当前位置:文档之家› 中医药对胰岛素抵抗相关信号通路影响的研究进展_林玉芳

中医药对胰岛素抵抗相关信号通路影响的研究进展_林玉芳

中医药对胰岛素抵抗相关信号通路影响的研究进展_林玉芳
中医药对胰岛素抵抗相关信号通路影响的研究进展_林玉芳

胰岛素及胰岛素类似物的研究进展

在不改变INS活性前提下制备以多聚体形式存在的INS,内含过量球蛋白,鱼精蛋白,调pH至3,使之成为可溶性溶液,其缺点①刺激性大,加入外源性蛋白具有抗体性。②其起始时间慢,持续时间长而难确定其满意剂量,造成吸收和药效不稳定[4]。 1.4 预混胰岛素 含有标示百分比的速效胰岛素和中效胰岛素。诺和灵30R是含30%的短效R和70%的中效N胰岛素;诺和50R是含50%的短效R和中效N胰岛素;优泌林70/30是含30%的短效R和70%的中效N胰岛素;缺点:由于是预混,只有有限的混合方案,对于一些比较特殊的混合要求难以达到[5]。 2 非注射胰岛素制剂 长期频繁注射胰岛素给患者带来很大痛苦和不便,同时易导致低血糖,皮下脂肪萎缩等不良反应。多年来,国内外药学家一直致力于胰岛素非注射方式新剂型的研究,其制剂品种有肺部吸入制剂,口服或口腔黏膜吸收给药制剂,透皮制剂、泵、微囊、脂质体等[6]。 2.1 吸入制剂 (1)经肺吸收前吸入胰岛素有2种剂型,干粉状和可溶性液体两种,使用时经雾化由肺泡吸收。肺表面积大且渗透性好,故肺成为胰岛素给药的理想途径。通过吸入给药能有效地释放大分子药物,这些药物可达到肺深部的肺泡,在此可被迅速吸收进入血液循环。多项研究表明,吸收性胰岛素气雾剂能够明显降低空腹及饭后血糖,口服降糖药疗效差的患者联用胰岛素气雾化能够明显的改善血糖。目前主要的吸入胰岛素产品有辉瑞公司的胰岛素干粉制剂,Exubera、诺和诺德公司的吸入型液体配方制剂,NN1998(AERX IDMS)、礼来公司的吸入干粉剂、Alkermes公司的AIR肺部药物输送制剂。Exubera系一作用迅速的胰岛素干粉吸入剂,正在研究应用于1型和2型糖尿病治疗。Bindra等研究发现,使用Exubera 的患者HbA1浓度降至7%(与注射组相比)[7]。AERX系统使用将胰岛素液体雾化后,从具有数以百计激光打孔的喷嘴中喷出,吸入的胰岛素起效非常快[8]。研究表明经AERX. IDMS吸入胰岛素起效时间与皮下注射Aspart虽无明显差异,但明显比皮下注射常规人胰岛素短,而持续时间与皮下注射常规胰岛素无明显差异,但比皮下注射Aspart长。AIR系统采用许多常用的辅料制成微粒,几何粒径为5~30μm,气动力学粒径为1~5μm,AIR的大几何粒径和小气动力学粒径其他普通肺部给药制剂具有以下优点:在相同质量的情况下,大粒子所需分散力较小粒子小得多[9]。 2.2 口服制剂 传统的胰岛素为皮下注射,胰岛素在外周血管滞留较长,不能模拟生理性胰岛素分泌,且具有创伤性,其吸收也因注射部位、深度、皮温、运动甚至烟酒等因素而受影响,此外,使用不方便,病人依从性差。口服胰岛素模拟生理性胰岛素分泌,用药方便,但其存在以下障碍:胰岛素分子过大且为亲水性故不能通过黏膜;胃肠道摄取胰岛素的生物利用度极低,胃肠道内胰岛素被酶分解并发生化学降解。目前有多种措施可克服以上问题,如利用吸收促进剂、黏膜表面活化剂及溶血卵鳞脂等造成肠壁损伤而增加其通透性,有些螯合剂能与肠黏

