当前位置:文档之家› 水煤浆的发热量测定

水煤浆的发热量测定

水煤浆的发热量测定
水煤浆的发热量测定

水煤浆的发热量测定

水煤浆作为新型的“煤代油”环保燃料,其发热量是计算水煤浆燃烧热平衡、燃烧设备设计、燃烧工艺条件设定以及热效率计算等的基础数据,因而水煤浆的发热量是评定其质量的一项重要指标。

一、仪器设备和试剂材料

水煤浆发热量测定所用的仪器设备和试剂、材料等均与煤的发热量测定完全一致。

二、水煤浆发热量的测定方法

水煤浆发热量测定原理及方法与煤的发热量测定原理及方法相同。可以称取水煤浆固体试样进行测定;也可以称取水煤浆试样进行测定。

1、当称取水煤浆固体试样进行发热量测定时,操作步骤与煤的发热量测定完全一样。只是水煤浆固体试样在实验过程中易产生爆燃喷溅现象,从而导致实验失败。为克服这一问题,可采用使点火线悬置在试样1mm左右,或墩实试样,或包纸压实试样的方法。

2、当称取水煤浆试样进行测定时,应注意:1)试验前应将水煤浆搅拌均匀;2)测定水煤浆发热量时,同时测定其水分含量;3)称样量为1.2-1.8g;4)称量后的试样立即进行试验,减少水分蒸发的影响;5)试样用已知热值的擦镜纸(预先标定并称重)包裹试样,否则,试样难于点燃。具体操作是将已知热值的擦镜纸折叠好垫于坩埚底部,快速准确称量水煤浆试样,再迅速将试样包裹好。

其余实验步骤与煤的发热量测定相同。

三、结果计算和方法精密度

1、水煤浆高位发热量的计算

1)称取水煤浆试样进行测定时:

Q gr,v,cwm=Q b,cwm-(94.1S t,cwm+α?Q b,cwm)

式中Q gr,v,cwm——水煤浆的恒容高位发热量,J/g;

Q b,cwm——水煤浆的弹筒发热量,J/g;

S t,cwm——水煤浆的含硫量,可用全硫代替,%;

94.1——每1%硫的校正值,g;

α——硝酸校正系数。

当Q b,cwm≤16.70MJ/kg时,α=0.0010;当16.70MJ/kg<Q b,cwm≤25.10MJ/kg 时α=0.0012;当Q b,cwm>25.10MJ/kg时。α=0.0016。

2)、称取固体试样进行测定时:

计算固体试样的高位发热量:

Q gr,v,ad=Q b,ad-(94.1S b,ad+α?Q b,ad)

式中 Q gr,v,ad——水煤浆固体试样的恒容高位发热量,J/g;

Q b,ad——水煤浆固体试样的弹筒发热量,J/g;

S b,ad——水煤浆固体试样的弹筒硫,可用全硫代替,%;

α——硝酸校正值,取值方法同上(用Q b,ad代替Q b,cwm)其余符号意义同上。

2、水煤浆恒容低位发热量

水煤浆的恒容低位发热量Q net,v,cwm按下式计算:

Q net,v,cwm=Q gr,v,cwm-206H cwm-23M cwm

式中Q net,v,cwm——水煤浆恒容低位发热量,J/g;

Q gr,v,cwm——水煤浆恒容高位发热量,J/g;

H cwm——水煤浆的氢含量,%;

M cwm——水煤浆的水分,%。

3、水煤浆的恒压低位发热量的计算

水煤浆的恒压低位发热量按下式计算:

Q net,p,cwm=Q gr,v,cwm-212H cwm-0.8(O cwm+N cwm)-24.4M cwm

式中Q net,p,cwm——水煤浆的恒压低位发热量,J/g;;

O cwm——水煤浆的氧含量,%;

N cwm——水煤浆的氮含量,%;

注:(O cwm+N cwm)可用下式计算获得:

(O cwm+N cwm)=100-(M cwm+A cwm+C cwm+H cwm+S t,cwm)式中符号意义同上。

水煤浆高位发热量(或弹筒发热量)两次重复测定值之差不应超过150J/g;两实验室测定结果之差不应超过300J/g。

GB 14402-1993 建筑材料燃烧热值试验方法

中华人民共和国国家标准 GB 14402-93 建筑材料燃烧热值试验方法 Test method of heat of combustion For building materials 本标准参照采用ISO 1716-1973《建筑材料热值的测定》 1 主题内容与适用范围 本标准规定了建筑材料总燃烧热值的定义、测定方法和燃烧热值的定义、计算方法。 本标准适用于建筑材料燃烧热值的测定。 2术语和符号 某种材料完全燃烧时放出的热量,不仅与该材料的质量、燃烧产物的状态有关,而且还与燃烧时在恒容下还是恒压下进行有关。本标准确认的热值为在氧弹中测得的恒容燃烧热。 2.1 术语 a. 总燃烧热值(以下简称总热值) 单位质量的材料完全燃烧,并当其燃烧产物中的水蒸汽(包括材料中所含水分生成的水蒸汽和材料组成中所含的氢燃烧时生成的水蒸汽)均凝结为液态时放出的热量,被定义为该材料的总燃烧热值。 b. 燃烧热值(以下简称热值) 单位质量的材料完全燃烧,其燃烧产物中的水蒸汽(包括材料中所含水分生成的水蒸汽和材料组成中所含的氢燃烧时生成的水蒸气)仍以气态形式存在时所放出的热量,被定义为该材料的燃烧热值。它在数值上等于总热值减去材料燃烧后所生成的水蒸气在氧弹内凝结为水时所释放出的汽化潜热的差值。 c. 量热计热容量 量热系统在试验条件下温度升高1℃所需要的热量被定义为该量热计的热容量。其值通过量热基准物质苯甲酸在相同的试验条件下进行校正试验而得到。量热系统包括量热计内筒中的水及测定过程中温度发生变化的所有部分。 d. 量热基准物质 用于标定量热计热容量的基准物质。本标准指一等量热标准苯甲酸。 2.2 符号 Q zr总热值,kJ/kg; Q jr热值,kJ/kg; E 用苯甲酸作为基准物,并按仪器使用说明书规定所测得的量热计热容量,KJ/℃; t i主期开始时量热计内筒的水温,℃; 国家技术监督局1993-04-29批准1994-02-01实施

