。

图 3 大角度散射示意图(实验室坐标系) 图2 弹性散射(质心坐标系) 1、 运动因子K 和质量分辨率 1)运动学因子K 当一定能量(对应于一定速度)的离子射到靶上时,入射离子和靶原子发生弹性碰撞,人射离子的部分能量传给了被撞的靶原子,它本身则被散射,散射的方向随一些参量而变化,如图2(质心坐标系)所示.设Z 1, Z 2分别为入射离子及靶原子的原子序数,m 、 M 分别为它们的原子质量,e 为单位电子电荷量,v 0为入射离子的速度,b 为碰撞参量或瞄准距离(即入射轨迹延伸线与靶原子核的距离 ),x 为散射角.由分析力学可以推导出。 此式实际上不是一个入射离子而是一束禽子,且b 值有大有小。由上式可知χ最大可达180°,即存在着大角度的被反弹回来的离子,如图3所示。RBS 分析中正是这种离子,所以叫“背”散射。 图3是实验室坐标系的背散射示意图.入射离子和靶原子碰撞前的速度分别为v 和0,碰撞后为v 1和v 2,散射角为θ。可以证明,在m ﹤﹤M 的条件下,θ≈χ,即实际上存在着被反向散射的离子。 按照能量守恒及动量守恒定律,可以得到下述三个关系式 (1) (2) (3) 在m ﹤﹤M 的条件下,可解得: 错误!未找到引用源。 = 错误!未找到引用源。 (5) 假定人射离子碰撞后及碰撞前的能量之比为运动因子K ,则有: 错误!未找到引用源。 (6) 式中E 0、m 和e 均可由实验条件确定而为已知量,由运动学因子公式可看出:当入射离子种类(m ),能量(E 0)和探测角度(θ)一定时,E 1与M 成单值函数关系,M 大则E 1 222122 1 21210MV mV mV +=φ θφθsin sin 0cos cos 212 10MV mV MV mV mV -=+=

蒙特卡罗背散射能谱原理

蒙特卡罗背散射能谱原理 本文编写了一组利用蒙特卡罗(Monte Carlo)方法运用Corteo物理思路模拟氦离子入射到单层及多层靶的背散射能谱拟合程序,将模拟结果与SIMNRA 软件和实验数据结果比对。论文讨论了1).W,Be,Mo单层靶的模拟与SIMNRA 软件结果的拟合,发现背散射能谱拟合程序与标准RBS能谱在高能处符合很好,且在低能处程序模拟值比标准值大,三种单元素厚靶的拟合都取得理想结果。 2).InGaN与SiC多层靶的实验能谱与两种模拟能谱的拟合,背散射拟合程序与标准谱形状相似,但程序的自由程随机性不能很好体现出来。今后将对多层靶再进行划分多层,编写新的拟合程序,以求能够与实验能谱更好拟合,以便实际应用。 1.1离子束分析研究意义 当今世界正是科学技术迅猛发展的时候,各种创新思想正在一步步由假想变为现实。材料、能源与信息并列为现代科学技术的三大支柱,人类衣食住行方方面面均离不开现代科技的发展与利用。材料包括材料元素及各种物质组成原子的性质直接影响并决定着材料的各种性能,所以通过研究离子束分析方法能够很好地对材料中重元素深度进行分析,并通过模拟软件可得到较直观的内部信息。 离子束分析总的来说是以离子束作为工具,通过它与物质相互作用来判断物质中元素组成及结构的一门学科。具体来说是利用某一特定能量的离子(如:质子、α离子及其他重离子)束去轰击样品,使样品中的元素发生激发、电离、发射、核反应和自身散射等过程,通过测量这些过程中产生射线的能量和强度来确定样品中元素的种类和含量的一门学科。离子束分析技术根据离子-原子核与离子-原子相互作用机制主要划分为:核反应分析(NRA),质子X荧光分析(PIXE),卢瑟福背散射分析(RBS)等。其中背散射分析是七十年代蓬勃发展起来的一种离子束分析技术。主要用于对样品元素的定性、定量和深度分布分析,在离子注入、薄膜技术及半导体和其他新型材料研究和生产方面,都表现出优异的特点。 卢瑟福背散射(记作RBS)是快速运动的入射离子受静止的靶原子核的库仑排斥作用而发生散射的大角度库伦散射现象。卢瑟福背散射有时也被叫做库仑散

