当前位置:文档之家› 几种常用植物病原细菌分子检测方法

几种常用植物病原细菌分子检测方法

几种常用植物病原细菌分子检测方法
几种常用植物病原细菌分子检测方法

专论与综述

R evie ws

收稿日期: 20060220 修订日期: 20060418

基金项目: 国家自然科学基金项目(39970481);国家“863”计划项目(2001AA249021)3通讯作者E 2mail :jhguo @https://www.doczj.com/doc/979786971.html,

几种常用植物病原细菌分子检测方法

尹燕妮, 黄艳霞, 葛芸英, 郭坚华3

(南京农业大学农业部病虫监测与治理重点开放实验室,南京 210095)

摘要 植物病原细菌(phytobacteria )是植物上一类重要的病原菌,这些细菌能引起多种农作物、经济作物、花卉、树木及牧草上的病害。它的快速检测是病害防治、预测预报及植物检疫必不可少的重要工作。其中,以PCR 为基础的分子检测技术的进步使植物病原细菌的检测更快速、灵敏和可靠。本文对近年来植物病原细菌分子检测技术进行介绍,尤其是应用广泛的ITS 2PCR (intergenic transcribed space 2PCR )、ARDRA (amplified ribosomal DNA restric 2

tion analysis 2PCR )、rep 2PCR (repetitive DNA 2PCR )和实时荧光定量PCR (real 2time quantitative PCR )技术,旨在促

进我国植物病原细菌研究的快速发展。关键词 植物病原细菌; 分子检测; PCR 中图分类号 S 432.42

Molecular diagnostic techniques for several commonly used phytobacteria

Y in Yanni , Huang Yanxia , Ge Yunying , Guo Jianhua

(Key L aboratory of Monitoring and M anagement of Plant Diseases and Pests ,M inist ry of A g riculture ,N anj ing A g ricultural Universit y ,N anj ing 210095,Chi na )

Abstract Phytobacteria are widespread and economically important plant pathogens.These bacteria cause severe diseases on many important plants such as field crop s ,economically important crops ,flowers ,trees ,and pasture.Rapid detection of phytobacteria provides a better f ramework for addressing important plant disease problems related to diagnosis and prediction of diseases ,and ultimate management of disease risks.The technology 2driven advances in PCR 2based methods make the detection of bacterial pathogens more rapid ,sensitive and reliable.In this paper ,the molecular diagnostic techniques were introduced ,especially ITS 2PCR ,ARDRA ,rep 2PCR and real 2time quantitative PCR techniques.It was aimed to promote the research of phytobacteria in China.K ey w ords plant pathogenic bacteria ; molecular detection ; PCR

传统病原细菌检测方法主要是依据症状、形态、生理生化反应和血清学等方法。这些方法耗时费力,且稳定性不高,不能直接从植物组织中检测出病原细菌。20世纪80年代基于细菌染色体分子检测方法的出现,尤其是PCR 方法的诞生及计算机辅助分析,使细菌的快速检测成为可能。细菌的分子检测方法大致可以分为非依赖PCR 及依赖PCR 两大类。非依赖PCR 的方法有两种,一种是全基因组DNA 2DNA 同源性比较或复性动力学,该方法较粗

略,现在一般不采用;另一种是限制性片段长度多态性(rest riction f ragment lengt h polymorp hism ,RFL P )分析,该技术存在操作繁琐、放射污染等缺

点,且细菌基因组较真核生物小,酶切后多态性不丰富,所以该方法一般不单独使用。PCR 是一种体外扩增核酸序列从而得到多个核酸拷贝的技术,以下主要介绍依赖PCR 的几种常用的检测方法。

1 ITS 2PCR

ITS 2PCR 分析是利用保守的16S rDNA 和23S

rDNA 序列,设计引物扩增转录间隔区(ITS )。16S rDNA 和23S rDNA 间的ITS 区域包括一些t RNA

基因和非编码区域。由于面临较小选择压力,ITS 区域比16S rDNA 和23S rDNA 的多态性丰富。使用通用引物扩增ITS 区域后,通过产生带的长度可

以确定细菌的种类。ITS区域经PCR扩增后的产物经限制性酶切分析(rest ricted enzyme analysis, REA)或DNA序列分析都可加强其特异性。

Mase等用一对与ITS内部序列结合的引物扩增出半透明黄单胞菌(X ant homonas t ransl ucens)致病变种DNA,得到一段特有的139bp片段;选择4种黄单胞菌的16S223S间隔区进行序列比较分析,设计出的引物可以特异地、灵敏地检测出谷类种子中的条斑病菌[1]。葛芸英等通过2种病原菌的16S2 23S rDNA的ITS序列分析,设计出的特异性引物,完成了小麦苗枯病菌(Cl avibacter f angii)[2]和甜菜银叶病菌(Curtobacteri um f l accum f aciens pv.bet2 icol a pv.nov.)的检测[3]。付鹏等利用特异性引物ClaF12ClaR2对番茄溃疡病菌的ITS区域扩增,得到250bp的片段[4],参试的其他棒形细菌及其他属的植物病原细菌均无扩增产物。该检测方法特异性强,灵敏度高,在50p g的模板浓度下能检测到很强的条带,利用此引物可检测到1×105个菌体。

2 AR D RA

扩增核糖体DNA限制性酶切分析(ARDRA),利用通用引物扩增rDNA序列,然后用内切酶限制性切割消化(restriction endonuclease analysis, REA)后,得到的多态性谱带可用于属水平或种水平上细菌菌株的鉴定和分类。ARDRA比16S rD2 NA测序更为快速,尤其是产物经荧光标记后可进行自动分析。通过A RDRA产生的16S rDNA片段图谱和rep2PCR产生的基因组指纹图谱结合起来分析,可进一步鉴定到亚种甚至菌株的水平。同样来自于16S rDNA区域、ITS区域或任一种其他的图谱都可与A RDRA产生的图谱结合起来进行计算机辅助分析。

另一种ARDRA方法是末端限制性酶切长度多态性分析(terminal2rest riction f ragment lengt h pol2 ymorp hism,T2RFL P)。此方法依据不同系统发育组内16S rDNA扩增产物的末端限制性片段长度具有特异性,5’端的引物经荧光染色,在限制性酶切16S rDNA片段后,末端片段可以被特异性地检测出来并可确定其长度。

将真细菌中的保守序列设计出引物(fD2和r P1),对Erw i ni a am y lovora扩增得到的1.5bp的16S rDNA片段,经H aeⅢ酶解后得到具有鉴别意义的RFL P图谱[5]。一种嵌套式16S rDNA2PCR 的方法可以特异性地鉴定密执安棒形杆菌(Cl avi2 bacter michi ganensis),在限制性酶切分析后可区别不同的亚种[6]。通过对扩增产物的REA加强其特异性的方法一般称为PCR2RFL P,有人认为4个识别位点的限制性内切酶效果较好。

利用rDNA作为靶目标检测病原细菌,其辨别力一般只能达到种或属的水平。许多rDNA的PCR引物之通性被广泛用于其他更为特异的PCR 方法的设计,例如应用广泛的ITS2PCR,A RDRA 等。tDNA一般位于16S和23S rDNA间的ITS区域或细菌5S rDNA末端。由于编码tDNA基因同源性最高,通用引物可从动植物和细菌的细胞核或细胞器中扩增出DNA片段,不能单独用于病原菌的检测。

除利用核糖体DNA来检测病原菌之外,还可通过质粒DNA、致病基因和未知DNA序列来进行检测。利用质粒DNA时需考虑其稳定性,除非此质粒是编码适应性或致病性的基因。由于细菌的质粒在某些环境中易丢失,导致检测结果的可靠性降低,因此质粒只适合对某些特殊病原菌的检测。于致病性相关的基因既有限又较难获得,因此这些基因在检测中的应用受到限制。未知的DNA序列可用来设计PCR的引物,通常可以确定特定种的特有片段。但这样的目标序列不能用于长期、稳定的检测,且此序列发生的突变也无法观察到。