煤发热量的测量综述

氧弹量热法测定煤的发热量 摘要 发热量不仅是火电厂进煤的计价依据,也是火电厂计算标准煤耗率的主要参数。发热量的准确测定对于电厂的安全生产和经济运行具有双重意义。燃油与燃煤发热量的测定原理及所用仪器设备完全相同,在此不做介绍。本文主要参照GBT 213-2008《煤的发热量测定方法》,介绍了用氧弹量热法测定煤的发热量的实验步骤,适用范围,仪器设备及试验中的关键问题。 关键词:发热量;氧弹量热法;适用范围;仪器设备;关键问题 1. 前言 煤的发热量是评价煤质的一项重要指标,根据纯煤的发热量,可以大致推测煤的变质程度以及其他某些特征,例如黏结性、结焦性等,有些煤的分类法中,也可以用发热量(恒湿无灰基)作为划分煤类型的指标。煤的发热量高低,主要取决于煤中可燃物质的化学组成,在实际燃烧是,还与煤燃烧条件有关。一定种类的煤,其化学组成可以是一定的,然而燃烧条件是可以改变的,因此,只有明确规定燃烧条件,才能得出科学,准确,有实际意义的煤的发热量。 2 .发热量的表示方法及计算公式 2.1 弹筒发热量 弹筒发热量是实验室内用氧弹热量计直接测得的发热量,即单位质量的式样在充有过量氧气的氧弹内燃烧,其燃烧的物质组成为氧气,氮气,二氧化碳,硝酸,硫酸,液态水以及固体灰时放出的热量称为弹筒发热量。计算公式: 2.2恒容高位发热量

单位质量的式样充有过量氧气的氧弹内燃烧,其燃烧后产物组成为25摄氏度下的过量氧气、氮气、二氧化碳、二氧化硫、液态水及固态灰时放出的热量。恒容高位发热量即由弹筒发热量减去硝酸生成热和硫酸校正热后得到的发热量。计算公式如下: 2.3 恒容低位发热量 单位质量的试样在恒容条件下,在过量氧气中燃烧,其燃烧产物组成为25度下的过量氧气、氮气、二氧化碳、二氧化硫、液态水及固态灰时放出的热量。恒容低位发热量即是由高位发热量减去水的汽化热后得到的发热量。计算公式: ar ad ar ad ad gr ar v net M M M H Q Q 23100100)206(,,,---?-= 2.4 恒压低位发热量 单位质量的试样在恒压条件下,在过量氧气中燃烧,其燃烧产物成为氧气、氮气、二氧化碳、二氧化硫、气态水以及固态灰放出的热量。计算公式: 恒容低位发热量和恒压低位发热量统称低位发热量,低位发热量又称净热量或有效值。它的含义是,单位质量的煤在锅炉中完全燃烧是产生的热量。将高位发热量减去水(煤中原有的水和煤中氢燃烧生成的水)的汽化热,即为低位发热量。 3. 氧弹量热法测发热量 迄今为止,煤的发热量测量方法是在一个密闭的容器里,在有过量的氧气存在的条件下,点燃适量的煤样并使其完全燃烧,用水吸收煤样燃烧的热量,测量水温升高值,计算煤的发热量。在此选取恒温式热量计法测煤的发热量。 3.1 适用范围 适用于泥炭、褐煤、无烟煤、焦炭、炭质页岩等固体矿物燃料及水煤浆。 3.2 基本原理

煤的发热量测定方法

煤的发热量测定方法 GB/T213-2003 代替GB/T213-1996 1 范围 本标准规定了煤的高位发热量的测定方法和低位发热量的计算方法。 本标准适用于泥炭、褐煤、烟煤、无烟煤、焦炭及碳质页岩。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T211 煤中全水分的测定方法 GB/T212 煤的工业分析方法(GB/T 212-2001,eqv ISO 11722:1999;eqv ISO 1171:1997;eqv ISO 562:1998) GB/T214 煤中全硫的测定方法(GB/T 214-1996,eqv ISO 334:1992) GB/T476 煤的元素分析方法(GB/T 476-2001,eqv ISO 625:1996;eqv ISO 333:1996)GB/T 483 煤炭分析试验方法一般规定 GB/T 15460 煤中碳和氢的测定方法电量-重量法 3 单位和定义 3.1 热量单位heat unit 热量的单位为焦耳(J)。 1焦耳(J)=1牛顿(N)×1米(m)=1牛·米(N·m) 发热量测定结果以兆焦每千克(MJ/kg)或焦耳每克(J/g)表示。 3.2 弹筒发热量bomb calorific value 单位质量的试样在充有过量氧气的氧弹内燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、硝酸和硫酸、液态水以及固态灰时放出的热量称为弹筒发热量。 注:任何物质(包括煤)的燃烧热,随燃烧产物的最终温度而改变,温度越高,燃烧热越低。因此,一个严密的发热量定义,应对燃烧产物的最终温度有所规定(ISO 1928规定为25℃)。但在实 际发热量测定时,由于具体条件的限制,把燃烧产物的最终温度限定在一个特定的温度或一个 很窄的范围内都是不现实的。温度每升高1K,煤和苯甲酸的燃烧热约降低(0.4J/g~1.3J/g)。 当按规定在相近的温度下标定热容量和测定发热量时,温度对燃烧热的影响可近于完全抵消, 而无需加以考虑。 3.3 恒容高位发热量gross calorific value at constant volume

煤的发热量的测定

实验二煤的发热量的测定 一实验目的 通过实验,掌握煤的发热量的测定方法,并熟悉其计算方式与原理。 二实验设备 量热仪,弹筒,棉线,烧杯,注射器,点火丝;分析天平,燃烧皿,棉线 三实验原理 让已知质量的煤样在氧弹热量计中完全燃烧,燃烧放出的热量被一定量的水和热量计通体吸收。待系统热平衡后,测出温度的升高值,并计水和热量计筒体的热容量以及周围环境温度等的影响,即可计算出该煤的发热量。 四实验步骤 1.清理燃烧皿,用其城区分析试样(重量称到); 2.截取10cm左右的点火丝,并称重; 3.将点火丝固定到电极柱上的小槽中,将棉线中间对折放到点火丝上,一端没入煤样中; 4.在弹筒中注入10ml的水,将弹筒密封好,进行加氧(压强到); 5.将弹筒放入量热仪中,盖好盖子,点击实验开始; 6.实验完毕后,点击复位,待排水完毕,打开量热仪,取出弹筒,进行清理,称量未燃烧完的点火丝的重量。 五实验数据及处理 1.数据计算 点火丝质量:(前);(后) 煤样质量 (1)温度的校正 1)温度计刻度矫正 由温度计鉴定证书查得: 0=0.003 h;=-0.001 n h 2)贝克曼温度计的平均分度值校正 据实测时露出柱温度,在检定证书中查得分度值:

=1.006h ()()0 =+0.00016-=1.006+0.0001619-21=1.00568bd H h t t '∴℃ (2)冷却校正 校正后的外筒温度=20.45-18=2.45w t ℃ ∴ ()()()()00n V =-=0.00201.245-2.45-0.0004=-0.00281/min V =-=0.00203.261-2.45-0.0004=-0.00122/min w n w B t t B t t ℃℃ (3)引燃物燃烧放热量的校正 ()= 0.0232-0.01071403=17.5375bq J ? (4)分析试样的弹筒发热量 ()()00,+-++-= n n b ad KH t h t h C bq Q m ???? 1000 1.00568-17.5375 = 1.0798 ? =25101.62/J g (5)空气干燥基高位发热量 一直,分析煤样的全硫含量=0.268%<4%ad S ,则可用全硫含量代替弹筒洗液测得的含硫量,即:,=b ad ad S S ;又因煤样的,<25100/b ad Q J kg ,所以系数=0.0012a ,如此: () ,,,,=-94.1+gr ad b ad b ad b ad Q Q S aQ ()=25101.62-94.10.268+0.001225101.62?? =25054.1J/kg (6)收到基低位发热量 已知:f ar M =4.2%;ad M =4.4%;=3.6%ad H

煤的发热量测定实验

实验报告 实验名称:煤的发热量测定实验 院系:能源动力与机械工程 班级:热能1004班 姓名: 学号: 同组人: 实验日期: 华北电力大学 一、实验目的 1. 掌握氧弹量热仪测量发热量的基本原理。 2. 初步学会利用量热仪测量发热量的方法,巩固发热量的基本概念。 二、实验类型 综合型。 三、实验仪器 1、氧弹(如图1-1,1-2) 氧弹是一种圆筒型弹体。筒体密封严密,用耐热耐腐蚀不锈钢制成。容积250~350mL,筒内为试样燃烧空间,内充氧气,初压为2.6~2.8Mpa。 图1-1 氧弹外观

1-充气嘴 4-点火丝压环 5-坩埚支架 6-挡火板 图1-2 氧弹内部构造(氧弹芯) 2、定温筒(如图1-3,1-4) 1-内桶盖 2-定温桶箱体 图1-3 定温桶侧视图 1 2

1-搅拌器 2-测温探头 图1-4 内桶结构图 3、自动充氧器(如图1-5) 1-氧气压力表 2-气嘴(充氧时与氧弹连接) 3-充氧手柄 4-氧弹定位盘 5-进氧接头(通过导氧管与氧气减压阀连接) 6-气门芯安装孔 图 1—5 自动充氧器 4、计算机、打印机及其测控软件(如图1-6) 6 1 2 3 4 5

图1-6 控制系统图 5、燃烧皿(金属制) 6、氧气瓶:表压为012.8MPa。 7、压力表和氧气导管 压力表有两个表头组成一个指示氧气瓶的压力一个指示充氧时氧弹内的压力,表头上装有减压阀和保险阀。压力表通过内景1~2mm的无缝铜管与氧弹相连,以便导入氧气 8、电子分析天平(感量0.1mg) 9、电子秤:量程5.0kg,精度为0.5g。 10、干燥器 11、试剂:氧气,苯甲酸 12、材料:1、点火丝,直径0.1mm左右的铂、铜、镍铬丝或其他一直热值的 金属丝。(各种点火丝的热值如下:铁丝:6700J/g;镍铬丝:1400J/g; 铜丝:2500J/g) 2、蒸馏水或去离子水 四、实验原理 在氧弹中,在充有过量氧气的情况下(氧气的初始压力为2.6~.8MPa)燃烧单位质量的煤所产生的热量称为弹筒发热量Q DT ,再通过进一步计算便得到煤的发热量。 1、基本原理 把一定量的煤试样置于充有过量氧气的氧弹筒内完全燃烧。氧弹祲没在盛有一定量水的容器中。煤试样燃烧后放出的热量使氧弹系统(包括盛水的容器,容器内的水、搅拌器和测温探头等)温度的升高,测定水的温度升高值即可计算氧 弹发热量,氧弹发热量Q DT 的计算公式为 Q DT =(t n -t )(q 1 +q 2 )/m 式中:Q DT---- 弹筒发热量,J/g; –量热仪的热容量, J/℃; t n –终点时的内筒温度, ℃;

食品热值的测定

食品热值的测定 一、实验目的: 1、用氧弹热量计测量面粉和鸡蛋的燃烧热并比较其热值。 2、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别。 3、了解热量计中主要部分的作用,掌握氧弹热量计的实验技术。 4、学会雷诺图解法校正温度改变值。 二、实验原理 1.燃烧热 1mol 物质完全氧化时的反应热称为燃烧热。 在恒压条件下测定的燃烧热称为恒压燃烧热Qp(= ?H );在恒容条件下测定的燃烧热称为恒容燃烧热Qv(= ?U )。?H=?U+?(pV),若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列关系式:Q P=Q V+?nRT,其中?n为反应前后生成物和反应物中气体的物质的量之差。 2. 测量 氧弹量热计是一种环境恒温式的量热计,其基本原理是能量守恒定律。样品完全燃烧所释放的能量使得氧弹本身及其周围的介质(本实验中为水)以及和量热计有关附件的温度升高。测量介质在燃烧前后温度的变化值,就可求算该样品的恒容燃烧热。 mQv+lQ点火丝=k△T, 其中k=C 计+C 水 m 水 ,?T为样品燃烧前后水温的变化值。 量热计和周围环境之间的热交换是无法完全避免的,它对温差测量值的影响可用雷诺温度校正图校正。 3. 雷诺温度校正图

三、仪器和试剂 (1)仪器氧弹量热计1台,压片机1台,万用表1只,贝克曼温度计1支,容量瓶(1000ml)1只,氧气钢瓶及减压阀1只 (2)试剂与材料面粉,鸡蛋一只,点火丝 四、实验步骤 1.量热计水当量的测定 (1)样品制作:称重和压片 (2)装置氧弹及充气 (3)燃烧和测量温度: 2.面粉的燃烧热测定 1.量热计水当量的测定 (1). 样品制作:称重和压片 量取大约15厘米长的燃烧丝,将其中段绕成螺旋,精确称其质量,将铁丝穿在钢模的底板内,然后将钢模底板装进模子中,从上面倒入约0.6-0.8克面粉,慢慢旋紧压片机的螺杆,直到样品压成片状为止。抽去模底的托板,再继续向下压,使模底和样品一起脱落。将压好的样品表面的碎屑除去,在燃烧杯中用分析天平准确称量后即可供燃烧热测定用。 (2)装置氧弹及充气 拧开氧弹盖,小心将压好的样片放在燃烧杯内(样品最好接触燃烧杯底部),