2型糖尿病胰岛素抵抗及其机制研究进展

17 Journal of China Prescription Drug Vol.16 No.8·综述· 数理医药学杂志,2010,23(2):228-230. [14]丁淑敏,刘丹,封亮,等. 基于“组分结构”理论的8种墨旱莲乙酸乙酯提取物对NHBE细胞保护作用的比较. 中国中药杂志,2014,39(16):3136-3141. [15]刘艳秋,战丽彬,马慧鹏. 墨旱莲提取物在制备抗骨质疏松多靶点药物或保健品中的应用. 辽宁:CN105748546A,2016-07-13. [16]王洪白,庞海玲,杨霞. 清益止崩汤治疗青春期功血临床观察. 中国中医急症,2013,22(12):2138. [17]郑寅,崔小七,付明哲,等. 中药肠血平颗粒对人工感染鸡球虫病的防治试验. 畜牧与兽医,2014,46(1):97-101. [18] 孔珍珍,陆江涛,刘春保,等. 中西医结合治疗白癜风疗效的Meta分析. 中国现代医学杂志,2017,27(7):121-124. 新近临床流行病学研究显示[1],2型糖尿病发病率高,对患者正常生活造成较大影响,患者机体对葡萄糖代谢及摄取的能力减弱,对胰岛素敏感程度降低。相关研究表明,2型糖尿病的发病始动因素为胰岛素抵抗,发病机制较为复杂[2-3]。2型糖尿病与1型糖尿病相比,也存在一定的遗传易感性,但与1型糖尿病相比2型糖尿病的遗传因素并不明显,1型糖尿病的遗传倾向较为明显,遗传易感性可高达70.0%~80.0%[4-5],远高于2型糖尿病。2型糖尿病发病基础为胰岛素抵抗,其与患者遗传因素关系较为密切,胰岛素抵抗为一定数量的多种基因突变遗传导致,包括胰岛素受体底物基因及胰岛素受体基因等。胰岛素发挥作用的第一步即为胰岛素受体,人胰岛素受体基因有21个内含子与22个外显子,突变类型为复合型杂合子及纯合子。目前,胰岛素受体基因主要是指胰岛素受体基因-1及胰岛素受体基因-2。胰岛素受体基因-2作用部位主要为脂肪、骨骼肌及肝脏等,胰岛素受体基因-1作用部位主要为骨骼肌。相关研究表明,2型糖尿病患者中多态性位点主要位于胰岛素受体基因-2[6-7]。Ins信号传导中重要分子为PI-3K,通过构建激活突变及药物抑制剂等方法,可证实PI-3K有胰岛素刺激葡萄糖转运蛋白4所需要的信号分子。目前有关2型糖尿病的相关危险因素及机制主要有以下几个方面。 1受体前缺陷 受体前缺陷是指受体与胰岛素结合之前发生的异常,主要原因为调控胰岛素分泌的相关基因发生突变,造成结构异常,对胰岛素的生物活性造成影响。相关资料显示,胰岛素相关功能的正常发挥与抗体胰岛素识别位点及胰岛素抗体关系密切[8-9]。例如生长激素及糖皮质激素和其他应激激素分泌过多,均可能造成患者出现受体前抵抗。受体前抵抗是2型糖尿病发病的重要机制之一。 2受体缺陷 胰岛素功能异常是指亲和力下降或胰岛素受体数目减少,结构异常为胰岛素受体基因发生改变,受体功能丧失[10-11]。胰岛素受体基因发生突变可能造成一系列的临床症状,例如B型及A型胰岛素抵抗综合征或矮妖精貌综合征等。相关研究表明[12-13],胎儿期小鼠肝脏胰岛素受体敲除后,肝细胞内糖原含量降低,由此可得敲除肝脏胰岛素受体,肝糖原合成与未敲除相比显著减少。3受体后缺陷 受体后缺陷即受体与胰岛素结合后向细胞内传递信号引起的一系列的代谢过程,十分复杂,目前尚未明确所有具体环节[14]。相关研究表明,胰岛素抵抗与葡萄糖转运蛋白异常即胰岛素受体底物家族关系密切[15]。目前,哺乳动物中发现13种葡萄糖转运蛋白,GLUT4发现于患者机体内的心肌细胞胞浆、脂肪组织及骨骼肌,为胰岛素敏感的主要葡萄糖转运体[15-16]。在胰岛素信号刺激下,引发GLUT4囊泡转位到细胞膜,与细胞膜融合,增加葡萄糖的摄取。目前已有研究发现,GLUT4基因异常可造成胰岛素抵抗。胰岛素受体基因-1骨骼肌表达程度高,胰岛素受体基因-1于机体内胰腺细胞及肝脏细胞表达程度高,磷酸化异常或表达减少可造成胰岛素抵抗。相关研究表明[17],脂肪细胞存在T2DM及IR,胰岛素受体基因-1的表达降低,无法与胰岛素受体结合,从而导致PI3K激活作用减弱,造成下游信号传导通路发生障碍,从而发生胰岛素抵抗。 4胰岛素抵抗相关细胞因子 4.1 肿瘤坏死因子-α 肿瘤坏死因子-α的分子量为17kDa,由单核巨噬细胞产生,具有抗肿瘤作用,也是机体中免疫调节因子。相关研究表明[18],患者处于烧伤、感染等病理状态下,机体内的肿瘤坏死因子-α水平可能提高,肥胖患者的肿瘤坏死因子-α水平较高,2型糖尿病患者为肿瘤坏死因子-α也会提高。肿瘤坏死因子-α可直接作用于机体内的胰岛素信号转导系统,从mRNA 转录后修饰方面影响GLUT4表达,继而抑制GLUT4基因的翻译,从而对胰岛素刺激的葡糖糖转运造成不利影响。另外,肿瘤坏死因子-α能够促进胰岛素受体底物-1及胰岛素受体底物-2丝氨酸磷酸化,从而减少胰岛素受体酪氨酸自身磷酸化,降低受体酪氨酸激酶活力。肿瘤坏死因子-α能够刺激脂肪分解从而提高游离脂肪酸水平,胰岛素抵抗的重要代谢因素之一即为游离脂肪酸提高。相关研究显示,2型糖尿病患者的肿瘤坏死因子-α水平提高,胰岛素敏感指数降低,同时基因编码肿瘤坏死因子-α转录率高的患者发生肥胖及胰岛素抵抗的概率较高。 4.2 游离脂肪酸 游离脂肪酸为前列腺素及细胞膜脂质结构合成的供体,是脂肪代谢的中间产物,能够给予机体主要能量。与正常健康人相比,肥胖患者机体内游离脂肪酸含量较高。相关资料显示,游离脂肪酸能够抑制机体葡萄糖氧化。另外,游离脂肪酸可以提高肝脏糖的异生,从而导致肝脏胰岛素抵抗,肝脏葡萄糖的释出 2型糖尿病胰岛素抵抗及其机制研究进展 刘峰 (天津市北辰区双青新家园社区卫生服务中心,天津300400) 【摘要】2型糖尿病是临床中较为常见的一类代谢异常相关疾病,近年来随着我国人口结构、饮食、生活习惯的改变,2型糖尿病的发病率呈现出逐年升高的趋势。目前,2型糖尿病的确切发病机制并不十分清楚,相关研究表明,2型糖尿病发病的始动因素为胰岛素抵抗,且胰岛素抵抗与炎症因子及信号蛋白异常关系较为密切。本文对目前关于2型糖尿病胰岛素抵抗及其机制研究作一简要综述。 【关键词】2型糖尿病;胰岛素抵抗;发病机制