3 rep2PCR基因指纹图谱分析

rep2PCR是在细菌基因组内特殊的保守重复序列被发现后发展起来的一种技术。应用较多的序列为:基因间重复性回文序列(repetitive extragenic pal2 indromic,REP);肠细菌重复性基因间共有序列(re2 petitive intergenic consensus,ERIC);BOX元件。这些序列作为PCR反应的引物,扩增两个相邻重复元件之间的DNA序列。细菌基因组可产生一系列复杂的片段(10到30或更多),长度短到200bp,长达6kb。这3种方法分别被称为REP2PCR,ERIC2PCR,BOX2 PCR,总称rep2PCR。rep2PCR技术能在种、致病变种(生化型)、菌株水平上区分和鉴定植物病原细菌,也可用于测定病原菌的群体遗传多样性,从而有助于揭开病原菌的起源、进化和系统发育关系,为病害的监测与防治提供重要的信息资料和科学依据。每一种引物(REP,ERIC和BOX)都可用于革兰氏阳性、阴性菌及与植物有关的放线菌等所有细菌的指纹图谱分

析。在rep2PCR分析中,由于3个重复序列在基因组间分布不同,所以REP2、ERIC2和BOX2PCR分析结果存在差异,且REP2、ERIC2比BOX2PCR具有更高的分辨率[21]。

George根据普遍存在于稻白叶枯病菌(X an2 t homonas ory z ae pv.ory z ae)中的重复元件IS1112而设计的引物,每个稻白叶枯病菌的基因组可扩增出13~35个条带,长度范围在100bp到7kb之间,所获得的图谱可区别稻白叶枯病菌群体样品间的多态性[7]。Scortichini等选择46个不同时期、不同地域的洋榛假单胞菌(Pseu domonas avell anae)菌株进行rep2PCR分析,每个菌株分别可扩增到220~1100bp的条带,据指纹图谱分析可准确地鉴定每个菌株的地域来源[8]。张晓梅等通过ERIC2PCR扩增,找到了萎蔫短小杆菌萎蔫致病变种(Curtobacte2 ri um f l accum f aciens pv.f l accum f aciens)的特异性条带,据此条带序列设计出该致病变种的特异性引物,解决了长期以来不能特异性区分萎蔫短小杆菌的不同致病变种这一问题[9]。该技术已成功用于土壤杆菌、荧光假单胞菌、油菜黄单胞菌不同亚种、稻白叶枯病菌、萎蔫短小杆菌(Cur.f l accum f a2 ciens pvs.)不同的致病变种、棒形杆菌属不同亚种鉴定和鉴别中[10]。

在病原细菌的检测中,存在其他指纹图谱分析方法。随机引物PCR DNA多态性分析(randomly amplified polymorp hic DNA,RA PD)方法虽不要求了解DNA序列信息、灵敏度高、样品用量少且可用于RNA指纹分析,但由于重复性不高,近年来一般不单独使用。扩增片段长度多态性(amplified f rag2 ment lengt h polymorp hism,A FL P)亦称SRFA(se2 lective rest riction f ragment amplification)分析技术稳定性、重复性好,能在短时间内检测到大量的多态性标记,且对模板浓度不灵敏,模板需求量也很少,但仅对病原菌进行检测,成本高,且又耗时,实际应用较少。

4 实时荧光定量PCR

实时荧光定量PCR是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析的方法。与常规PCR相比,该技术实现了定性到定量的飞跃,特异性更强、无需PCR后续处理、自动化程度更高。该技术正在各实验室检测中推广应用,目前国内各种型号的实时荧光PCR仪已有近百台,推广十分迅速,在动植物病原菌检测标准中越来越多地采用了实时荧光PCR。荧光定量PCR所使用的荧光化学有荧光探针和荧光染料两种。目前应用较多的是TaqMan荧光探针技术,该技术在PCR扩增时加入一对引物和一个特异性的荧光探针,该探针为一寡核苷酸,两端分别标记一个报告荧光基团和一个淬灭荧光基团。探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5’→3’外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而使荧光监测系统接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成的完全同步。

该技术已成功用于多种植物病原细菌的检测鉴定,展示出强大的应用前景。国内外已报道了对马铃薯环腐病菌(Cl avibacter michi ganensis subsp. se pedonicus)、青枯劳尔氏菌(R alstoni a)、燕麦食酸菌(A ci dovorax avena)、根癌土壤杆菌(A g robacte2 ri um)、木质部寄生难养菌(X y lell a f asti diosa)、密执安棒形杆菌的不同亚种(Cl.michi ganensis.sub2 spp.)、植原体(Phy topl asm a)、梨火疫病菌(E. am y lovora)、苜蓿细菌性萎蔫病菌(Cl.michi2 ganensis subsp.i nsi dios um)、稻白叶枯病菌(X. ory z ae pv.ory z ae)、水稻细菌性条斑病菌(X. ory z ae pv.ory z icol a)、玉米细菌性枯萎病菌(Pan2 toea stew artii subsp.stew artii)、菜豆细菌性萎蔫病菌(Cur.f l accum f aciens pv.f l accum f aciens)和柑橘溃疡病菌(X ant homonas cit ri)等细菌的检测[1112]。其中早期的和国内的实时PCR均未能建立起完整的定量检测体系,仅提高了检测的灵敏度,表明该技术有待进一步推广。由于菜豆萎蔫病菌和番茄溃疡病菌是国家的检疫性病害,为此作者开展了TaqMan探针实时荧光PCR检测的研究,以期在已有研究基础上[4,9]获得一种简单、快速、灵敏、准确的新方法。

综上所述,细菌的分子检测目前主要依赖PCR 及PCR衍生出的多种新技术,尤其是ITS2PCR、ARDRA、rep2PCR和荧光定量PCR。今后发展趋势之一是通过以上方法得到属、种甚至亚种及致病变种间的特异性片段,经测序后作为探针直接从组织中通过So ut hern杂交检测病原菌;另一趋势是建立各种细菌的基因组指纹图谱数据库,以计算机图

象分析系统作为辅助,实现检测自动化。此外,结合荧光标记技术,对病原细菌检测进行定量,更好地服务于病害的测报和防治。

参考文献

[1] MA ES M ,GARBEVA P ,KAMO EN O.Recognition and de 2

tection in seed of t he X ant homonas pat hogens t hat cause cereal leaf streak using rDNA spacer sequences and polymerase chain reaction [J ].Phytopat hology ,1996,86:63

69.

[2] 葛芸英,郭坚华.小麦苗枯病菌的ITS 分析和PCR 检测[J ].

植物病理学报,2003,33(3):198202.

[3] 葛芸英,郭坚华.甜菜银叶病菌的PCR 检测[J ].微生物学报,2003,43(2):271

275.

[4] 付鹏,郭亚辉,张晓梅,等.番茄溃疡病菌分子检测技术[J ].

江苏农业学报,2005,21(2):118

122.

[5] BERESWILL S ,BU GER T P ,BRUCHMULL ER L ,et al.I 2

dentification of t he fire blight pat hogen ,Erw inia am y lovora ,by PCR assays wit h chromosomal DNA [J ].Applied and Envi 2ronmental Microbiology ,1995,61:2636

2642.

[6] L EE I M ,BAR TOSZYK I M ,GUNDERSEN 2RINDAL D E ,

et al.Phylogeny and classification of bacteria in t he genera

Clavibacter and Rat hayibacter on t he basis of 16S rDNA gene

sequence analyses [J ].Applied and Environmental Microbiolo 2gy ,1997,63:2631

2636.

[7] GEOR GE M L C ,BUSTAMAM M ,CRU Z W T ,et al.

Movement of X ant homonas ory z ae pv.ory z ae in sout heast A 2sia deteced using PCR 2based DNA fingerprinting [J ].Phytopa 2t hology ,1997,87:302

309.

[8] SCOR TICHINI M ,MARCH ESI U ,ROSSI M P ,et al.Rapid

identification of Pseu domonas avellanae field isolates ,causing hazelnut decline in central Italy ,by repetitive PCR genomic fin 2gerprinting [J ].Phytopat hology ,2000,148:153159.

[9] 张晓梅,林友伟,吴新华,等.菜豆萎蔫病菌的PCR 检测技术

[J ].南京农业大学学报,2004,27(3):42

45.

[10]LOU WS F J ,RADEMA KER J K W ,DE BRU I J IN F J.The

t hree Ds of PCR 2based genomic analysis of phytobacteria :Di 2versity ,detection ,and disease diagnosis [J ].Annual Review of Phytopat hology ,1999,37:81

125.

[11]漆艳香,赵文军,朱水芳,等.苜蓿萎蔫病菌TaqMan 探针实

时荧光PCR 检测方法的建立[J ].植物检疫,2003,17(5):

260

264.