煤炭热值检测分析方法

入厂煤、入炉煤热值差原因及分析方法 一、前言 发电厂入厂煤、入炉煤热量差是经济性评价及燃煤管理的重要指标,将其热量差控制在一定范围内可以体现出燃料管理和采制化 工作的水平。 入厂煤、入炉煤热值差考核指标为502J/g。在目前市场这种情况下,要完成这一指标,从管理和技术上难度都很大。对均匀单一的煤种完成这一指标相对容易一些;对煤源复杂、煤量大,要完成这一指标有一定技术难度,必须从管理和技术上下很大功夫。 产生较大热量差的原因有多种因素,不一定是入厂煤或入炉煤的某一单方面的问题,也就是说可能是入厂煤的问题也可能是入炉 煤的问题,或两方面都存在问题。可以肯定是采样、制样、化验工作未做好,另外就是产生较大热量差时分析原因不到位。 为什么认为分析原因不到位呢?一般在分 析原因时大多从煤样的采制和化验的规范

性操作检查入手,检查这些操作环节方面固然重要,但往往只是分析了一些常规的、表面上的东西,缺乏对采制化工作操作细节、仪器设备性能方面的深层次的分析,其结果是热量差降低效果不明显或未起到作用。 解决发电厂入厂煤、入炉煤热量差,我们应从两方面来做这个工作。第一重点放在预防上,通过平时扎实地做好入厂煤、入炉煤的采样、制样、化验工作,不让入厂煤、入炉煤热值差超过考核指标。不要有了问题再去解决,而是防患未然。第二如果发生了入厂煤、入炉煤热量差大的情况,那就要全面、系统地找出造成热值差大的根本原因。 二、采样、制样和化验偏差组成 要从一批煤中(几千吨或上万吨)采取少量煤样(几百公斤),经过制样程序制成数量较少,仅约100兊,粒度<0.2mm的试样,供化验使用,即用少量煤样(单次测定仅为1兊左右的样)的分析结果去推断一批燃煤的质量和特性,就必然会存在偏差,这些偏差由采样偏差、制样偏差和分析偏差构成。

燃气热值的测定

燃气热值的测定 (实验序号:03030035) 一、实验目的 1. 测量燃气的高位热值和低位热值,了解水流式热量计的工作原理。 2. 掌握水流式热量计的正确操作方法,学会分析影响测量精度的因素。 二、基本原理 燃气的热值是指1(Nm 3 )的燃气完全燃烧所放出的全部热量。分为高位热值和低位热值。燃气的高位热值是指每标准立方米(0℃,101.325kPa )干燃气完全燃烧后,其燃烧产物与周围环境恢复到燃烧前的温度,烟气中的水蒸气凝结成同温度的水后所放出的全部热量。燃气的低位热值则是指在上述条件下,烟气中的水蒸气仍以蒸气状态存在时,所获得的全部热量。水流式热量计是利用水流吸热法来测定燃气的热值的,燃气在一衡定压力下进入本生灯燃烧,释放出热量,在热量计内与连续恒温水流进行充分的热交换使水流温度升高,热平衡方程式可近似写成: V ·H h =cm t ? (1) 式中:H h —燃气的高发热值(kJ/Nm 3 ) V —单次实验中,在热量计内燃烧的燃气体积(Nm 3 ) m —在同一次实验中,流过热量计的水量(kg ) Δt —热量计进、出水的温差(℃) c —水的定压容积比热[4.1868kJ/(kg ·℃)] 由式(1)可得: V t cm H h ?= (2) 燃气的高位热值减去烟气中水蒸气凝结时放出的热量q ,就可得出燃气的低位热值,即: q V t cm q H H h -?= -=1 (3) 因此测得耗气量、水量及其温度差和冷凝水量就可以算出燃气的高、低位热值。(耗气量换算成标准状态下的体积还需测得燃气温度、压力和大气压力)。 三、仪器及测量系统 测量系统由以下几部分组成(见测量系统图):燃气压力调节器A ,湿式燃气表B ,稳压器C ,热量计D ,水箱E 及数字天平。 (一) 热量计(见图30-1)

煤炭质量标准--煤的发热量分级

煤炭质量标准--煤的发热量分级 发布日期:2012-7-20 11:30:14 浏览13 次 摘要:煤炭质量标准--煤的发热量分级 1、范围 本标准规定了煤炭按干燥基高位发热量(Qgr,d)范围分级及其命名。 本标准适用于煤炭勘探、生产、加工利用和煤炭销售中对煤炭发热量分级。 2、规范性引用文件 下列文件中的条款通过GB/T/15224本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。 GB/T 213 煤的发热量测定方法(GB/T 213?2003,neq ISO 1928:1995) GB 474 煤样的制备方法(GB 474?1996,eqv ISO 1988:1975) GB 475 商品煤样采取方法(GB 475?1996,eqv ISO 1988:1975) 3、煤炭发热量分级 3.1无烟煤和烟煤的发热量分级按表1进行。 表1无烟煤和烟煤发热量的分级 序号级别名称代号发热量(Qgr,d)范围/(MJ/ kg) 1 特高热值煤SHQ >29.6 2 高热值煤HQ 25.51~29.60 3 中热值煤MQ 22.41~25.50 4 低热值煤LQ 16.30~22.40 5 特低热值煤(低质煤)SLQ <16.30 3.2褐煤的发热量分级按表2进行。 表2褐煤发热量的分级 序 号 级别名称 代 号 发热量(Qgr,d)范围/(MJ/ kg)1 高热值褐煤 H QL >18.20 2 中热值褐煤 M QL 14.90~18.20 3 低热值褐煤(低质煤) L QL <14.90 4、煤炭发热量的检验

煤炭热值检测分析方法

煤炭热值检测分析方法 标准值的上限或下限为 。如果三次测量值都在上限或下限,则初步判断量热仪存在系统误差。这种分析很重要,但在分析热值差时经常被忽略。 量热计的校准记录和反标记检查主要是为了了解设备性能和系统偏差2.手动制样偏差检查 手动制样如果不按标准操作也会产生较大误差。熟悉制样和制样标准的技术人员可以通过制样人员的现场实际操作来检查制样人员的标准操作程度。 也可以通过以下方法检查样品制备误差:制备60千焦以上的粒度小于13 mm的煤样品,用二分法将两个或三个样品分开,其中一个或三个样品由二分法进一步分成两个或三个样品,一个或三个样品由进煤实验室取样和测试,另外三个样品由进煤实验室取样和测试,主要是检查样品制备过程中的问题第一次分离出的30千焦以上的另一个煤样用二分法进一步分成两个或三个样品,其中一个样品由第三方 制备,制备好的样品由入炉煤和入炉煤实验室检验,另一个样品保留(或准备检验) 根据三方测试数据的对比,可以得出是测试问题还是样品制备过程中存在的问题。该方法在检验实验室试验和样品制备中存在的问题时非常实用。3.采样偏差分析 对于手动采样,首先需要澄清一个理解问题。这并不是人工取样不