2 型糖尿病胰岛素信号传导途径

2 型糖尿病胰岛素信号传导途径 【摘要】胰岛素与其受体结合, 通过一系列细胞内信号分子的作用, 引起细胞内信号转导, 激活两条信号途径,最终到达效应器,产生各种生理效应。胰岛素信号转导在胰岛素生理作用发挥中起着重要的作用。胰岛素信号转导障碍, 使胰岛素生理作用减弱, 导致胰岛素抵抗和2型糖尿病。 【关键词】2型糖尿病;胰岛素;信号转导 基金项目:天津市卫生局课题(编号:2005063) 2型糖尿病(type 2 diabetes Mellitus,T2DM),其主要病理生理改变为靶组织(主要为肝脏、肌肉)的胰岛素抵抗伴胰岛素分泌不足。其中, 胰岛素信号转导障碍在发病机制中起着重要作用。因此,研究2型糖尿病的胰岛素信号转导[1]具有重要意义。 1 胰岛素受体(IR)与胰岛素受体底物蛋白(IRS) 1.1 胰岛素受体(IR) 与细胞膜上的胰岛素受体结合是信号传导的第一步。胰岛素受体是一种跨膜糖蛋白, 为受体酪氨酸激酶家族的成员, 是由两个α亚基和两个β亚基通过二硫键结合的异四聚体。α亚基对β亚基有调控作用,胰岛素一旦与α亚基特异性结合,后者抑制β亚基的作用即解除,酪氨酸激酶被活化[2]。 1.2 胰岛素受体底物蛋白(IRS) IRS分子是胰岛素信号系统关键的介导者[3]。研究表明, IRS家族包括4种异构体蛋白, IRS1~IRS4。IRS蛋白的激活可募集和活化多种信号传导蛋白,介导IRS和IGF I等多向性细胞信号传导效应[4],避免了由多种受体直接招募SH2类蛋白到它的自身磷酸化位点,是一种经济而有效的细胞信号传导方式。通过多种受体分享使用IRS蛋白,是胰岛素和其他激素、细胞因子之间进行着重要的联系和功能调节[5]。 1.2.1 IRS 1 IRS1是一种分子量为185kDa的亲水性蛋白,主要分布在骨骼肌。IRS1的N端具有普列克底物蛋白同源(plechkstin homology,PH)结构域,后者能特异结合磷脂及细胞内其它信号蛋白。此外IRS1还含有与磷酸酪氨酸残基结合(PTB)的结构域,后者可与酪氨酸磷酸化的IR结合,传递胰岛素的信号[6]。IRS1介导的胰岛素信号传导障碍,可使骨骼肌、肝脏、脂肪3个胰岛素作用的外周靶组织均发生胰岛素抵抗,引起T2DM [7]。 1.2.2 IRS 2 IRS2是一种190kDa的蛋白质,在肝脏和胰腺β细胞大量表达,在肝的胰岛素信号传导和胰腺发育中起关键作用。胰岛素与IR结合后, IR的β亚基近膜区Tyr 自身磷酸化并与IRS2结合,IR上激活的PTK催化IRS2上多个Tyr磷酸化,为下游含SH2区的蛋白提供位点,形成信号蛋白复合物,介导进一步的信号传导。IRS2还可以将IGF I、白介素(ILs)、干扰素(IFN)、肿瘤坏死因子(TNFα)等细胞因子的受体和信号通路连接起来,此信号通路中介INS/IGF I刺激的葡萄糖转运、基因表达调节和细胞分裂,从而控制细胞生长分化和新陈代谢。IRS2缺陷诱发的胰岛素抵抗主要发生部位是肝脏。 1.2.3 IRS 3 和IRS 4 IRS3的分子量较小,仅为60kDa,只分布于脂肪细胞中。IRS4的分子量较大,为160kDa,分布于垂体、脑组织细胞中。目前普遍研究认为,IRS3、IRS4可以结合在胰岛素受体上,对IRS1、IRS2起负性调节作用。 2 胰岛素信号转导途径 2.1 PI3K信号转导途径胰岛素的代谢功能主要通过这条途径。PI3K是一种脂质激酶,在介导胰岛素的代谢效应中起关键性作用[8]。PI3K由一个分子量为85kDa的调节亚基(P85)和一个110kDa的催化亚基(P110)组成,前者与IRS结合,后者催化细胞膜上磷脂酰肌醇(PI)的磷酸化。静息状态时P85对P110起抑制作用,在胰岛素刺激下,IRS与P85相结合,其抑制作用解除,P110即活化。