[12]MAVRODIEVA V ,L EV Y L ,GABRIEL D W.Improved

sampling met hods for real 2time polymerase chain reaction diag 2nosis of citrus canker from field samples [J ].Phytopat hology ,2004,94:61

68.

收稿日期: 20060228 修订日期: 20060530

基金项目: 深圳市科技计划项目(05K J ba002)3通讯作者E 2mail :sjiang @https://www.doczj.com/doc/979786971.html,

植物源驱避剂研究进展

杨长龙1,2, 江世宏13, 徐汉虹2

(1.深圳职业技术学院应用化学与生物技术学院,深圳 518055; 2.华南农业大学资源环境学院,广州 510642)

摘要 综述了植物源驱避剂的市场现状及应用前景,植物源驱避活性物质,植物源驱避活性物质提取方法,植物源驱避剂剂型的研究现状,并对其未来的发展趋势进行了展望。关键词 植物源驱避剂; 萃取; 生物活性; 剂型中图分类号 S 482.38

R esearch progresses in plant 2originated repellents

Yang Changlong 1,2, Jiang Shihong 1, Xu Hanhong 2

(1.School of A pplied Chemistry and Biological T echnology ,S henz hen Polytechnic ,S henz hen 518055,China;

2.College of Resources and Environment ,South China A gricultural University ,Guangz hou 510642,China )Abstract This paper summarized the market Status Quo and prospects of plant 2originated repellents ,repellent ma 2terials extracted f rom the plants ,the extraction methods and formulations for plant 2originated repellents.The f uture development trends of them were also prospected.

K ey w ords plant 2originated repellent ; extraction ; biological activity ; formulation

化学农药是控制病、虫、草、鼠害的主要手段。

然而化学农药,尤其是化学杀虫剂,在带来农作物

中国药典2010年版《细菌内毒素检查法》

中国药典2010年版《细菌内毒素检查法》 ——凝胶法 凝胶法 凝胶法系通过鲎试剂与内毒素产生凝集反应的原理来检测或半定量内毒素的方法。 鲎试剂灵敏度复核试验在本检查法规定的条件下,使鲎试剂产生凝集的内毒素的最低浓度即为鲎试剂的标示灵敏度,用EU/ml表示。当使用新批号的鲎试剂或试验条件发生了任何可能影响检验结果的改变时,应进行鲎试剂灵敏度复核试验。 根据鲎试剂灵敏度的标示值(λ),将细菌内毒素国家标准品或细菌内毒素工作标准品用细菌内毒素检查用水溶解,在旋涡混合器上混匀15分钟,然后制成2λ、λ、0.5λ和0.25λ四个浓度的内毒素标准溶液,每稀释一步均应在旋涡混合器上混匀30秒钟。取分装有0.1ml鲎试剂溶液的10mm×75mm试管或复溶后的0.1ml/支规格的鲎试剂原安瓿18支,其中16管分别加入0.1ml不同浓度的内毒素标准溶液,每一个内毒素浓度平行做4管;另外2管加入0.1ml细菌内毒素检查用水作为阴性对照。将试管中溶液轻轻混匀后,封闭管口,垂直放入37℃±1℃恒温器中,保温60分钟±2分钟。 将试管从恒温器中轻轻取出,缓缓倒转180°,若管内形成凝胶,并且凝胶不变形、不从管壁滑脱者为阳性;未形成凝胶或形成的凝胶不坚实、变形并从管壁滑脱者为阴性。保温和拿取试管过程应避免受到振动造成假阴性结果。 当最大浓度2λ管均为阳性,最低浓度0.25λ管均为阴性,阴性对照管为阴性,试验方为有效。按下式计算反应终点浓度的几何平均值,即为鲎试剂灵敏度的测定值(λc). λc=1g-1(∑X/4)

式中 X为反应终点浓度的对数值(1g)。反应终点浓度是指系列递减的内毒素浓度中最后一个呈阳性结果的浓度。 当λc在0.5λ-2λ(包括0.5λ和2λ)时,方可用于细菌内毒素检查,并以标示灵敏度λ为该批鲎试剂的灵敏度。 干扰试验按表1制备溶液A、B、C和D,使用的供试品溶液应为未检验出内毒素且不超过最大有效稀释倍数(MVD)的溶液,按鲎试剂灵敏度复核试验项下操作。 只有当溶液A和阴性对照溶液D的所有平行管都为阴性,并且系列溶液C 的结果在鲎试剂灵敏度复核范围内时,试验方为有效。按下式计算系列溶液C和B的反应终点浓度的几何平均值(Es和Et)。 Es= 1g-1(∑Xs/4) Et= 1g-1(∑Xt/4) 式中,Xs、Xt分别为系列溶液C和溶液B的反应终点浓度的对数值(1g)。当Es在0.5λ—2λ(包括0.5λ和2λ)及Et在0.5Es—2Es (包括0.5Es 和2Es)时,认为供试品在该浓度下无干扰作用。若供试品溶液在小于MVD 的稀释倍数下对试验有干扰,应将供试品溶液进行不超过MVD的进一步稀释,再重复干扰试验。 表1 凝胶法干扰试验溶液的制备

植物细菌性病害和病原细菌分类研究进展

植物细菌性病害和病原细菌分类研究进展 彭炜 (四川省农业管理干部学院,中国成都610072) 摘要迄今为止已经描述的植物病原细菌约有30个属和650个种,其中我国记录的细菌约150种以上。本文主要讨论植物病原细菌分类的历史演变与发展,简要描述生产上造成显著危害的黄单胞菌属、假单胞菌属、欧文氏菌属、土壤杆菌属、棒形杆菌属及支原体等6类主要细菌及其所致病害,并对已经发现并证实的植物细菌性病害种类作出粗略的统计,这些数据对于研究植物病原细菌的系统分类学和植物病害信息数据库查询系统具有重要的参考价值。 关键词:植物细菌性病害;细菌分类;种类/属;真细菌;植原体 Advances in classification of plant bacterial diseases and the pathogenic bacteria Peng Wei Sichuan College of Agricultural Administration and Sciences, Chengdu, China Abstract. About 650 species of plant pathogenic bacteria in 30 genera have been reported around the world amongst which 150–200 species have been recorded in China. In the present paper we review the historic development in plant bacterium classifiction and bacterial disease studies. The 5 most important plant pathogenic bacteria are described and they include Xanthomonas, Pseudomonas, Ewinia, Agrobacteria, Clavibacter and Mycoplasma. These data are important and can be useful in studies on systematics of plant bacteria and on construction of plant bacterial disease information platforms. Keywords. plant pathogenic bacteria; systematics; species and genera; eubacteria; phytoplasmae ———————————————————— 作者简介:彭炜(1955-),四川省资中县人,研究员,主要从事植物保护专业教学、科研及行政管理等工作。

细菌鉴定及检测方法

细菌鉴定及检测方法 一、启动条件 1、目的样出现坏包,若批次相同,取表现性状相同的任意一包进行细菌初步鉴 定。若批次不同则分别进行细菌初步鉴定。 2、随机样出现坏包,必须进行细菌初步鉴定。 二、胀包 1、记录批次。 2、及时用72%的酒精对样品的外表进行消毒,尽量不损坏封合待以后检查。在 超净台内以无菌操作剪开包装,再避开横竖封处剪开一个圆形或三角形。3、对样品进行微生物划线培养。 3.1采用普通营养琼脂培养基做细菌的划线培养36±1℃、48小时。 3.2分别吸取10毫升样品到两个无菌的小试管中,,分别在80和100℃的水 浴中加热10分钟,冷却用营养琼脂分别做芽孢(36±1℃、72小时) 和耐热芽孢(55±1℃、72小时)的划线培养。 3.3采用普通营养琼脂培养基或快速检测培养基做嗜冷菌/低温菌的划线培 养(4—6℃ 10天或21±0.5℃ 25小时)。 3.4 必须用高盐察氏或虎红琼脂培养基做霉菌和酵母菌的划线培养 (25—28℃ 5--7天) 4、对样品做感官检测。 5、用PH计检测样品的PH值。 6、将样品倒掉,进行包装密封性检查,并进行记录。 7、记录菌落特征。 8、选区不同形态的单一菌落进行坚定。 8.1 革兰氏阴性菌和阳性菌的鉴定: 8.1.1涂片、革兰氏染色、镜检。或结晶紫染色、镜检、氢氧化钾拉 丝试验。 8.1.2革兰氏染色、结晶紫染色方法见《微生物检测》 8.1.3氢氧化钾拉丝试验 在微生物载物片上滴一滴3%氢氧化钾,用接种针从培养皿上的