准确或代表性差的问题,而是一方面取样人员没有按规范操作,另一方面进厂的煤有掺假或分层装车现象。在这种情况下,汽车底部的煤不能人工采集,导致人工采样的代表性差。 燃煤采样器安装在碎煤机后,大石块或矸石被碎煤机粉碎。相反,燃煤取样器有机会获得石头或废石。 在分析热值差时,人们首先会想到更注重取样,更注重人工取样,而忽略机械取样,认为机械取样具有代表性。事实上,这种理解是错误的一些取样机在实际取样过程中存在严重问题。 需要注意的是,大部分机械取样头采集的原始子样(无破碎和收缩的原煤样)基本上具有代表性;此外,认为皮带末端取样的代表性比中间皮带取样的代表性好是错误的,因为中间皮带取样缺乏事实依据。机械取样的主要问题在于破碎和分割系统。 机械取样需要检查以下项目:1 .检查分隔器。 主要检查分割器的分割次数或煤流的切割次数是否满足要求,必须截取煤流的全断面在没有样机性能验证的情况下,建议分料器的分料次数(割煤流量)为 -当样机出料粒度为13毫米时,割煤流量次数应大于10次; -当取样机的出料粒度为6mm时,割煤流量的次数应大于5次; 取样机的实际取样必须以取样机的性能验证结论为依据,或按建议的割煤流量次数运行。不符合要求的应进行调整或改造

煤的高位发热量的测定方法和低位发热量的计算方法(精)

煤的高位发热量的测定方法和低位发热量的计算方法 适用范围 本标准规定了煤的高位发热量的测定方法和低位发热量的计算方法。本标准适用于泥炭、褐煤、烟煤、无烟煤、焦炭及碳质页岩。 2 方法提要 2.1高位发热量煤的发热量再氧弹热量计中进行测定。一定量的分析试样在氧弹热量计中.在充有过量氧气的氧弹内燃烧。氧弹的热量计的热容量通过在相近条件下燃烧一定量的基准量热物苯甲酸来确定。根据试样燃烧前后热系统产生的温升,并对点火热等附加热进行校正后即可求得试样的弹筒发热量。从弹筒发热量中扣除硝酸生成热和硫酸校正热(硫酸与二氧化硫形成热之差)即得高位发热量。 2.2低位发热量煤的恒容低位发热量和恒压低位发热量可以通过分析试样的高位发热量计算计算恒容低位发热需要知道煤样中水分和氢的含量。原则上计算恒压低位发热量还需知道煤样中氧和氮的含量。 3.试验室条件 ———进行发热量测定的试验室,应为单独房间,不得在同一房间内同时进行其他试验项目。 ———室温应保持相对稳定,每次测定室温变化不应超过1℃, 室温以不超过15℃~30℃范围为宜。 ———室内应无强烈的空气对流,因此不应有强烈的热源、冷源和风扇等,试验过程中应避免开启门窗。 ———试验室最好朝北,以避免阳光照射,否则热量计应放在不受阳光直射的地方。 4. 试剂和材料 4.1氧气(GB 3853)99.5%纯度,不含可燃成分,不允许适用电解氧。 4.2氢氧化钠标准溶液c(NaOH)≈ 0.1 mol/L 称取优级纯氢氧化钠( GB/T 629)4g ,溶解于1000mL 经煮沸冷却后的水中,混合均匀,装入塑料瓶或塑料筒内,拧紧盖子。然后用优级纯苯二甲酸氢钾(GB/T 1257)进行标定。

实验一煤的发热量热的测定

实验一煤的发热量测定 内容提要 煤的发热量是是煤的重要的特征之一,在锅炉设计和改造工作中,发热量是组织锅炉热平衡、计算燃烧物料平衡等各种参数和设备选择的重要依据。本实验采用氧弹式量热计测定煤的发热量。 一、目的要求 1、了解氧弹量热计的原理、构造和使用方法,学会用其测定固定试样的燃烧热。 2、学习有关锅炉实验的一般知识。 二、实验关键 1、用天平称量要准确,尽量做到既不引进杂质,又不丢失样品。 2、充氧时注意旋紧氧弹盖,以免漏气而燃烧不完全。 三、实验原理 煤的发热量测定是将可燃物质煤、氧化剂及其容器与周围环境隔离,测定燃烧前后系统温度的升高值⊿T,再根据系统的热容C,可燃物质的质量m,计算每克物质的燃烧热Q。即系统的热容,一般是利用已知燃烧热的标准物质在相同条件下完全燃烧,根据其燃烧前后系统温度的变化⊿t,质量,每克煤的的燃烧热Q f dt。 本实验恒温式热量计测得的。 目的 用氧弹量热计测定煤的燃烧热,确定不同的热量计的热容量K。 原理 在适当的条件下,几乎所有的有机物、都能迅速而完全地进行氧化反应,这就为准确测定它们的燃烧热创造了有利条件。 为了使被测物质能迅速而完全燃烧,就需要有强有力的氧化剂。在实验中经常使用压力为25~30大气压(2533~3039 kp a)的氧气作为氧化剂。用GR-3500型氧弹量热计进行实验时,氧弹放置在装有一定量水的铜水桶中,水桶外是空气隔热层,再外面是温度恒定的水夹套。 标准燃烧热指的是:在标准状态下,1mol物质完全燃烧成同一温度的指定产物(C和H的燃烧产物为CO2,H2O)的焓变化。用△c H m?表示。 在氧弹量热计中,可测得物质的定容摩尔燃烧热△c U m:若气体为理想气体,忽略压力影响,则△c H m? = △c U m +△n·R·T