PCOS胰岛素抵抗的信号通路蛋白相关认识

PCOS胰岛素抵抗的信号通路蛋白相关认识 发表时间:2018-08-20T14:32:51.360Z 来源:《航空军医》2018年10期作者:张红艳李美林寒梅[导读] 多囊卵巢综合征是妇科常见生殖内分泌紊乱性疾病。胰岛素抵抗是其重要的病生理。 (沧州市中西医结合医院妇科河北沧州 061000) 摘要:多囊卵巢综合征是妇科常见生殖内分泌紊乱性疾病。胰岛素抵抗是其重要的病生理。在动物实验研究前发现多囊卵巢综合征中胰岛素抵抗与通路蛋白关系极为密切,为此检索知网、维普、Pubmed等数据库,查询相关文献,探讨多囊卵巢综合征胰岛素抵抗信号通路蛋白的相关的认识。 关键词:多囊卵巢综合征,胰岛素抵抗,信号通路 1 胰岛素抵抗定义 胰岛素抵抗这一概念经历了两个阶段[1],首先在40多年前定义“需要高于正常水平的胰岛素才能维持机体正常的生理反应的状态”。之后,20世纪90年代美国糖尿病协会将其定义为:“机体对内源性或外源性胰岛素的生理反应受损”。正常葡萄糖稳态是指胰腺B细胞胰岛素分泌与机体胰岛素敏感性(肝、肌肉和脂肪)之间的平衡。胰岛素抵抗不仅限于糖代谢异常,还关系到其他生物学功能,包括抑制脂解、蛋白水解、蛋白合成、血管内皮、基因表达和有丝分裂功能。 2 PCOS妇女胰岛素作用 多囊卵巢综合征为常见生殖内分泌疾病,目前认为病因较为复杂,胰岛素抵抗是其重要的病生理基础。在PCOS肥胖的患者中胰岛素抵抗发生率约为75%,在非肥胖的患者中也高达30%。体内过高水平的胰岛素刺激垂体的胰岛素受体,使促黄体生成素(LH)释放增加,促进卵巢和肾上腺分泌雄激素;抑制肝脏性结合球蛋白合成,使游离睾酮增加[17],因此患者又会合并有高雄激素血症。试验研究也表明PCOS患者胰岛素抵抗,可能与胰岛素受体后的信号传导障碍有关[3]。IRS-1-PI3K/AKT信号通路是胰岛素的主要信号通路,并且促炎因子升高也与PCOS患者有密切关联,指出慢性炎症介导IR的发生,作为关键发病环节参与PCOS的发生发展。下面是相关的信号通路蛋白分子的介绍。 图1:IRS-1-PI3K/AKT与NF-KB信号通路串流 3 胰岛素信号通路蛋白的相关认识 3.1胰岛素抵抗之IRS-I信号蛋白 信号蛋白IRS-1,它是导致胰岛素受体传导正常与否的重要因素。其在胰岛素敏感的组织内广泛的分布。胰岛素受体酪氨酸激酶被激活可致使IRS-1的多个酪氨酸残基磷酸化,IRS-1磷酸化后与含有-SH2结构域的蛋白质结合,进而调节细胞的分化、生长和代谢。IRS-1蛋白质丝氨酸/苏氨酸磷酸化作用在胰岛素和IGF-1信号传导早期步骤中作为双向敏感调控机制;基础状况下,IRS-1丝氨酸/苏氨酸对于胰岛素和IGF-1受体激酶适当磷酸化作用是必需的;然而IRS-1蛋白质丝氨酸/苏氨酸过度的磷酸化作用对于IRS-1酪氨酸磷酸化作用起着负性调节作用。 参与卵巢功能的调节的重要的炎性因子有胰岛素生长因子-I、胰岛素生长因子结合球蛋白-1,导致 PCOS 的病理生理改变。胰岛素及结构相似的胰岛素样生长因子(IGFs),与胰岛素样生长因子结合球蛋白(IGFBPs)、IGFBP蛋白酶共同构成卵巢功能调节系统。胰岛素、IGF-I、和IGF-II通过与受体结合发挥生物学效应,IGFBP通过与胰岛素、IGF-I、和IGF-II结合调节其血中的游离浓度[5-7]。 3.2胰岛素抵抗之PI3K PI3K(磷脂酰肌醇-3激酶):PI3K由调节亚基P85和催化亚基P110组成,p85若无PI3K激活只充当一个接合器,连合p110活化蛋白酪氨酸,P85含有2个 SH2结构域与IRS-1 结合,P110催化磷脂酰肌醇的磷酸化,表现为 PI3K的催化活性[8-9]。在胰岛素刺激下,IRS-1与P85结合,解除抑制作用,P110 即发生活化,从而催化下游信号分子发挥生物学作用。 3.3胰岛素抵抗之AKT AKT又称PKB[10],该家族三个主要有成员:AKT1、AKT2和AKT3。其中,AKT2是胰岛素信号转导通路中的一个重要信号分子。 4 胰岛素抵抗与IKK激酶的关系 近年来的研究显示,各种炎性因子(如促炎症细胞因子TNF-a、白介素IL-1等)导致胰岛素抵抗的主要分子机制是由于炎性因子的信号转导与胰岛素受体后信号转导存在之间有密切联系,炎性因子干扰胰岛素IRS-1/PI3 K信号通路的转导减低胰岛素效应。在炎性因子和胰岛素抵抗之间起桥梁作用的正是IKK家族中IKKβ激酶,当炎性因子激活IKKβ通路时炎性反应的放大和持续。 结论:以上所提及的胰岛素通路蛋白与PCOS胰岛素抵抗的发展相关,直接影响了PCOS的糖脂代谢等,并与其远期并发症密切相关,表明IR是PCOS的病生理基础。治疗应重在恢复并建立患者自身的卵巢功能及月经周期,全面评估患者的内分泌状况,预防远期全身的代谢疾病的发生。目前多囊卵巢的发病机制尚未明确,临床表现的异质性,虽已有大量的临床资料表明多囊卵巢综合征与胰岛素抵抗关系密切,仍需多中心、大样本对分子生物学调节上进一步研究。毋庸置疑,改善PCOS患者的胰岛素抵抗病生理特征,预防远期并发症的发生,仍不失为今后的科研工作重点。 参考文献 [1]乔杰主编.多囊卵巢综合征[M].北京市海淀区学院路38号.2010.

二甲双胍改善胰岛素抵抗的研究进展

17 药品评价 2010年第7卷第13期 T 特 别 关 注TEBIEGUANZHU 胰 岛素抵抗(insulin resistance, IR)是由遗传和环境因素导致的体内正常量的胰岛素 无法产生正常的生理效应,或发挥正常生理效应需要超过正常量的一种病理状态。此时胰岛素促进葡萄糖摄取作用受损,导致代偿性胰岛素分泌增多,其重要标志为高胰岛素血症。主要表现为外周组织对胰岛素敏感性下降,对葡萄糖的利用障碍[1]。IR 及其继发的代谢紊乱是产生2型糖尿病(T2DM)、血脂紊乱、高尿酸血症、心血管疾病及代谢综合征的共同发病基础。研究表明,IR 不仅是T2DM 发病的一个主要的病理生理学因素,也是T2DM 的特征之一。T2DM 是最具典型性的IR 相关疾病。许多国家和国际组织制定的T2DM 指南均推荐将二甲双胍作为超重和肥胖T2DM 患者控制高血糖的一线用药,甚至有些指南还推荐为非肥胖T2DM 患者的一线用药。二甲双胍可明显改善糖尿病患者的IR ,可能是通过减轻体重、强化胰岛素的作用、抑制肝糖产生和降低血脂等起作用。随着大量基础研究和大规模的循证医学试验的开展,二甲双胍改善IR 作用的研究不断取得新进展。 T2DM 发病机制 通常3/4以上的T2DM 患者在血糖升高同时会伴有高血压、肥胖、脂代谢紊乱等,因此,糖尿病是一种代谢紊乱综合征。IR 是T2DM 发病机制的重要方面。IR 的机制主要是由于胰岛素的信号传导发生障碍,导致胰岛素和胰岛素受体不能有效结合。IR 从T2DM 开始前的l0年就存在,并延续在整个疾病过程中。T2DM 早期,胰岛素的分泌能够代偿IR 的产生,到葡萄糖耐量受损(IGT)阶段,代偿能力下降,血糖开始升高。随着病程的延长,IR 持续存在,胰岛素分泌不断下降,血糖水平不断升高,代谢紊乱进一步加重。可见,早期干预IR 可以阻止和延缓血糖进一步升高,使代谢紊乱得到很好的控制。 评价IR I R 的机制研究、临床评估及干预疗效均需正确评价胰岛素敏感性。高胰岛素正常葡萄糖钳夹技术仍是目前不可替代的金标准[2],该方法的建立及中国人正常人群的界值点的获得,为在中国人群中肥胖症导致的I R 的界定、减肥或药物干预的效果评测提供了可靠依据[3]。但因过于繁琐而不适合临床常规开展。近年来提出了新的评价I R 的公式,即log[空腹血糖(mg/dl)2×心率(次/min)3×甘油三酯(mg/dl)×糖化血红蛋白(%)]。此公式计算值与钳夹实验葡萄糖输注率(GIR)有良好的相关性(r =0.83,P <0.01),有可能成为简便易行的IR 评价指标,但其可靠性有待大样本的人群研究验证。 二甲双胍改善IR 的作用机制 1.抑制肝脏的糖异生,降低肝糖输出,促进糖原合成 UKPDS 、DPP 研究和Cochrane 协作组荟萃分析[4]均证实二甲双胍可改善IR ,降低血浆胰岛素的水平。二甲双胍可提高肝脏胰岛素受体酪氨酸激酶和糖原合成酶的活性,促进糖原合成。腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)是细胞内糖脂代谢的关键酶,对机体糖脂代谢起重要作用。二甲双胍可使细胞AMPK 发生磷酸化,使乙酰辅酶A 羧化酶(Acetyl-CoA carboxylase, ACC)失活,抑制脂肪酸合成酶的活性,抑制肝脏糖异生,改善IR [5]。此外,二甲双胍可通过抑制肝脏对乳酸的摄取,抑制磷酸烯醇丙酮酸转移酶活性,增加丙酮酸向丙氨酸的转化,减少糖异生。新的实验显示二甲双胍减少糖尿病患者肝糖过度产生即增加葡萄糖的利用。二甲双胍能够抑制糖尿病状态下肝脏葡萄糖- 6-磷酸酶(G-6-P)催化亚基及转运亚基mRNA 表达,使得6-磷酸葡萄糖向葡萄糖的转化减少,从而减少肝糖输出,达到减轻IR 的作用。 二甲双胍改善胰岛素抵抗的研究进展 河北医科大学第三医院内分泌科 王战建 谈力欣