菌落中挑取微生物,放在氢氧化钾溶液中用力搅拌。7—10秒后,抬 起针头,观察针头和玻片之间是否有丝状物,如果15—20 秒后二者 之间无丝状物,停止搅拌。 判定:无丝状物阳性;有丝状物阴性。 8.2 过氧化氢酶试验(或过氧化氢酶试纸)(产气试验): 试剂:10%过氧化氢溶液 步骤:在微生物载物片上滴一滴10%过氧化氢,用接种针从培养皿上的菌落中挑取微生物,放在过氧化氢溶液中看是否有气体产生。 判定:产气阳性;不产气阴性。 8.3氧化酶试验 试剂:含1%四甲基双噻二胺和99%的乙醇溶液。 步骤:用上述试剂将一张滤纸浸透(或直接采用氧化酶试纸条),然后进行细菌培养物的涂片试验。 判定:30秒内使显色物质变为深蓝色阳性,不变色阴性。 三、酸包 1、发现酸包后,及时将料液快速转入无菌瓶中。 2、记录批次 3、其它项目检测同胀包。

医院感染监控中常用的检测方法

医院感染监控中常用的检测方法 采样及检查原则:采样后必须尽快对标本进行相应指标的检测,送检时间不得超过6 h;若标本4 ℃保存时,送检时间可延长,但不得超过24 h。 1.医务人员手的微生物学监测 (1)采样时间:在接触患者或从事医疗活动前进行采样。 (2)采样面积及方法:被检人五指并拢,将浸有无菌9g/L氯化钠溶液的棉拭子一支在双手曲面从指根到指端来回涂擦各两次(一只手涂擦面积约30cm2),并随之转动采样棉拭子,剪去手接触部位,将棉拭子放入装有10ml采样液的试管内送检。采样面积按平方厘米cm2) 计算。 (3)细菌菌落总数检查:1ml采样液放入灭菌平皿内,用普通营养琼脂作倾注培养,放35℃温箱内培养24~48 h计数菌落。 手细菌菌落总数(cfu/ cm2)= 平板上菌落数×采样液稀释倍数30×2 (4)判断标准:见表6-3-1。 2.物体表面的微生物学监测 (1)采样时间:消毒处理后4 h内采样。 (2)采样面积:被采表面<100 cm2,取全部表面;被采表面≥100 cm2,取100 cm2。 (3)采样方法:用5cm×5 cm的标准灭菌规格板,放在被检物体表面,用浸有灭菌9g/L氯化钠溶液的棉拭子1支,在规格板内横竖

往返各涂抹5次,并随之转动棉拭子,连续采样式1~4个规格板面积,剪去手接触部分,将棉拭子入装10ml采样液的试管内送检。门把手等小型物体则采用棉拭子直接涂抹物体的方法采样。 (4)细菌菌落总数检查:1ml采样液放入灭菌平皿内,用普通营养琼脂作倾注培养,放35℃温箱内培养24~48 h计数菌落。 物体表面细菌菌落总数(cfu/ cm2)= 平板上菌落数×采样液稀释倍数 采样面积(cm2) (5)判断标准:见表6-3-1。 3.空气的微生物学监测 (1)采样时间:选择消毒处理后与进行医疗活动之前期间采样。(2)采样高度:与地面垂直高度80~150 cm。 (3)布点方法:室内面积≤30 m2,设一条对角线上取3点,即中心一点、两端各距墙1m处取一点;室内面积>30 m2,设东、西、南、北、中5点,其中东、西、南、北点均距墙1m。 (4)采样方法:用90mm直径普通营养琼脂平板在采样点暴露5~30 min后送检培养。 (5)细菌菌落总数检查:将平板置37℃温箱内培养24 h计数菌落。空气细菌菌落总数(cfu/ m3)= 50000NAT 式中:A—平板面积(cm2) T—平板暴露时间(min) N—平均菌落数(cfu/平板)

细菌内毒素检查法---------------操作规程

******有限公司 标准操作规程 目的 建立细菌内毒素检查操作规程,保证检测结果的准确性。 适用范围 所有原料、成品的细菌内毒素检查。 责任人 QC检验员 内容 1 简述 1.1 本法系利用鲎试剂来检测或量化由革兰阴性菌产生的细菌内毒素,以判断供试品中细菌毒素的限量是否符合规定的一种方法。 1.2 细菌内毒素检查包括凝胶法和光度测定法两种方法。供试品检测时可使用其中任何一种方法。当测定结果有争议时,除另有规定外,以凝胶法结果为准。 1.3 本规范适用于凝胶法检查。凝胶法系通过鲎试剂与内毒素产生凝集反应的原理来检测或半定量内毒素的方法。 1.4 细菌内毒素的量用内毒素单位(EU)表示 1.5 细菌内毒素国家标准品(NSE)系自大肠埃希菌提取精制而成,用于标定、复核、仲裁鲎试剂灵敏度和标定细菌内毒素工作标准品的效价。 1.6 细菌内毒素工作标准品(WSE)系以细菌内毒素国家标准品为基准标定其效价,用于试验中的鲎试剂灵敏度复核、干扰试验及各种阳性对照。 1.7 凝胶法细菌内毒素检查用水(BET水)系指内毒素含量小于0.015Eu/ml灭菌注射用水。光度测定法用的细菌内毒素检查用水,其内毒素的含量应小于0.005Eu/ml。 1.8 鲎试剂灵敏度复核试验在本检查法规定的条件下,使鲎试剂产生凝集的内毒素

******有限公司 标准操作规程 的最低浓度即为鲎试剂的标示灵敏度,用EU/ml表示。当使用新批号的鲎试剂或试验条件发生了任何可能影响检验结果的改变时,应进行鲎试剂灵敏度复核试验。 1.9 供试品干扰试验项用于建立新品种细菌内毒素检查方法以及供试品的配方和生产工艺或试验环境有变化,鲎试剂来源不同或供试品阳性对照结果呈阴性时确定供试品是否存在抑制或增强作用。 1.10 检查法项为供试品细菌内毒素检查方法。阴性对照、阳性对照和供试品阳性对照必须同时进行,否则试验结果无效。 2实验材料及用具 2.1 天平供试品称量用,感量为0.1mg以下。 2.2 电热干燥箱除外源性内毒素用,温度应能维持250℃以上至少一小时。 2.3 恒温水浴箱或适宜的恒温器,应能在37土1℃保持一小时。 2.4 水银温度计或酒精温度计,精度在1℃以下。 2.5 旋涡混合器 2.6 鲎试剂(应具有国家主管部门的批准文号)及细菌内毒素检查用水(符合规定)。2.7 细菌内毒素国家标准品(NSE),细菌内毒素工作标准品(WSE),除另有规定外应由中国药品生物制品检定所统一发放。 2.8 实验用具移液管(或刻度吸管,定量移液器)、凝集管(103 75mm)、三角瓶、小试管(163100mm)、试管架、洗耳球、封口膜或金属试管帽、时钟、脱脂棉、吸水纸、剪刀、砂轮所用玻璃器皿须经250℃干烤至少1小时。塑料用具应使用其它适宜的除细菌内毒素方法。 2.9 试剂 75%乙醇、蒸馏水、5%重铬酸钾硫酸洗液。 3 操作方法 3.1 试验准备 3.1.1 洗液的配制配制铬酸洗液或其他适宜的细菌内毒素灭活剂。 3.1.2 玻璃器皿的洗涤将被洗涤的玻璃器皿用洗涤剂和自来水洗净并空干水分后置洗液中浸泡4小时,取出将洗液滤干,用自来水将残余的洗液洗净,再用新鲜蒸馏水冲洗干燥后置适宜的密闭金属容器中,迅速置烤箱中。