煤地发热量测定方法

GB/T213-2003 代替GB/T213-1996 1 围 本标准规定了煤的高位发热量的测定方法和低位发热量的计算方法。 本标准适用于泥炭、褐煤、烟煤、无烟煤、焦炭及碳质页岩。 2 规性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T211 煤中全水分的测定方法 GB/T212 煤的工业分析方法(GB/T 212-2001,eqv ISO 11722:1999;eqv ISO 1171:1997;eqv ISO 562:1998) GB/T214 煤中全硫的测定方法(GB/T 214-1996,eqv ISO 334:1992) GB/T476 煤的元素分析方法(GB/T 476-2001,eqv ISO 625:1996;eqv ISO 333:1996)GB/T 483 煤炭分析试验方法一般规定 GB/T 15460 煤中碳和氢的测定方法电量-重量法 3 单位和定义 3.1 热量单位heat unit 热量的单位为焦耳(J)。 1焦耳(J)=1牛顿(N)×1米(m)=1牛·米(N·m) 发热量测定结果以兆焦每千克(MJ/kg)或焦耳每克(J/g)表示。 3.2 弹筒发热量bomb calorific value 单位质量的试样在充有过量氧气的氧弹燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、硝酸和硫酸、液态水以及固态灰时放出的热量称为弹筒发热量。 注:任何物质(包括煤)的燃烧热,随燃烧产物的最终温度而改变,温度越高,燃烧热越低。因此,一个严密的发热量定义,应对燃烧产物的最终温度有所规定(ISO 1928规定为25℃)。但在实 际发热量测定时,由于具体条件的限制,把燃烧产物的最终温度限定在一个特定的温度或一个 很窄的围都是不现实的。温度每升高1K,煤和苯甲酸的燃烧热约降低(0.4J/g~1.3J/g)。当按 规定在相近的温度下标定热容量和测定发热量时,温度对燃烧热的影响可近于完全抵消,而无 需加以考虑。 3.3 恒容高位发热量gross calorific value at constant volume

建筑材料燃烧热值试验方法

建筑材料燃烧热值试验方法 本标准参照采用ISO 1716-1973《建筑材料热值的测定》 1 主题内容与适用范围 本标准规定了建筑材料总燃烧热值的定义、测定方法和燃烧热值的定义、计 算方法。 本标准适用于建筑材料燃烧热值的测定。 2 术语和符号 某种材料完全燃烧时放出的热量,不仅与该材料的质量、燃烧产物的状态有关,而且还与燃烧时在恒容下还是恒压下进行有关。本标准确认的热值为在氧弹中测得的恒容燃烧热。 2.1 术语 a. 总燃烧热值(以下简称总热值) 单位质量的材料完全燃烧,并当其燃烧产物中的水蒸汽(包括材料中所含水 分生成的水蒸汽和材料组成中所含的氢燃烧时生成的水蒸汽)均凝结为液态时放出的热量,被定义为该材料的总燃烧热值。 b. 燃烧热值(以下简称热值) 单位质量的材料完全燃烧,其燃烧产物中的水蒸汽(包括材料中所含水分生 成的水蒸汽和材料组成中所含的氢燃烧时生成的水蒸气)仍以气态形式存在时所放出的热量,被定义为该材料的燃烧热值。它在数值上等于总热值减去材料燃烧后所生成的水蒸气在氧弹内凝结为水时所释放出的汽化潜热的差值。 c. 量热计热容量 量热系统在试验条件下温度升高1℃所需要的热量被定义为该量热计的热 容量。其值通过量热基准物质苯甲酸在相同的试验条件下进行校正试验而得到。量热系统包括量热计内筒中的水及测定过程中温度发生变化的所有部分。 d. 量热基准物质 用于标定量热计热容量的基准物质。本标准指一等量热标准苯甲酸。 2.2 符号 Q zr 总热值,kJ/kg; Q jr 热值,kJ/kg; E 用苯甲酸作为基准物,并按仪器使用说明书规定所测得的量热计热容 量,KJ/℃; t i 主期开始时量热计内筒的水温,℃; t m 主期中量热计内筒的最高水温,℃; c 量热计内筒与恒温室外筒之间的热交换正值,℃; C 附加热量校正值,kJ; m 试样质量,kg; n 主期持续时间,s; n′从主期开始到温度增加等于0.6(t m-t i)这一时刻所经历的时间,s; V′试验初期的平均温度变化率,℃/s; V″试验期末的平均温度变化率,℃/s; m a 附加物质的质量,kg; m f 点火丝的质量,kg; H oa 附加物质的热值,kJ/kg;

384石油产品热值测定法

石油产品热值测定法 本方法适用于以量热计氧弹测定不含水的石油产品(汽油、喷气燃料.柴油和重油等)的总热值及净热值。 1弹热值侧定法 1.1方法概要 将试样装在氧弹内的小皿中,用易燃而不透气的胶片封闭起来,或把试样封闭在聚乙烯制成的安瓿中,使试样在压缩氧气中燃烧,以测定其燃烧时所发生的热值(弹热值),作为总热值与净热值的测定基础。 1.2仪器与材料 1.2.1仪器: 1.2.1.1测定热值的量热计设备及附件,应符合热值测定的各项要求。 1.2.1.2量热计小皿(以后简称小皿)图1,不锈钢制成。 1.2.1.3瓷或玻璃制的平盘(可以用平底、直径为100一200毫米的浅结晶皿或表面皿),供制备胶片用。 1.2.1.4金属钳

1.2.1.5吸液管:1毫升。 1.2.1.6秒表 1.2.1.7注射器 1.2.1.8分析天平和重负荷的5公斤天平。 1.2.1.9容量瓶:2000毫升和1000毫升。 1.2.2材料 1.2.2.1内径为4毫米的聚乙烯塑料管(供制备安瓿封样用》。 1.2.2.2导火线:直径不大于0.2毫米的镍一铬合金、铜线或其他导火线,截成长60-120毫米(视氧弹内附件结构及导火线系统而定)的等分线段,称量由10—15根组成的线束,以测定每一根金属线的重量。 1.2.2.3 瓶装压缩氧气:其中不应含有氢气及其他易燃杂物,不许使用电解氧气. 1.2.3对实验室、设备及材料的特殊要求: 1.2.3.1热值测定应在一个单独的房间内进行,房间要背阳,并应具有双层严密的门窗,以保证室内温度稳定(温度波动不应超过±5℃)。房间内不应有影响燃烧热测定的加热装置。在试验进行时,试验室禁止通风。 1.2.3.2量热计搅拌器的转动速度,应保证能迅速搅拌容器中的水,且不发生飞溅现象。同时因搅拌而产生的温度升高,每10分钟不得超过0.01℃。为了达到这一目的,搅拌器每分钟的转数为:垂直搅拌的不应少于50转,螺旋桨式的不应少于400转。 1.2.3.3应使用一般量热温度计或贝克曼温度计(分度为0.01度)。此温度计需经国家计量机关作每1度的检查,其校正误差应不大于0. 005℃.