胰岛素的药理学研究进展

胰岛素的药理学研究进展 摘要:目的:本综述主要对胰岛素的药动学和药效学性质进行学习,并懂得它的临床应用,最终对胰岛素的未来发展进行论述。方法:对中国期刊全文数据库中有关资料进行分析,并结合所学教材进行总结。结果:通过分析总结对胰岛素的药理学进行了研究,对其未来进展有一定认识和看法。结论:通过对胰岛素药动学和药理学性质的深入认识,对胰岛素提取前景和给药途径有新的认识和研究。 前言:糖尿病是一种碳水化合物、蛋白质和脂肪代谢障碍性疾病,近年来,其发病率高,危害性较大。胰岛素是人体胰岛细胞分泌的一种肽类激素,具有降血糖的作用,因此,一直以来,胰岛素都是糖尿病人控制血糖的主要药物。从20世纪20年代,加拿大科学家班廷和同事发现其具有降血糖的作用,并到后来对其药理性质的研究以来,研究人员都不断在给药途径和提取途径上进一步研究和探索,都期待得到能够用于临床的胰岛素新剂型。 正文: 胰岛素是由胰岛β细胞分泌,相对分子质量为56000的小分子蛋白质,由含21个氨基酸的A链和含30个氨基酸的B链通过二硫键相连,并且该药物主要由猪、羊、牛等胰中提取。现已经有重组的人胰岛素,是经FDA批准后(1982年)第一个投放市场的生物工程蛋白质药物。另外,还可将猪胰岛素Bl链第30位的丙氨酸用素氨酸代替而获得人胰岛素。 药动学性质 胰岛素口服无效,因易被消化酶破坏。皮下注射吸收快,血浆蛋白结合率低于10%,半衰期约10min。主要经肝、肾灭活,经谷胱甘肽转氨酶还原二硫键,再由蛋白水解酶水解成短肽或氨基酸,也可以被肾胰岛素酶直接水解。其起效时间为0.5~1h,1~5h作用达到最高峰,持续5~8h。静脉注射作用出现快,但消失也快,血浆半衰期小于9min。 药理作用 胰岛素对碳水化合物、蛋白质、脂肪的代谢和贮存起着多方面的作用。注射外源性胰岛素可在一定程度上纠正各种代谢的紊乱,并可延缓或防止糖尿病慢性并发症的发生。 1.糖代谢促进肌肉、脂肪组织等的细胞膜葡萄糖载体将葡萄糖转运入细胞,促进组织细胞对葡萄糖的摄取;促进葡萄糖的酵解和氧化,诱导肝内葡糖激酶,使葡萄糖转化为6-磷酸葡萄糖;同时诱导丙酮酸脱氢酶、磷酸果糖激酶和丙酮酸激酶等活性,使葡萄糖的酵解和氧化加速;加速糖原合成,抑制糖原分解;通过阻抑糖异生中的关键酶,拮抗胰高血糖素、肾上腺素及糖皮质激素的糖异生作用。 胰岛素使血糖的葡萄糖来源减少,而去路增加,因此,胰岛素不足时,可引起血糖增加,当高于肾阈值时,就会发生尿糖。 现在对胰岛素作用机制的研究有了显著进展,发现胰岛素和对其敏感的组织细胞膜上的特异性受体的转运,多种酶的激活或抑制,细胞的生长发育等。 2.脂肪代谢促进脂肪合成;抑制脂肪酶活性,减少脂肪分解生成游离脂肪酸和酮体;增加脂肪酸和葡萄糖的转运,使其利用增加。 3.蛋白质代谢可增加氨基酸转运,促进蛋白质合成,同时又抑制蛋白质的分解。 4.钾离子的转运促进钾离子内流入细胞,增加细胞内钾离子浓度,故有将