细菌数量的测定方法

细菌数量的测定方法 1、计数器测定法: 即用血细胞计数器进行计数。取一定体积的样品细胞悬液置于血细胞计数器的计数室内,用显微镜观察计数。由于计数室的容积是一定的(O.1mm3),因而根据计数器刻度内的细菌数,可计算样品中的含菌数。本法简便易行,可立即得出结果。 本法不仅适于细菌计数,也适用于酵母菌及霉菌孢子计数。 2、电子计数器计数法: 电子计数器的工作原理是测定小孔中液体的电阻变化,小孔仅能通过一个细胞,当一个细胞通过这个小孔时,电阻明显增加,形成一个脉冲,自动记录在电子记录装置上。 该法测定结果较准确,但它只识别颗粒大小,而不能区分是否为细菌。因此,要求菌悬液中不含任何碎片。 3、活细胞计数法 常用的有平板菌落计数法,是根据每个活的细菌能长出一个菌落的原理设计的。取一定容量的菌悬液,作一系列的倍比稀释,然后将定量的稀释液进行平板培养,根据培养出的菌落数,可算出培养物中的活菌数。此法灵敏度高,是一种检测污染活菌数的方法,也是目前国际上许多国家所采用的方法。使用该法应注意:①一般选取菌落数在30~300之间的平板进行计数,过多或过少均不准确;②为了防止菌落蔓延,影响计数,可在培养基中加入O.001%2,3,5一氯化三苯基四氮唑(TTC);③本法限用于形成菌落的微生物。 广泛应用于水、牛奶、食物、药品等各种材料的细菌检验,是最常用的活菌计数法。 4、比浊法 比浊法是根据菌悬液的透光量间接地测定细菌的数量。细菌悬浮液的浓度在一定范围内与透光度成反比,与光密度成正比,所以,可用光电比色计测定菌液,用光密度(OD值)表示样品菌液浓度。 此法简便快捷,但只能检测含有大量细菌的悬浮液,得出相对的细菌数目,对颜色太深的样品,不能用此法测定。 5、测定细胞重量法 此法分为湿重法和干重法。湿重法系单位体积培养物经离心后将湿菌体进行称重;干重

细菌的各种计数法

1、计数器测定法: 即用血细胞计数器进行计数。取一定体积的样品细胞悬液置于血细胞计数器的计数室内,用显微镜观察计数。由于计数室的容积是一定的(O.1mm3),因而根据计数器刻度内的细菌数,可计算样品中的含菌数。本法简便易行,可立即得出结果。 本法不仅适于细菌计数,也适用于酵母菌及霉菌孢子计数。 2、电子计数器计数法: 电子计数器的工作原理是测定小孔中液体的电阻变化,小孔仅能通过一个细胞,当一个细胞通过这个小孔时,电阻明显增加,形成一个脉冲,自动记录在电子记录装置上。 该法测定结果较准确,但它只识别颗粒大小,而不能区分是否为细菌。因此,要求菌悬液中不含任何碎片。 3、活细胞计数法 常用的有平板菌落计数法,是根据每个活的细菌能长出一个菌落的原理设计的。取一定容量的菌悬液,作一系列的倍比稀释,然后将定量的稀释液进行平板培养,根据培养出的菌落数,可算出培养物中的活菌数。此法灵敏度高,是一种检测污染活菌数的方法,也是目前国际上许多国家所采用的方法。使用该法应注意:①一般选取菌落数在30~300之间的平板进行计数,过多或过少均不准确;②为了防止菌落蔓延,影响计数,可在培养基中加入O.001%2,3,5一氯化三苯基四氮唑(TTC);③本法限用于形成菌落的微生物。 广泛应用于水、牛奶、食物、药品等各种材料的细菌检验,是最常用的活菌计数法。 4、比浊法 比浊法是根据菌悬液的透光量间接地测定细菌的数量。细菌悬浮液的浓度在一定范围内与透光度成反比,与光密度成正比,所以,可用光电比色计测定菌液,用光密度(OD值)表示样品菌液浓度。 此法简便快捷,但只能检测含有大量细菌的悬浮液,得出相对的细菌数目,对颜色太深的样品,不能用此法测定。 5、测定细胞重量法 此法分为湿重法和干重法。湿重法系单位体积培养物经离心后将湿菌体进行称重;干重法系单位体积培养物经离心后,以清水洗净放人干燥器加热烘干,使之失去水分然后称重。 此法适于菌体浓度较高的样品,是测定丝状真菌生长量的一种常用方法。 6、测定细胞总氮量或总碳量 氮、碳是细胞的主要成分,含量较稳定,测定氮、碳的含量可以推知细胞的质量。此法适于细胞浓度较高的样品。 7、颜色改变单位法(colour change unit,简称CCU) 这种方法通常用于很小,用一般的比浊法无法计数的微生物,比如支原体等,因为支原体的液体培养物是完全透明的,呈现为清亮透明红色,因此无法用比浊法来计数,由于支原体固体培养很困难,用cfu法也不容易计数,因此需要用特殊的计数方法,即CCU法。它是以微生物在培养基中的代谢活力为指标,来计数微生物的相对含量的,下面以解脲脲原体为例,简单介绍其操作: (1).取12只无菌试管,每一管装1.8ml解脲脲原体培养基。 (2).在第一管加入0.2ml待测解脲脲原体菌液,充分混匀,从中吸取0.2ml加入第二管,依次类推,10倍梯度稀释,一直到最末一管 (3).于37度培养,以培养基颜色改变的最末一管作为待测菌液的CCU,也就是支原体的最大代谢活力,比如第六管出现颜色改变,他的相对浓度就是10的6次方CCU/ml. 一般来说,比浊法和菌落计数法就可以满足绝大多数细菌的计数,但是对支原体这样比较特殊的微生物,用CCU法比较合适。

中华人民共和国国家标准细菌内毒素检测方法

医用输液、输血、注射器具细菌内毒素检验方法 中华人民共和国国家标准 GB/T14233.2—93 1993-03-16发布 一、定义及适用范围:本法系列用鲎试剂与细菌内毒素产生凝集反应 的机理,以判断供试品中内毒素限量是否符合规定的一种方法。 用以代替家兔法对供试品进行热原初试。本法仅适用于一次性使用输液器、输血器。其他产品可参照使用。 二、主要设备:超净工作台、电热干燥箱、恒温水浴。 三、试剂 1、细菌内毒素国家标准品:用于仲裁鲎试剂灵敏度和试验中阳性对照。 2、细菌内毒素工作标准品:用于标定鲎试剂灵敏度和试验中阳性对照。 3、鲎试剂:灵敏度为0.25EU/ml,规格为0.5ml。 4、无热原水:内毒素含量小于0.05EU/ml。 四、试验前准备 1、器具除热原:与试验液接触的所有器具均应除热原。玻璃器具置电热干燥箱内250℃干烤至少60min;塑料器具置30%双氧水中浸泡 4h,再用无热原水冲洗后于60℃烘干备用。 2、鲎试剂灵敏度测定 (1)试验前应核对使用批号鲎试剂的灵敏度,应符合规定。 (2)灵敏度测定:根据标示的灵敏度范围,将细菌内毒素工作 标准品用无热原水以1→2等比稀释,选择能出现阳性和阴性结果的4个连续稀释液。取同一批号鲎试剂若干支,分别按标示量

加入无热原水溶解为鲎试剂溶解液。取10mm×75mm试管若干 支,分别加入0.1ml鲎试剂溶解液,加入内毒素稀释液0.1ml,每一稀释液平行操作4管,轻轻振动试管混匀内容物,封闭管 口,置37±1℃恒温水浴中保温60±2min观察结果。最高浓度的4管应均为阳性,最低浓度的4管应为阴性。 五、试验方法 1、供试品数量 :同一批号至少3个单位供试品。 2、浸提介质:无热原水。 3、供试液制备:在无菌条件下,每套输液器内腔注入10ml,输血器内腔注入15ml浸提介质,反复荡洗5次后两端密封,置37±1℃恒温箱中保温2h,取出后将供试液汇集至一无热原具塞玻璃容器内。供试液贮存应不超过2h。 4、试验步骤:将鲎试剂和细菌内毒素工作标准品分别按标示量加入无热原水溶解。细菌内毒素工作标准品逐次稀释至0.5Eu/ml,供作阳性对热。取10mm×75mm试管6支,其中供试品管2支各加入0.1ml 内毒素工作标准品稀释液,阴性对照管2支各加入0.1ml无热原水,阳性对照管2支各加入0.1ml内毒素工作标准品稀释液,再逐一加入0.1ml鲎试剂溶解液。轻轻混匀试管内容物,封闭管口,垂直放入37±1℃水浴中保温60±2min,轻轻取出,观察结果。 5、结果判定 1)、将试管缓慢倒转180°,管内容物呈坚实凝胶者为阳性,记录为(+),不呈凝胶状或虽呈凝胶状但不能保持完整者为阴性,记录为(-)。

细菌内毒素检查标准操作规程..