煤中含氧官能团测定方法.doc

煤中含氧官能团测定方法 1.碳和氢 碳是煤中最重要的组成元素.碳含量(Cr)随煤化程度的升高而增加.泥炭的Cr为50~60%;褐煤为60~77%;烟煤为 74~92%;无烟煤为90~98%.在煤化程度相同的煤中,丝质组的Cr最高,镜质组次之,稳定组最低.氢中煤中第二个重 要的组成元素.腐泥煤的氢含量(HR)比腐植煤高,一般在6%以上,有时达11%,这是由于形成腐泥煤的低等生物富 含氢.在腐植煤中,稳定组的HR最高,镜质组次之,丝质组最低.随煤化程度升高,它们的HR均逐渐减少. 2.氮 煤中的氮,主要是由成煤植物中的蛋白质转化而来.人们认为煤中的氮通常都是有机氮,其中有一些是杂环形的. 煤中的NR通常约为0.8~1.8%,但也随煤公程度的升高而略有下降.我国弱粘结煤和不粘结烟煤的NR多低于1%,可 能是在泥炭化阶段受到不同程度的氧化作用,成煤植物中的蛋白质氧化分解,故NR普遍较低. 3.氧 氧是煤中主要元素之一,氧在煤中存在的总量和形态直接影响着煤的性质煤的元素组成煤的组成以有机质为主 体,构成有机高分子的主要是碳、氢、氧、氮等元素。煤中存在的元素有数十种之多,但通常所指的煤的元素 组成主要是五种元素、即碳、氢、氧、氮和硫。在煤中含量很少,种类繁多的其他元素,一般不作为煤的元素 组成,而只当作煤中伴生元素或微量元素。 一、煤中的碳

一般认为,煤是由带脂肪侧链的大芳环和稠环所组成的。这些稠环的骨架是由碳元素构成的。因此,碳元素是 组成煤的有机高分子的最主要元素。同时,煤中还存在着少量的无机碳,主要来自碳酸盐类矿物,如石灰岩和 方解石等。碳含量随煤化度的升高而增加。在我国泥炭中干燥无灰基碳含量为55~62%;成为褐煤以后碳含量 就增加到60~76.5%;烟煤的碳含量为77~92.7%;一直到高变质的无烟煤,碳含量为88.98%。个别煤化度 更高的无烟煤,其碳含量多在90%以上,如北京、四望峰等地的无烟煤,碳含量高达95~98%。因此,整个成 煤过程,也可以说是增碳过程。 二、煤中的氢 氢是煤中第二个重要的组成元素。除有机氢外,在煤的矿物质中也含有少量的无机氢。它主要存在于矿物质的 结晶水中,如高岭土(Al203·2Si02·2H2O)、石膏(CaS04·2H20 )等都含有结晶水。在煤的整个变质过程中, 随着煤化度的加深,氢含量逐渐减少,煤化度低的煤,氢含量大;煤化度高的煤,氢含量小。总的规律是氢含 量随碳含量的增加而降低。尤其在无烟煤阶段就尤为明显。当碳含量由92%增至98%时,氢含量则由2.1%降到 1%以下。通常是碳含量在80~86%之间时,氢含量最高。即在烟煤的气煤、气肥煤段,氢含量能高达6. 5%。 在碳含量为65~80%的褐煤和长焰煤段,氢含量多数小于6%。但变化趋势仍是随着碳含量的增大而氢含量减 小。

煤的发热量的测定

煤的发热量的测定文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

实验二煤的发热量的测定 一实验目的 通过实验,掌握煤的发热量的测定方法,并熟悉其计算方式与原理。 二实验设备 量热仪,弹筒,棉线,烧杯,注射器,点火丝;分析天平,燃烧皿,棉线 三实验原理 让已知质量的煤样在氧弹热量计中完全燃烧,燃烧放出的热量被一定量的水和热量计通体吸收。待系统热平衡后,测出温度的升高值,并计水和热量计筒体的热容量以及周围环境温度等的影响,即可计算出该煤的发热量。 四实验步骤 1.清理燃烧皿,用其城区分析试样0.9-1.1g(重量称到0.0002g); 2.截取10cm左右的点火丝,并称重; 3.将点火丝固定到电极柱上的小槽中,将棉线中间对折放到点火丝上,一端没入煤样中; 4.在弹筒中注入10ml的水,将弹筒密封好,进行加氧(压强到2.8- 3.0MPa); 5.将弹筒放入量热仪中,盖好盖子,点击实验开始; 6.实验完毕后,点击复位,待排水完毕,打开量热仪,取出弹筒,进行清理,称量未燃烧完的点火丝的重量。

五实验数据及处理 1.数据计算 点火丝质量:0.0232g(前);0.0107g(后) 煤样质量1.0798g (1)温度的校正 1)温度计刻度矫正 由温度计鉴定证书查得:0=0.003h ;=-0.001n h 2)贝克曼温度计的平均分度值校正 据实测时露出柱温度,在检定证书中查得分度值: (2)冷却校正 校正后的外筒温度=20.45-18=2.45w t ℃ (3)引燃物燃烧放热量的校正 (4)分析试样的弹筒发热量 (5)空气干燥基高位发热量 一直,分析煤样的全硫含量=0.268%<4%ad S ,则可用全硫含量代替弹筒洗液测得的含硫量,即:,=b ad ad S S ;又因煤样的,<25100/b ad Q J kg ,所以系数=0.0012a ,如此: (6)收到基低位发热量 已知:f ar M =4.2%;ad M =4.4%;=3.6%ad H

煤炭发热量计算测定,分级标准

《煤炭发热量计算、测定新技术新方法与分级标准实用手册》作者:编委会 出版社:煤炭工业出版社2007年7月出版 开本:16开精装 册数:全三卷 定价:880 元 优惠价:410 元 详细目录: 第一章煤炭的基本属性 第一节煤的一般性质 第二节煤的工业分析和元素分析 第三节煤的有机结构 第四节煤的工艺性质 第二章煤炭的发热量计算、测定新方法 第一节煤炭的发热量概述 第二节煤的发热量测定的步骤、校正与结果计算 第三节热容量和仪器常用标定 第四节低位发热量的计算 第五节仪器的维护与常见故障处理 第六节发热量测定中的若干问题 第七节误差和数理统计基础知识 第八节比色分析

第九节火焰光度分析 第十节煤的发热量测定新方法 第三章煤炭发热量的计算和审查 第一节利用元素分析结果计算和审查煤的发热量 第二节利用工业分析结果计算和审查各类煤的发热量第三节计算各种煤低位发热量的其他公式 第四节计算商品煤发热量的公式 第五节利用工业分析计算0net,ad的国际公式 第六节煤炭发热量的各种“位”和基准的换算 第四章煤质检测新技术 第一节煤发热量的基本概念 第二节氧弹热量计 第三节量热温度计及其校正

第四节冷却校正值及其计算 第五节热容量的标定 第六节煤的发热量测定及计算 第七节绝热式热量计的使用 第八节自动热量计的使用 第九节自动质量计的完善化 第十节热量计综合性能检验 第五章煤炭发热量的各项反应分析技术 第一节煤的一般热解过程 第二节煤的热解一色谱 第三节热解反应器红外光谱联对煤热解的研究 第四节用热重法分析 第五节煤化过程的热解模拟 第六节煤的气化反应分析 第七节热重法对煤气化反应的分析 第八节差热分析法对煤和显微组分气化反应的分析第九节气化反应中的动力补偿 第十节煤的聚液化反应分析 第十一节煤的燃烧反应和表面形态变化 第十二节煤燃烧反应的动力学分析 第六章煤质分析技术检查方法 第一节煤质分析试验方法