胰岛素制剂国内外研究现状、发展趋势

产学研论坛 Chan Xue Yan Lun Tan 商品与质量 SHANGPINYUZHILIANG 398 胰岛素(insulin,INS)是脊椎动物胰脏β细胞分泌的多肽类激素,具有降血糖的作用,是目前治疗胰岛素依赖型糖尿病(IDDM)的首选药物。但因胰岛素相对分子量大,半衰期短,易被胃肠道蛋白水解酶降解,故长期以来一直以注射给药为主。目前的胰岛素产品的研究热点主要集中在以下几个方面: (一)胰岛素类似物 目前胰岛素治疗领域的重要进展是各种胰岛素类似物的上市。所谓人胰岛素类似物,就是利用基因工程技术,在人胰岛素结构的基础上,将其中一个或数个氨基酸替换或在胰岛素链上连接上新的氨基酸,胰岛素的降糖性质不变,而吸收特性改变,使其更接近生理性胰岛素分泌的特点,更有利于控制患者的血糖。 1、速效胰岛素类似物 有三种速效胰岛素类似物,Lispro、Aspart 和Glulisjne。Lispro [1]是第一个用于临床的短效胰岛素类似物,由美国礼来(EliLilly)公司研制生产,商品名为优泌乐(Humalog)。研究发现胰岛素B 链28位的脯氨酸残基阻碍胰岛素解离为单体,并影响皮下吸收速度。故Lispro 是将B 链28位脯氨酸与29位赖氨酸互换而成的类似物,这样既不影响胰岛素的活性,也加快了胰岛素的吸收。 2、长效胰岛素类似物 已上市的有甘精胰岛素(Glargine)。Glargine 于2000年6月在德国上市,其分子结构特点是用甘氨酸取代了胰岛素分子A 链第21位的天冬氨酸,在B 链31位和32位增加了两个精氨酸。在临床研究中观察到,与中效胰岛素相比,甘精胰岛素的吸收变异小,使用甘精胰岛素夜间低血糖的发生率显著降低[2]。 (二)胰岛素新的剂型与给药方式1、胰岛素泵的临床应用 胰岛素泵又称为持续皮下胰岛素输注,是近20年发展起来的临床上模拟人体生理胰岛素分泌的一种胰岛素输注系统,使用者将需要的给药剂量参数存入微处理器中,胰岛索注射量由微处理器控制。 2、吸入给药 各种非注射型胰岛素给药系统中,以吸人型胰岛素制剂最先进入临床应用。2006年,美国食品药品监督管理局(FDA)和欧委会批准了吸人胰岛素(Exubera@)用于治疗成人1型和2型糖尿病,这自1921年发明胰岛素以来,第一个被批准的除注射外的新途径给药剂型。Exubera@(辉瑞/安万特公司联合开发)为干粉剂,给药后起效快,达峰时间约45min,比皮下注射短效常规胰岛素(subcutaneousinlection,SC)速效胰岛素类似物相似,峰浓度较sc 高,作用维持 时间(4~6h)与sc 相似、比速效胰岛素类似物作用时间长[3]。 3、腹腔给药 临床研究显示,尽管由于胰岛素缓释制剂及皮下胰岛素注射泵的应用,在控制血糖方面已经取得很大进展,我们仍然无法完全避免并发症的发生[4]。腹腔胰岛素给药比皮下注射胰岛素改善糖、脂代谢异常的效果更好[5]。对长期应用(平均6年)腹腔胰岛素泵的患者观察,未见有产生免疫性疾病的危险。 4、口服给药 通过口腔黏膜和鼻黏膜吸收的胰岛素制剂已有成功的临床报道,但由于吸收面积的限制,这类制剂生物利用度很低,增加吸收促进剂或延长给药时间,则会引起不适甚至黏膜损伤,所以应用受到很大限制。 综上所述,为开发出使用方便,顺从性好的胰岛素产品,相关研究者已作出了大量工作。胰岛素新的给药方式,如胰岛素泵,吸入给药等,虽然已有上市的产品,但由于其具有不同程度的局限性,仍然不能成为注射胰岛素的完美替代品。口服胰岛素药物能够在一定程度上模拟人体正常胰岛素的吸收路线,即通过门静脉并以肝脏为直接目标。建立有效的口服胰岛素剂型除了降低医疗装置的使用费用外,对加强患者的用药依从性与便利性,体现口服给药在生理方面的特点都具有重要意义。现阶段有关于胰岛素口服制剂的研究更多见于实验报告,极少有品种应用于临床。 参考文献: 【1】Gough SC. A review of human and analogue insulin trials [J].Diabetes Res Clin Pract,2007,77(1):1-15. 【2】Bacnel AH.Insulin glargine in the treatment of type 1 and type 2 diabetes[J].Vasc Health Risk Manag,2006,2(1);59-67. 【3】Rave KM,Noeck L,de la Pena A,et al.Dose response of inhaled dry-powder insulin and dose equivalence to aubculaneous insulin lispro[J].Diabetes Care,2005,28(10):2400-2405 【4】Smooke S,Horwich TB,Fonarow GC.Insulin-treated diabetes is associated with a marked increase in mortality in patients with advanced heart failure[J]. Am Heart J,2005,149:168-174. 【5】Mason TM,Cupta NCob T,et al.Chronic intraperitoneal insulin delivery,as compared with subcutaneous delivery,improves hepatic glucose metabolism in streptozotoein diabetic rats[J].Metabolism,2000,49(11):1411-1416. 胰岛素制剂国内外研究现状、发展趋势 安文静 王孝文 哈药集团生物工程有限公司 黑龙江哈尔滨 150000 【摘 要】 糖尿病最理想用药仍为胰岛素。胰岛素类似物可以使其具有长效或速效的功能,降低了给药次数,提高了患者用药依从性。胰岛素临床给药途径主要有注射给药,吸入给药,副腔给药,口服给药等。胰岛素非注射给药途径为现阶段研究热点方向。 【关键词】 胰岛素;胰岛素临床用药;长效胰岛素;口服胰岛素1、企业思想政治工作开展的必要性 1.1、企业自身发展的需要。新形势下,我国企业改革进程的不断加快,企业改革已经进入到了一个关键的时期,企业只有采取有效的措施进行自身企业思想政治工作的完善,为企业发展提供思想保证和组织保障。企业思想政治工作水平的提升已经成为了企业内部党务人员和文化建设工作者的重要任务,所以,完善企业思想政治工作,树立正确的改革创新观念,为企业今后工作的开展奠定基础。目前我国市场经济体制的确立,企业内部的管理体制、思想观念已经不能满足当前形势下对企业的需求,企业内部出现了思想漏洞,影响企业各方面工作的有序开展。企业思想政治工作为企业生产工作的开展提供重要指导,尤其是在企业改革背景下,强化和提升企业思想政治工作就成为企业一项重要任务。 1.2、提升企业市场竞争力的需要。现阶段完善和强化企业思想政治工作,需要企业紧密结合当前阶段的需求,探索企业思想政治工作开展的有效方式。同时更需要企业相关管理者和领导能够清醒地认识到,企业的思想政治工作过程中还存在很多的不足,在当前市场竞争日益激烈的背景下,企业想要在市场中具备一定的竞争力,就必须进行思想政治工作的创新。同时更需要企业的相关部门能够紧紧围绕企业的发展战略进行思想政治工作的规划,提升企业员工思想素质和企业市场竞争力。 2、当下企业职工思想政治工作存在的困难和与问题 2.1、传统政治思想工作观念的根深蒂固,实际的工作缺乏创新性。目前在企业的思想政治工作中工作理念和思路的陈旧,导致工作缺乏创新性的情况是比较普遍的。因为企业的政治思想工作由于长期受到传统政治思想工作的影响。在 很多时候企业的思想政治工作仍然沿用老一套的工作理念和工作方法,主要体现在政治思想工作仍然采用传统生硬的口头说教形式来进行,使得思想政治工作死板、枯燥和缺乏新意,这样很容易使得思想教育内容与现代的社会主义市场经济环境出现严重的脱节,造成政治思想工作流于形式,缺乏在企业内部有效开展的群众基础。 2.2、企业政治思想工作和企业的经营管理没有做到很好的相辅相成。企业的政治思想教育是企业得以生存和发展的基础,也是企业发展进步的主线,一个企业如果想要实现高速、稳定、和谐的发展首先需要做好的就应该是政治思想工作。但是在现实的工作中,却十分容易出现思想政治工作与视企业其他方面的工作之间的失衡,更多的时候是企业思想政治工作和企业经营管理工作之间出现了不匹配和矛盾的问题。而实际上,在很多时候我们完全是可以借助政治思想教育来有效的帮助和支持企业其他方面工作有效开展和进行的。 2.3、政治思想工作人员素质问题。政治思想工作人员专业素质和能力参差不齐,许多专兼职人员工作不够灵活,思想工作不够深入,容易出现形式主义或者教条主义的问题。在企业的政治思想工作者队伍中,很多人不去学习新的知识,思想观念过于老化,甚至是空喊口号,不做实事,这都无法满足新时期企业对政治思想工作的要求。 3、新形势下企业思想政治工作的对策 3.1、建立正确企业思想政治工作理念。企业有效领导能够提升企业对思想政治工作的重视,同时明确和了解现阶段企业思想政治工作面临的挑战和存在的问题,有针对性地采取措施,做好企业管理人员与企业员工双方的思想政治工 浅析企业政治思想工作面临的问题 朱宏兵 江苏省交通工程集团有限公司 江苏省南京市 211500 【摘 要】 思想政治工作是支撑整个企业发展的重要力量,思想政治工作水平的高低更是直接影响企业各项工作的开展,但目前受社会主义市场经济发展的影响,企业思想政治工作开展过程中面临很多的问题,因此需要进一步加强研究,并不断提高其思想道德及政治理论方面的修养,同时,积极的解放思想,认真的进行新理论新知识的学习,采取有效的措施解决存在的问题,从而保障企业工作的顺利进行。基于此本文分析了企业政治思想工作建设。 【关键词】 企业;政治思想工作;问题;措施