卢瑟福公式

卢瑟福散射 维基百科,自由的百科全书 (重定向自卢瑟福散射) 跳转到:导航、搜索 上方:预期结果:阿尔法粒子不受到扰动地通过梅子布丁模型。下方:观测结果:一小部分阿尔法粒子被反弹,表明全部正电荷集中于一个很小的区域。 在原子物理学里,卢瑟福散射(英语:Rutherford scattering)是一个散射实验,由欧尼斯特·卢瑟福领队设计与研究,成功地于 1909 年证实在原子的中心有个原子核[1],也导至卢瑟福模型(行星模型)的创立,及后来玻尔模型的提出。应用卢瑟福散射的技术与理论,卢瑟福背散射(Rutherford backscattering)是一种专门分析材料的技术。卢瑟福散射有时也被称为库仑散射,因为它涉及的位势乃库仑位势。深度非弹性散射(deep inelastic scattering)也是一种类似的散射,在 60 年代,常用来探测原子核的内部。 目录 [隐藏] ? 1 历史 ? 2 微分截面

? 3 原子核最大尺寸 ? 4 应用 ? 5 参阅 ? 6 参考文献 [编辑]历史 阿尔法粒子散射的实验完成于1909年。在那时代,原子被认为类比于梅子布丁(物理学家约瑟夫·汤姆孙提出的),负电荷(梅子)分散于正电荷的圆球(布丁)。假若这梅子布丁模型是正确的,由于正电荷完全散开,而不是集中于一个原子核,库仑位势的变化不会很大,通过这位势的阿尔法粒子,其移动方向应该只会有小角度偏差。 在卢瑟福的指导下,汉斯·盖革(Hans Geiger)和欧内斯特·马士登(Ernest Marsden)发射阿尔法粒子射束来轰击非常薄、只有几个原子厚度的金箔纸[2]。然而,他们得到的实验结果非常诡异,大约每8000个阿尔法粒子,就有一个粒子的移动方向会有很大角度的偏差(甚至超过 90°);而其它粒子都直直地通过金箔纸,偏差几乎在2°到3°以内,甚至几乎没有偏差。从这结果,卢瑟福断定,大多数的质量和正电荷,都集中于一个很小的区域(这个区域后来被称作“原子核”);电子则包围在区域的外面。当一个(正价)阿尔法粒子移动到非常接近原子核,它会被很强烈的排斥,以大角度反弹。原子核的小尺寸解释了为什么只有极少数的阿尔法粒子被这样排斥。 卢瑟福对这奇异的结果感到非常惊异。正如同他后来常说的:“这就好像你朝一张卫生纸射出一枚15吋的炮弹,炮弹却弹回来打中你一样。”[3] 卢瑟福计算出原子核的尺寸应该小于。至于其具体的数值,卢瑟福无 法从这实验决定出来。关于这一部份,请参阅后面的“原子核最大尺寸”一节。[编辑]微分截面