实验三燃料热值测定

百度文库 实验三燃料热值的测定 燃料的燃烧热(或热值)是指单位质量( g 或gmol )的燃料在标准状态下与氧完全燃 烧时释放的热量。完全燃烧是指燃料(常指碳氢燃料)中的 C 完全转变为二氧化碳,氢转 变为水,硫转变为二氧化硫。如果燃烧发生于定压过程,这是的燃烧热为定压燃烧热,又 称燃烧焓,如果燃烧过程保持容积不变,这是的燃烧为定容燃烧热。 假定有N 中组分参与反应的方程式为: Q ; Q gfw 100 W y Q D T 225S D T aQ D T ? 100 W ; g g 100 W f 100 W f W f 为分析基水份含量;a 为修正系数;无烟煤和贫煤取 、实验的理论基础 n n 1 n 1 M 1 M I 1 I 1 为分子前指数,“’”,“"” 分别为反应物和产物,则 Q C i 'i " E 0 T 0 Q P i i' " H i 0 T 0 H 5 T 分别为标准定容生成热或生成焓( kcal/gmal , kcal/kg )。上标" |Hi 0 E i 0 R 0 T 0 N R 0 为通用气体常数, N 为气相 组] 分在 反 一般情况下,由于 E° R 0 T 0 N ,对于等摩尔数反应, 根据反应产物中水的状态不同,热值又有低热值和高热值之分。如产物水为蒸汽, 是的热值为低热值,如产物为液态水,热值为高热值,两者的差值为水的蒸发潜热 (Qr=10.52kcal/gmal )。 工业上常用燃料的元素分析法确定高低热值的关系。若用符号 高位热值和低位热值,它们之间的关系为 Q dw Q gw 6 9H y w y (kcal / kg ) H y ,W y 分别为应用基氢百分含量和全水份含量_ f Q Dr 本实验测定的是分析基弹筒热值,用 N=0, Q gw 和Q dw 表示应用基 表示。它与高位热值间的关系为 式中: 鱼为分析基硫百分含量; 0.001,其它煤种取 0.0015。 1 式中| M |代表组分分子式, 定容 燃烧热和定压燃烧热分别为: ,常常可以用生成焓代替生成热,即 E 0 T 0 , 状态(1atm , 25 C),它们之间的关系为: H i o E i o 0”代表标准

实验一煤的发热量热的测定(新)

实验一煤的发热量测定 容提要 煤的发热量是是煤的重要的特征之一,在锅炉设计和改造工作中,发热量是组织锅炉热平衡、计算燃烧物料平衡等各种参数和设备选择的重要依据。本实验采用氧弹式量热计测定煤的发热量。 一、目的要求 1、了解氧弹量热计的原理、构造和使用方法,学会用其测定固定试样的燃烧热。 2、学习有关锅炉实验的一般知识。 二、实验关键 1、用天平称量要准确,尽量做到既不引进杂质,又不丢失样品。 2、充氧时注意旋紧氧弹盖,以免漏气而燃烧不完全。 三、实验原理 煤的发热量测定是将可燃物质煤、氧化剂及其容器与周围环境隔离,测定燃烧前后系统温度的升高值⊿T,再根据系统的热容C,可燃物质的质量m,计算每克物质的燃烧热Q。即系统的热容,一般是利用已知燃烧热的标准物质在相同条件下完全燃烧,根据其燃烧前后系统温度的变化⊿t,质量,每克煤的的燃烧热Q f dt。 本实验恒温式热量计测得的。 目的 用氧弹量热计测定煤的燃烧热,确定不同的热量计的热容量K。 原理 在适当的条件下,几乎所有的有机物、都能迅速而完全地进行氧化反应,这就为准确测定它们的燃烧热创造了有利条件。 为了使被测物质能迅速而完全燃烧,就需要有强有力的氧化剂。在实验中经常使用压力为25~30大气压(2533~3039 kp a)的氧气作为氧化剂。用GR-3500型氧弹量热计进行实验时,氧弹放置在装有一定量水的铜水桶中,水桶外是空气隔热层,再外面是温度恒定的水夹套。 标准燃烧热指的是:在标准状态下,1mol物质完全燃烧成同一温度的指定产物(C和H的燃烧产物为CO2,H2O)的焓变化。用△c H m 表示。

在氧弹量热计中,可测得物质的定容摩尔燃烧热△c U m :若气体为理想气体,忽略压力影响,则 △c H m θ = △c U m +△n ·R ·T △n —燃烧前后气体的物质的量的变化。 样品在体积固定的氧弹中燃烧放出的热;引火丝燃烧放出的热和由氧气中微量的氮气氧化成硝 酸的生成热,大部分被水桶中的水吸收;另一部分则被氧弹、水桶、搅拌器及温度计等所吸收,在量 热计与环境没有热交换的情况下,可写出如下的热量平衡式: Q v ·a +qb +qn = w ·h ·△t +K ·△t 式中:Q v —被测物质的定容燃烧热(卡/克);a —被测物质的重量(克);q —引火丝的燃烧热(卡 /克)(铁丝为6699J/g ,镍丝为2512J/g ),b —烧掉了的引火丝重量(克);q n 硝酸生成热为q n -硝 酸生成热(q n =0.0015×Q v ×G );w —水桶中的水重(克),h —水的比热(J/克·度);K —氧弹、水 桶的总热容(J/度); △t —与环境无热交换时的真实温差(度)。 如在实验时保持水桶中水量一定,把上式右端常数合并得到下式: Q v ·a +qb +q n = K ·△t (*) 式中:K J/度,称为量热计的水当量。 实际上,氧弹式量热计不是严格的绝热系统,加之由于传热速度的限制,燃烧后由最低温度达最 高温度需一定的时间,在这段时间里系统与环境难免发生热交换,因而从温度计上读得的温差就不 是真实的温差△t 。为此,必须对读得的温差进行校正,下面是瑞芳公式: ?? ????-++--+=∑-=112n i nto ti tn to tpo tpn Vo Vn nVo C (**) n —由点火到终点的时间,单位分钟(min ); Vo —在点火时外筒温差影响下造成的筒降温速度(初期温降),单位为开尔文每分钟(K/min ); Vn —在终点时外筒温差影响下造成的筒降温速度(末期温降),单位为开尔文每分钟(K/min );

相关主题
文本预览
相关文档 最新文档