胰岛素信号转导以及葡萄糖和脂类代谢的规则

胰岛素信号转导以及葡萄糖和脂类代谢的调控 2型糖尿病的流行和被削弱的葡萄糖耐受力是世界上发病率和死亡率的主要原因。在两种病症中,一些组织(例如肌肉,脂肪和肝脏)对胰岛素变得不敏感或者抵抗。这个状态也和其他常见的健康问题有关联,例如肥胖,多囊性卵巢疾病,高脂血压,高血压和动脉粥样硬化。胰岛素抵抗的病理生理学包括一个复杂的、受胰岛素受体激活的信号通路网络,它能够立即调控细胞内的新陈代谢及其组织。但是最近的研究显示,许多其他激素和信号事件削弱胰岛素的作用,这些对于2型糖尿病是很重要的。 不管是进食还是禁食期间,正常人体的血糖总是维持在一个介于4-7mM的狭窄范围内。这个严格的控制来自于葡萄糖在肠道处的吸收,肝脏的产生和周边组织吸收和代谢之间的平衡管理。胰岛素提高肌肉和脂肪中葡萄糖的吸收(见Box1),并且抑制肝葡萄糖的产生,所以担任血糖浓度的主要监管机制。胰岛素也刺激细胞生长和分化,并且通过刺激脂肪生成、糖原和蛋白质合成及抑制脂肪、糖原和蛋白质分解,而提高脂肪、肝脏和肌肉中酶作用物的储存(Fig. 1)。胰岛素抵抗或者缺乏在这些过程中导致深远的调节异常,并在禁食和餐后的葡萄糖和脂类水平中产生高峰。 胰岛素通过促进葡萄糖转运蛋白GLU4从细胞内位点转运至细胞表面而提高细胞内葡萄糖的吸收(见Box1)。多达75%的胰岛素依赖性葡萄糖消耗发生在骨骼肌,脂肪组织只占其中的一小部分。尽管如此,肌肉中胰岛素受体被敲除的的老鼠拥有正常的葡萄糖耐受量,然而那些被敲除了脂肪中胰岛素敏感的葡萄糖转运蛋白的老鼠却显示受损的葡萄糖耐受量,这显然是由于胰岛素抵抗是在肌肉和肝脏中引发的。肥胖症和脂肪萎缩都会引起胰岛素抵抗和容易感染2型糖尿病,这证明了脂肪组织在在超出它吸收葡萄糖能力的新陈代谢的调节过程中是至关重要的。尽管胰岛素不促进葡萄糖在肝脏内的吸收,但它阻碍肝糖原分解和糖异生,从而调节人的空腹血糖水平。组织中的胰岛素作用并不通常被认为是对胰岛素敏感,包括大脑和胰β细胞,也许也对于葡萄糖内稳态起重要作用。(见下) 近端胰岛素信号通路 胰岛素受体 胰岛素受体属于受体酪氨酸激酶的一个亚科,受体酪氨酸激酶包括胰岛素样生长因子(IGF)-Ⅰ受体和胰岛素受体相关受体(IRR)。这些受体是由作为变构酶的两个α-亚基和两个β-亚基组成的四聚体蛋白,在这些变构酶中α-亚基抑制β-亚基的酪氨酸激酶的活性。胰岛素与α-亚基结合导致β-亚基中激酶活性的脱抑制作用,其后为β-亚基的转磷酸作用和一个进一步提高激酶活性的构象变化。胰岛素,IGF-Ⅰ和IRR可以形成功能型混合物;所以,一个受体中的抑制突变可以抑制其他受体的活性。 胰岛素/ IGF-Ⅰ受体的同源物已经在果蝇、秀丽隐杆线虫和后生动物海绵中鉴定出来。这些低级生物使用一些和哺乳动物细胞同样的关键调控的下游信号,包括磷脂酰基醇-3-OH(PI(3)K),苏氨酸激酶和叉头转录因子。C.线虫中胰岛素/IGF系统的抑制突变体比在其他正常动物中存活的更久,从而引发了许多关于高胰岛素血症/胰岛素抵抗和缩短寿命的环境(如肥胖、糖尿病和加速动脉粥样硬化)之间的联系的有趣的问题。胰岛素受体底物 至少有九种细胞间的胰岛素/IGF-Ⅰ受体激酶的底物已经被鉴定出来(Fig. 2)。其