卢瑟福背散射分析

题目:元素深度分布的卢瑟福背散射(RBS)分析

元素深度分布的卢瑟福背散射(RBS)分析 摘要 卢瑟福背散射(RBS)分析是一种应用非常广泛的离子束分析技术。 1.前言 卢瑟福背散射分析是固体表面层和薄膜的简便、定量、可靠、非破坏性分析方法,是诸多的离子束分析技术中应用最为广泛的一种微分析技术。其理论基础是在Rutherford、Gerger和Marsden发现了新原子模型(1909-1913)以后的一些年份里逐渐形成的。在早期的应用中,背散射分析技术主要是用在一些与原子核有关的研究中,一般是通过分析背散射离子束来检测靶的玷污。1967年背散射技术首次成功的应用于月球土壤成分分析,这是在非核领域第一个公开发表的实际应用例子。发展至今,背散射技术已经成为一种十分成熟的离子分析技术。它具有方法简单、可靠、快速(一般只需要30分钟)、无需标准样品就能得到定量分析结果、不必破坏样品宏观结构就能得到深度分布信息等独特优点。背散射分析技术在固体物理、表面物理、材料科学、微电子学等领域得到广泛应用。它是分析薄膜界面特性、固体表面层元素成分、杂质含量和元素深度分布以及化合物的化学配比不可缺少的分析手段。此外,背散射分析与其他核核分析方法组合应用于同一样品,能获得更多的信息。我国自七十年代起开始这方面的研究。随着不断发展,背散射分析技术的应用范围也在不断的扩大。例如,在考古领域,背散射分析可以研究一些大气中对环境不利的因素。T.Huthwelker等提高利用卢瑟 )的相互作用,福背散射分析来研究大气浮质中痕量酸性气体(如HCl,HBr,SO 2 这种相互作用与全球变暖、臭氧层耗损、酸雨等环境污染问题有很大的关系。Ulrich K.Krieger等曾利用卢瑟福背散射测量易发挥物质在近表面层区的元素分布。 背散射分析技术分析速度快,能得出表面下不同种类原子的深度分布,并能进行定量分析。结合沟道效应还能研究单晶样品的晶体完美性。但它的深度分辨率不够高(一般为100~200埃),因而不能对最表面的原子层进行研究。虽然背散射分析探测重元素的灵敏度很高,探测轻元素则受到严重的限制,特别是重元素基体上的轻元素。碳、氧和氮是普遍存在且对固体的近表面层区域很重要的元素,但是背散射对于痕量的上述元素是不够灵敏的。缺乏信号的特征也是背散射能谱分析的一个局限性。散射后,所有的背散射离子仅仅是能量不同,很难区分样品中质量相近的元素。背散射分析的另一个局限性是不能提供化学信息。通常我们认为背散射分析是无损分析,这只是相对于溅射、腐蚀等破坏样品宏观结构而言。对于某些分析对象,如半导体和金属单晶材料,就不能忽视辐射损伤的影响。每一种分析技术或实验方法都有其一定的使用范围和固有的缺点,因此在实

核技术应用题库

核技术应用题库 第一章核技术及应用概述 1、什么是核技术? 答:核技术是以核物理、核武器物理、辐射物理、放射化学、辐射化学和辐射与物质相互作用为基础,以加速器、反应堆、核武器装置、核辐射探测器和核电子学为支撑而发展起来的综合性现代技术学科。 2、广义地说,核技术分为哪六大类? 答:广义地说,核技术可分为六大类:核能利用与核武器、核分析技术、放射性示踪技术,辐射照射技术、核检测技术、核成像技术。 3、核能利用与核武器主要利用的什么原理,其主要应用有哪些? 答:主要是利用核裂变和核聚变反应释放出能量的原理,开发出能源或动力装置和核武器,主要应用有:核电站、核潜艇、原子弹、氢弹和中子弹。 4、什么是核分析技术,其特点是什么? 答:在痕量元素的含量和分布的分析研究中,利用核探测技术、粒子加速技术和核物理实验方法的一大类分析测试技术,统称为核分析技术。特点:1.灵敏度高。比如,可达百万分之一,即10-6,或记为1ppm;甚至可达十亿分之一,即10-9,或记为1ppb。个别的灵敏度可能更高。2.准确。3.快速。4.不破坏样品。5.样品用量极少。比如,可以少到微克数量级。 5、什么示放射性示踪技术,有哪几种示踪方式? 答:应用放射性同位素对普通原子或分子加以标记,利用高灵敏,无干扰的放射性测量技术研究被标记物所显示的性质和运动规律,揭示用其他方法不能分辨的内在联系,此技术称放射性同位素示踪技术。 有三种示踪方式:1)用示踪原子标记待研究的物质,追踪其化学变化或在有机体内的运动规律。2)将示踪原子与待研究物质完全混合。3)将示踪原子加入待研究对象中,然后跟踪。 6、研究植物的光合作用过程是利用的核技术的哪个方面? 答:放射性示踪。 7、什么是核检测技术,其特点是什么?

相关主题
文本预览
相关文档 最新文档