细菌内毒素检查标准操作规程 1 简述 1.1 本规范适用于中国药典2005年版附录中细菌内毒素检查法一凝胶法和光度测定法。后者包括浊度法和显色基质法。供试品检测时,可使用其中任何一种方法进行实验。当 测定结果有争议时,除另有规定外,以凝胶法结果为准。 1.2 供试品细菌毒素限值的确定。 (一)药典中有规定的,按供试品各论中规定限值; (二)尚无标准规定的,按以下公式确定供试品内毒素限值: L=K/M 式中 L为供试品的细菌内毒素限值,以EU/ml、EU/mg、EU/U表示。 K为按规定的给药途径,人用每公斤体重每小时最大可接受的内毒素剂量,以EU/kg/h表示。其中注射剂,K=5EU/kg/h;放射性药品注射剂,K=2.5EU/kg/h;鞘内用注射剂, K=0.2EU/kg/h。 M为人用每公斤体重每小时的最大供试品剂量,以ml/kg/h、ml/kg/h、U/kg/h表示。药品人用最大剂量可参阅国家批准的药品说明书和《临床用药须知》等权威著作,中国人 均体重按60kg计算,注射时间小于1小时的按1小时计。按人用剂量计算限值时,如遇特殊情况,可根据生产和临床用实际情况做必要调整,但需说明理由。 1.3 供试品最大有效稀释倍数的确定 供试品的最大有效稀释倍数(MV D)按下式计算: MV D=C?L/λ L为供试品的细菌内毒素限值;C为供试品溶液的浓度。当L以EU/ml表示时,C等于1.0ml/ml;当L的单位以EU/mg或EU/U表示时,C为供试品制备成溶液后的浓度,单位为mg/ml 或U/ml。如供试品为注射用无菌粉末或原料药,则MV D取1,可计算供试品的最小有效稀释浓度C: λ/L。

最新重要植物病原真菌分类检索表

重要植物病原真菌分类检索表鞭毛菌亚门真菌 1. 根肿菌纲(Plasmodiophoromycetes戸根肿菌属(Plasmodiophora)f芸薑根肿菌(Plasmodiophora brasicae:弓I起十字花科根肿病 2. 壶菌纲(Chytridiomycetes)—节壶菌属(Physoderma)—玉蜀黍节壶菌(P. maydis):玉米褐斑病 3. 丝壶菌纲(Hyphochytridiomycetes) 无 4. 卵菌纲(Oomycetes) 4.1 水霉目( Saprolegniales) a1水霉属(Saprolegnia—寄生水霉(S. parasitica:引起鱼类水霉病 a2绵霉属(Achlya)—稻绵霉(A. oryzae):引起水稻烂秧病 4.2霜霉目( Peronosporales) 4.2.1 腐霉科( Pythiaceae) a1腐霉属(Pythium)—瓜果腐霉(P. aphanidermatum ):西葫芦绵腐病a2 疫霉属( Phytophthora )—致病疫霉( P. infestans ):马铃薯晚疫病 4.2. 2 霜疫霉科(Peronophthoraceae —霜疫霉属(Peronophthora —荔枝霜疫霉(P. litchii),为害荔枝花序和果实引起霜霉病。 4.2. 3 霜霉科( Peronosporacea)e a1霜霉属(Peronospora)—寄生霜霉(Peronospora parasitica十字花科植物霜霉病 a2 假霜霉属(Pseudoperonospora) a3 单轴霉属(Plasmopara) a4 盘梗霉属(Bremia) a5指梗霉属(Sclerospora)—禾(谷生)指梗霉(S. graminicola)谷子白发病 4.2. 4 白锈科(Albuginaceae)—白锈属(Albugo)—白锈菌(A. candida)十字花科、旋花科等植物白锈病。 接合菌亚门真菌

普通手术室常用细菌学监测方法

空气培养是通过空气菌落测定实现的,空气菌落测定可作为一种环境清洁的指标。 1人员着装要求: 检测者需要洗手戴口罩和帽子 2空气培养目的 检测手术部空气在静态下是否达到空气卫生学标准。 3采样时间 每月监测一次,在消毒处理后关好门窗,在无人走动的情况下,静止10min 进行采样。 4采样方法 检测者需要洗手带口罩和帽子,根据采样原理采用平板暴露法:在消毒处理后,操作前进行,室内面积≤30m2对角线内、中、外处设3点,内外点布位距墙壁1m处,室内面积>30m2设4角及中央5点,4角的布点部位距墙壁1m处。空气中细菌等微生物可随尘粒一起下降,在室内各采样点处放好营养琼脂平板,采样高度距地面0.8~1.5m,采样时,将平板盖打开搭在平皿边缘上,暴露5min,盖好平皿盖。 5注意事项 (1)布点位置要正确,严格按照房间面积、布点要求及采样方法进行操作。(2)采样后及时送检,48小时出结果。(可请护理服务中心送检,内线电话:542) (3)培养采样者应及时将结果取回,结果取回后如无异常应将检验报告单依次粘贴在A4纸上,并注明培养房间和培养日期做好完整记录,如有超标应及时通知护士长,并查找原因,复检。 6检测结果判断 空气培养标准值小于或等于200cfu/m3

1人员着装要求:检测者需要洗手戴口罩和帽子 2检测内容 (1)手术间的物体表面及可能有可能与患者接触的物体表面: 每月培养一次。包括治疗车、治疗台、无菌灯、输液架、手术间门把手、无菌器械台、麻醉机、吸引器瓶、麻醉床、手术间墙壁等。 (2)手卫生培养: 每月培养检测一次以同一台手术至少五人为一组,包括器械护士、手术医师,若一台手术人员不足五人,可两台手术合并5-6人做手培养。 (3)腔镜器械: 每月培养检测一次,培养项目3-5个,镜头、腔镜管道为每月必做项目,其余手术器械随机抽查 (4)无菌物品: 每月培养检测一次。包括一次性无菌物品及高压灭菌后的无菌物品。一次性无菌物品及高压灭菌后的无菌物品每月随机抽取至少3例,不得检出任何微生物。(5)植入性器械: 每月抽查一次骨科外来植入性器械包括钉子和钢板及专用器械。 2采样方法: (1)物体表面主要采用棉式子涂抹法。采用浸有含相应中和剂的无菌洗脱液的棉拭子,取出棉拭子,先在酒精灯外焰进行烧灼后,直接在物体表面按一定顺序滚动式涂抹,后将棉拭子入装有含相应中和剂的无菌洗脱液试管内,立即送检。(2)手部培养方法,被检测者须五指并拢,取出棉拭纸先在酒精灯外焰进行烧灼后以手掌到手指尖为平面S型滚动式涂抹,涂抹后将棉拭子入装有含相应中和剂的无菌洗脱液试管内,立即送检。 3注意事项: (1)培养不得检测出任何微生物。 (2)采样后及时送检,48小时出结果。 (3)结果出来后将检验报告单依次粘贴在A4纸上,并注明培养房间和培养日期做好完整记录。