胰岛素及其类似物的研究进展

胰岛素及其类似物的研究进展 摘要:自胰岛素首次用于治疗糖尿病以来,随着对糖尿病病理生理和发病机制认识的深入,胰岛素的应用越来越广泛。本文主要对最近几年有关胰岛素及其类似物治疗糖尿病的研究资料进行综述,深入分析胰岛素及其类似物制剂的分类、给药途径、临床应用和不良反应等方面内容。总体来说,肤岛素及其类似物在临床进展迅速, 胰岛素类似物在糖尿病的治疗方面显示了良好的临床及市场前景。关键词:肤岛素;肤岛素类似物;临床应用;不良反应;进展 糖尿病是因为胰岛素分泌不足和(或)胰岛素作用(敏感性)降低而导致的一组脂肪、碳水化合物和蛋白质代谢紊乱的疾病病[1]。近年来,糖尿病的发病率呈逐年升高趋势,1型糖尿病主要依赖外源性的胰岛素控制血糖;2型的糖尿病随着病情的恶化发展,胰岛素也成为其控制血糖的主要药物,因此,利用胰岛素治疗糖尿病已成为较有效的方式[2]。 1 胰岛素的种类 1.1 速效胰岛素 速效胰岛素是指在经皮下注射给药后,起效快,一般在餐前10 min之内肌注给药,餐后较快达到峰值,而且其药效持续时间较短,在下一餐前不容易出现低血糖。目前用于临床的有赖脯胰岛素、门冬胰岛素和赖谷胰岛素三种超短效胰岛素类似物,其特点是弥补了常规胰岛素起效时间偏慢、作用时间偏长的缺点,达峰时间提前,持续时间短,不易出现下一餐前低血糖,且使用更为方便,降低了低血糖的发生率[3 - 4]。这一药代动力学特征更符合人体生理胰岛素和血糖变化谱,是用于解决餐后高血糖状态的一类胰岛素。 1.2 短效胰岛素 短效胰岛素是生物合成的人胰岛素,见效时间较速效胰岛素稍慢,药效持续时间也稍长,常用于餐后血糖一般高的糖尿病患者。短效胰岛素通常要求在就餐前的30 min之内皮下注射给药,用餐后药效起效速度相对与血糖高峰较一致,避免了餐后高血糖及下一餐餐前低血糖情况。注射较大剂量短效胰岛素时,药物储存于皮下,目前对于储存在皮下的胰岛素疗效和持续时间尚未有统一论断。 1.3 中效、长效胰岛素 该类胰岛素主要由低精蛋白生物合成,起效较短效胰岛素慢,且持续时间也较长,峰值不明显,通常作为补充性的胰岛素应用于糖尿病血糖的控制中,作为正常胰岛素分泌的补充,对餐后高血糖的疗效不明显[5]。中效胰岛素一般在早上或者晚上睡觉前进行皮下注射给药,但是如果是在睡前给药,需要预防晚间出现低血糖。长效胰岛素的种类有甘精胰岛素、精蛋白锌胰岛素、地特胰岛素,在药物起效方面,相比中效胰岛素而言,其分解及吸收需要的时间更长,可以在较长

肝细胞胰岛素信号传导通路与胰岛素抵抗

肝细胞胰岛素信号传导通路与胰岛素抵抗 【摘要】肝脏在人体的葡萄糖代谢中有着重要作用,从胰岛素与其受体(InsR)结合开始,肝脏糖代谢构成了一个复杂的传导通路,起到稳定血糖的生理作用。对这一信号通路的深入研究将有利于进一步阐明糖尿病的发病机制并为糖尿病的治疗提供思路。基于此原因,本文综述了肝细胞胰岛素信号传导通路的传导机制及其意义。 【关键词】胰岛素信号传导;磷脂酰肌醇-3激酶;促分裂原活化蛋白激酶;2型糖尿病;胃转流手术 据世界卫生组织预计,未来50年内,2型糖尿病(T2DM)仍将是一个严重的全球公共卫生问题。但目前,其发病机制尚不完全清楚,胰岛素抵抗(insulin resistance,IR)在T2DM发生发展中的作用已成为糖尿病发病机制研究中的一个热点课题。考虑到肝脏在葡萄糖代谢中的独特作用,本文就IR与肝细胞胰岛素信号传导通路的关系作一综述。 1IR的概念 IR是机体对胰岛素的反应减退,是指正常剂量的胰岛素产生低于正常生物学效应的一种状态,即胰岛素敏感细胞(主要为肝细胞、肌细胞、脂肪细胞)对胰岛素介导的葡萄糖摄取及代谢的抵抗。T2DM患者均表现为不同程度的IR。 1.1IR的细胞水平机制IR的细胞水平机制主要表现为肝细胞、肌细胞、脂肪细胞的糖代谢缺陷。肝细胞糖代谢缺陷主要表现为葡萄糖的转化利用及糖原合成减少,产生及输出增加,造成空腹高血糖症,同时肝糖产生及输出增多也是餐后血糖升高的原因之一。 1.2IR的分子水平机制①受体前缺陷:包括胰岛素抗体形成——多为注射动物胰岛素所致;胰岛素基因突变引起胰岛素分子结构异常;胰岛素降解加速;胰岛素拮抗激素的作用致胰岛素抵抗;②受体缺陷:胰岛素受体为含2个α亚单位及2个β亚单位的异四聚体,为一跨膜糖蛋白。胰岛素受体缺陷表现为受体数目及亲和力降低,呈现出胰岛素生物效应的降低;③受体后缺陷:指胰岛素与受体结合后信号传导到细胞内引起的一系列代谢过程受到阻碍。 目前的研究表明,受体后缺陷--胰岛素与受体结合后信号传导过程障碍,是绝大多数胰岛素抵抗的发生机制。信号通路的任何环节受到干扰,均会影响胰岛素的信号传导。从这个角度上胰岛素抵抗可以定义为胰岛素信号传导的缺陷[2]。 2肝细胞胰岛素信号传导途径 胰岛素是蛋白质类含氮激素,其主要作用为促进合成代谢、稳定机体的血糖水平,作用机制属Sutherland研究组提出的“第二信使学说”[3]。

相关主题
文本预览
相关文档 最新文档