药典三部(2015版)-通则-1143细菌内毒素检查法

药典三部(2015版)-通则-1143细菌内毒素检查法

1143 细菌内毒素检查法 本法系利用鲎试剂来检测或量化由革兰阴性菌产生的细菌内毒素,以判断供试品中细菌内毒素的限量是否符合规定的一种方法。 细菌内毒素检查包括两种方法,即凝胶法和光度测定法,后者包括浊度法和显色基质法。供试品检测时,可使用其中任何一种方法进行试验。当测定结果有争议时,除另有规定外,以凝胶限度试验结果为准。 本试验操作过程应防止内毒素的污染。 细菌内毒素的量用内毒素单位(EU)表示,1EU与1个内毒素国际单位(IU)相当。 细菌内毒素国家标准品系自大肠埃希菌提取精制而成,用于标定、复核、仲裁鲎试剂灵敏度、标定细菌内毒素工作标准品的效价,干扰试验及检查法中编号B和C溶液的制备、凝胶法中鲎试剂灵敏度复核试验、光度测定法中标准曲线可靠性试验。 细菌内毒素工作标准品系以细菌内毒素国家标准品为基准标定其效价,用于干扰试验及检查法中编号B和C溶液的制备、凝胶法中鲎试剂灵敏度复核试验、光度测定法中标准曲线可靠性试验。 细菌内毒素检查用水应符合灭菌注射用水标准,其内毒素含量小于0.015EU/ml(用于凝胶法)或0.005EU/ml(用于光度测定法),且对内毒素试验无干扰作用。 试验所用的器皿需经处理,以去除可能存在的外源性内毒素。耐热器皿常用干热灭菌法(250℃、30分钟以上)去除,也可采用其他确证不干扰细菌内毒素检查的适宜方法。若使用塑料器皿,如微孔板和与微量加样器配套的吸头等,应选用标明无内毒素并且对试验无干扰的器具。 供试品溶液的制备某些供试品需进行复溶、稀释或在水性溶液中浸提制成供试品溶液。必要时,可调节被测溶液(或其稀释液)的pH值,一般供试品溶液和鲎试剂混合后溶液的pH值在6.0~8.0的范围内为宜,可使用适宜的酸、碱溶液或缓冲溶液调节pH值。酸或碱溶液须用细菌内毒素检查用水在已去除内毒素的容器中配制。缓冲液必须经过验证不含内毒素和干扰因子。 内毒素限值的确定药品、生物制品的细菌内毒素限值(L)一般按以下公

细菌总数的测定法

细菌总数的测定法 一、细菌数测定的基本概念 药品细菌数测定是微生物的定量检查,是用来判断药品被细菌污染程度和卫生质量评价的重要指标,也是检测药品质量的重要指标之一。细菌计数是指在一定条件下(如需氧情况、营养条件、pH 位、培养温度和时间等)每1g、lml、l0cm2供试品液经培养后所生长的菌落数。所谓一定条件是按我国药典规定,在需氧条件下,30~35℃,一般培养48h,在营养琼脂培养基平板上生长的细菌菌落数。细菌数的测定方法有多种:平板法、薄膜过滤法、涂抹法。 药品细菌数测定是活菌计数,最常用的平板法是以平板菌落计数为依据,即每个菌落代表个菌细胞,但有的菌落也可能是多个菌细胞形成,如双球菌、四联球菌、八叠球菌、葡萄球菌等,很可能是多个菌细胞在一起。故准确地说,细菌数测定值实际上是菌落形成单位数( CFU)。 平板法菌落计数法,是受一定条件的限制:如供试液是否均质,供试液中的细菌是否充分分散;培养基的质量、培养温度及培养时间的影响;有繁殖能力的菌细胞才能形成菌落,死菌及某此受损伤的细菌或营养要求苛刻的细菌在规定的培养基上不能生长,因而不被计数。在试验操作中应考虑到这此问题。 二、设施、设备、仪器及器皿 1、设施 细菌数测定全过程应严格遵守无菌操作,在环境洁净净度l0000级和局部洁净度100 级单向流空气区域内进行,以防止再污染。 2、设备、仪器 恒温培养箱(30~35℃)、微波炉、匀浆仪(4000~10000r / min )、康氏振荡器、恒温水浴、电热干燥箱(250~300℃)、电冰箱、空调、高压蒸汽灭菌器(使用时要进行灭菌效果验证并应定期请有关部门检定) 菌落计数器、显微镜(1500X)、电子天平(感量0.1g)、pH 值系列比色计、全封闭可拆卸或开放式的薄膜过滤器。 3、器皿 锥形瓶(250~300ml )、培养皿(∮9cm)、量筒(100ml)、试管(18×18mm)、刻度吸管(l ml , 10ml)、载玻片、玻璃或搪瓷、不锈钢消毒缸(带盖)。 玻璃器皿用前应洗涤干净,无残留抗菌物质。吸管上端距0 .5 cm 处塞入约2 cm 左右的适当疏松棉花,装入吸管筒内或牛皮纸口袋中。锥形瓶、量筒、试管塞(硅氟塑料塞),再用牛皮纸包扎。使用的器皿应采用经验证合格的方法进行灭菌。 4、用具 大、小橡皮乳头(置干净带盖的容器中并应定期用5%来苏尔溶液浸泡),无菌衣、帽、口罩、手套(洗净后用布袋或牛皮纸包严)灭菌,备用。也可使用一次性无菌衣、帽、口罩。接种环(白依金或镍铬合金)、乙醇(酒精)灯、乙醇棉球或碘伏锦球、灭菌剪刀、镊子或灭菌的手术刀、不锈钢药匙、试管架、火柴、记号笔等。 二、培养基、稀释剂 除另有规定外一般使用营养肉汤琼脂培养基, 可按处方配制亦可采用干燥脱水培养基。 主要稀释剂有0. 9%无菌氯化钠一蛋白胨缓冲液(供试品稀释用),0.9%无菌氯化钠溶液(对照菌稀释用)。 三、检验方法 1、试验前的准备 1)、将试验用灭菌的器皿、稀释剂及供试品外包装去掉,内包装消毒后移至无菌室内。每

细菌耐药性检测方法

细菌耐药性检测方法 1、细菌耐药表型检测:判断细菌对抗菌药物的耐药性可根据NCCLS标准,通过测量纸片扩散法、肉汤稀释法和E试验的抑菌圈直径、MIC值和IC值获得。也可通过以下方法进行检测: (1)耐药筛选试验:以单一药物的单一浓度检测细菌的耐药性被称为耐药筛选试验,临床上常用于筛选耐甲氧西林葡萄球菌、万古霉素中介的葡萄球菌、耐万古霉素肠球菌及氨基糖苷类高水平耐药的肠球菌等。 (2)折点敏感试验:仅用特定的抗菌药物浓度(敏感、中介或耐药折点MIC),而不使用测定MIC时所用的系列对倍稀释抗生素浓度测试细菌对抗菌药物的敏感性,称为折点敏感试验。 (3)双纸片协同试验:双纸片协同试验是主要用于筛选产超广谱β-内酰胺酶(ESBLs)革兰阴性杆菌的纸片琼脂扩散试验。若指示药敏纸片在朝向阿莫西林/克拉维酸方向有抑菌圈扩大现象(协同),说明测试菌产生超广谱β-内酰胺酶 (4)药敏试验的仪器化和自动化:全自动细菌鉴定及药敏分析仪如:Vitek-2、BD-Pheonix、Microscan等运用折点敏感试验的原理可半定量测定抗菌药物的MIC值。 2.β-内酰胺酶检测:主要有碘淀粉测定法(iodometric test)和头孢硝噻吩纸片法(nitrocefin test)。临床常用头孢硝噻吩纸片法,β-内酰胺酶试验可快速检测流感嗜血杆菌、淋病奈瑟菌、卡他莫拉菌和肠球菌对青霉素的耐药性。如β-内酰胺酶阳性,表示上述细菌对青霉素、氨苄西林、阿莫西林耐药;表示葡萄球菌和肠球菌对青霉素(包括氨基、羧基和脲基青霉素)耐药。 3.耐药基因检测:临床可检测的耐药基因主要有:葡萄球菌与甲氧西林耐药有关的MecA 基因,大肠埃希菌与β-内酰胺类耐药有关的blaTEM、blaSHV、blaOXA基因,肠球菌与万古霉素耐药有关的vanA、vanB、vanC、vanD基因。检测抗菌药物耐药基因的方法主要有:PCR扩增、PCR-RFLP分析、PCR-SSCP 分析、PCR-线性探针分析、生物芯片技术、自动DNA 测序 4.特殊耐药菌检测 (1)耐甲氧西林葡萄球菌检测:对 1цg苯唑西林纸片的抑菌圈直径≤10㎜,或其MIC≥4цg/ml的金黄色葡萄球菌和对1цg苯唑西林纸片的抑菌圈直径≤17㎜,或MIC≥0.5цg/ml 的凝固酶阴性葡萄球菌被称为耐甲氧西林葡萄球菌(MRS)。对MRS不论其体外药敏试验结果,所有的β-内酰胺类药物和β-内酰胺/β-内酰胺酶抑制剂均显示临床无效;绝大多数的MRS 常为多重耐药,耐药范围包括氨基糖甙类、大环内酯类、四环素类等。 (2)耐青霉素肺炎链球菌检测:当对1цg苯唑西林纸片抑菌圈直径〈20㎜或MIC〉0.06цg/ml均应视为耐青霉素肺炎链球菌(PRSP)。临床治疗显示 PRSP对氨卞西林、氨卞西林/舒巴坦、头胞克肟、头胞唑肟,临床治疗疗效很差,但应检测对头胞曲松、头胞噻肟和美洛培南等的MIC以判断是否对这些抗生素敏感。 (3)耐万古霉素肠球菌检测:肠球菌对30цg万古霉素纸片抑菌圈直径≤14㎜或MIC≥32цg/ml被称为耐万古霉素肠球菌(VRE)。针对多重万古霉素药物目前尚无有效治疗方法,但对青霉素敏感的VRE可用青霉素和庆大霉素联合治疗,若对青霉素耐药而不是高水平耐氨基糖甙类可用壁霉素+庆大霉素。 (4)产超广谱β-内酰胺酶的肠杆菌科细菌检测:超广谱β-内酰胺酶是一种能水解青霉素、

细菌内毒素检查验证方案

细菌内毒素检查验证方案文件编号:VP-QC-2015-06 起草人: 审核人: 批准人:

批准日期:年月日

目录 1 概述 1 2 验证目的及范围 1 3 验证小组人员组成及职责 1 4 验证依据 2 5 验证前准备 2 6 验证的实施 2 7 偏差处理 5 8 验证数据及评估 5 9验证报告及评审 5 10 再验证及周期 5 11 验证文件及归档 5 12 附件 5

1 概述 细菌内毒素检查法系利用鲎试剂来检测或量化由格兰阴性菌产生的细菌内毒素,以判断供试品中细菌内毒素的限量是否符合规定的一种方法。 细菌内毒素检查报告两种发放,即凝胶法和光度测定法,后者包括浊度法和显色基质法,供试品检测时,可使用其中任何一种方法进行实验。公司自行制备的注射用水需进行细菌内毒素的检查,本方案将采用凝胶法进行试验。 2 验证目的和方法 本验证方案适用于注射用水的细菌内毒素的检查,通过对鲎试剂灵敏度复核试验、干扰试验及凝胶限度试验,建立该产品的细菌内毒素检查方法,并对其有效性进行评价,确保检测方法的专属性、灵敏度,保证检测结果可符合质量标准要求。 3.验证小组人员组成及职责: 3.1验证小组由以下部门人员组成:质量部、QC、生产部。 3.2 验证小组组成及职责列表

4 验证依据 《中华人民共和国药典》2015版1143 细菌内毒素检查法 5.验证前准备 5.1验证人员培训:验证报告起草人有责任在方案批准后(且在验证实施前)对本次验证相关人员进行培训。培训人员记录见附件1。 5.2 确认仪器仪表设施经过确认和校验,并填写确认记录。 6 验证的实施 6.1实验材料及用具 6.1.1电子天平 6.1.2. 电热干燥箱

植物病原细菌学复习题2016

植物病原细菌学思考题: 1.名词解释:质粒;消毒;灭菌;无菌;无菌操作;转化;转导;接合;转换;突变; 质粒;病原(pathogen)、细菌(bacteria)、类立克次体(rickettsia like organism)、植原体(phytolasma)、感病植物(suscept)、感病性(susceptibility)、病原性(pathogenicity)、毒力(virulence)、病症(symptom)、接种(inoculation)、传播(dissemination)、植物检疫( plant quarantine )、综合防治(integrated control);植物病原细菌的致病变种、植物病原细菌的生理小种、柯赫氏法则、过敏性反应 2.细菌的基本结构有哪些?各有什么功能? 与真核细胞结构有何差异? 3. 细菌的特殊结构有哪些?各有什么功能? 4. 革兰阳性菌和革兰阴性菌胞壁结构有何不同? 5. 革兰氏染色的理论依据是什么? 6. 细菌的化学组成有那几类? 7. 细菌正常生长繁殖需要哪些条件? 8. 描述细菌的生长曲线。 9.用的热力灭菌方法有哪些?其适用范围如何? 10.压蒸汽灭菌法和巴氏灭菌法的条件是什么? 11.紫外线杀菌的机理是什么? 12.过滤除菌法常用于哪些材料的除菌? 13.细菌变异的表现形式有哪些?举例说明。 14.简述细菌可通过何种方式获得新的性状?(遗传物质交换机制) 15.植物病原性细菌及细菌病害的特性为何? 16.試述细菌对植物寄主侵入的方法 17.请说明f.sp.(forma speciales)、pv.(pathovar)、physiological race所代表的意义。18.試述植物病原生理小种( physiological race )之成因。 19.重要病害及其防治法:水稻白叶枯病、番茄青枯病的病因、病症、传播方式及其防治法20.植物病原细菌的命名原则。 21.传统细菌分类之外的分类方法(略详细)。 22.如何证明你发现的病害为细菌性病害? 23.为害植物的病原细菌属、主要细菌属的区别(列表)、写出10种主要细菌病害拉丁学名。24.病原细菌鉴定的程序和内容。 25.请写出近些年变动前后的细菌学名。 26.植物病原细菌鉴定涉及的主要研究项目。 27.简单叙述科学技术发展对细菌分类的影响。 28.如何证明细菌的运动性。 29.细菌如何保存。 30.以西瓜细菌性果斑病为例说明细菌病害的侵染循环。 31.请叙述不同细菌病害的病原分离技术。 32.植物病原细菌细胞的结构。 33.植物细菌性病害的主要症状。 34.请你写出研究一种细菌病害的研究方案。 35.试论植物细菌病害的综合防治(以一种细菌性病害为例)。 36.种子带菌病害的综合防治。 37.请以一种细菌病害为例介绍其分子生物学研究进展。

细菌内毒素检查验证方案设计

细菌毒素检查验证方案文件编号:VP-QC-2015-06 起草人: 审核人: 批准人: 批准日期:年月日

目录 1 概述 1 2 验证目的及围 1 3 验证小组人员组成及职责 1 4 验证依据 2 5 验证前准备 2 6 验证的实施 2 7 偏差处理 5 8 验证数据及评估 5 9验证报告及评审 5 10 再验证及周期 5 11 验证文件及归档 5 12 附件 5

1 概述 细菌毒素检查法系利用鲎试剂来检测或量化由格兰阴性菌产生的细菌毒素,以判断供试品中细菌毒素的限量是否符合规定的一种方法。 细菌毒素检查报告两种发放,即凝胶法和光度测定法,后者包括浊度法和显色基质法,供试品检测时,可使用其中任何一种方法进行实验。公司自行制备的注射用水需进行细菌毒素的检查,本方案将采用凝胶法进行试验。 2 验证目的和方法 本验证方案适用于注射用水的细菌毒素的检查,通过对鲎试剂灵敏度复核试验、干扰试验及凝胶限度试验,建立该产品的细菌毒素检查方法,并对其有效性进行评价,确保检测方法的专属性、灵敏度,保证检测结果可符合质量标准要求。 3.验证小组人员组成及职责: 3.1验证小组由以下部门人员组成:质量部、QC、生产部。 3.2 验证小组组成及职责列表 4 验证依据 《中华人民国药典》2015版1143 细菌毒素检查法 5.验证前准备 5.1验证人员培训:验证报告起草人有责任在方案批准后(且在验证实施前)对本次验证相关人员进行培训。培训人员记录见附件1。 5.2确认仪器仪表设施经过确认和校验,并填写确认记录。

6 验证的实施 6.1实验材料及用具 6.1.1电子天平 6.1.2. 电热干燥箱 6.1.3. 恒温恒湿箱 6.1.4.水银温度计 6.1.5. 旋涡混合器 6.1.6. 鲎试剂(具有国家主管部门的批准文号) 6.1. 7.细菌毒素工作标准品(由中国药品生物制品检定所统一发放的标准品) 6.1.8.细菌毒素检查用水:应符合灭菌注射用水标准,其毒素含量小于0.015EU/ml,且 对毒素试验无干扰作用。 6.1.9. 实验用具:移液管、凝集管、三角瓶、试管、试管架、洗耳球、时钟、75%酒精棉、剪刀、砂轮。 6.2实验准备 6.2.1玻璃器皿的洗涤将玻璃器皿放入铬酸洗液或其他热原灭活剂或清洗液中充分浸泡,然后取出将洗液空干,用自来水将残留洗液彻底洗净,再用蒸馏水反复冲洗三遍以上,空干后放入适宜的密闭金属容器中或用锡箔纸包好后再放入金属容器,放置入烤箱。

相关主题
文本预览
相关文档 最新文档