当前位置:文档之家› 水性聚氨酯纳米二氧化硅复合材料的制备及性能研究

水性聚氨酯纳米二氧化硅复合材料的制备及性能研究

水性聚氨酯纳米二氧化硅复合材料的制备及性能研究
水性聚氨酯纳米二氧化硅复合材料的制备及性能研究

氧化硅介绍,纳米二氧化硅应用领域

氧化硅介绍,纳米二氧化硅应用领域 氧化硅介绍 产品为人工合成物无定形白色流动性粉末,具有各种比表面积和容积严格的粒度分布。本产品是一种白色、松散、无定形、无毒、无味、无嗅,无污染的非金属氧化物。其原生粒径介于7~80nm之间,比表面积一般大于100m2/g。由于其纳米效应,在材料中表现出卓越的补强、增稠、触变、绝缘、消光、防流挂等性质,因而广泛的应用于橡胶、塑料、涂料、胶粘剂、密封胶等高分子工业领域。 纳米二氧化硅应用领域 1、在涂料领域 纳米二氧化硅(SP30)具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构,同时增加了涂料的强度和光洁度,而且提高了颜料的悬浮性,能保持涂料的颜色长期不退色。在建筑内外墙涂料中,若添加纳米氧化硅(SP30),可明显改善涂料的开罐效果,涂料不分层,具有触变性、防流挂、施式性能良好,尤其是抗沾污染性能大大提高,具有优良的自清洁能力和附着力。纳米SiO2还可与有机颜料配用,可获得光致变色涂料,M.P .J .Peeters等用溶胶凝胶法合成了含纳米二氧化硅(SP30)的全透明的耐温涂料H.Schmidt等合成了很厚的含纳米SiO2的涂料,并耐高温,在500℃下没有出现裂缝,Fayna Mamme ri等合成了P MMA- SiO2纳米涂料。明显增强了涂料的弹性和强度。纳米氧化硅(同SP30)具有常规SiO2所不具有的特殊光学性能,它具有极强的紫外吸收,红外反射特性。经紫外一可见分光光度计测试表明,它对波长400nm以内的紫外光吸收率高达70%以上,对波长800nm 以外的红外光反射率也达70%以上,它添加到涂料中能对涂料形成屏蔽作用,达到抗紫外老化和热老化的目的,同时增加了涂料的隔热性,徐国财等通过纳米微粒填充法,将纳米氧化硅作掺杂到紫外光同化涂料中,明显地提高了紫外光固化涂料的硬度和附着力,还减弱了紫外光同化涂料吸收UV辐射的程度,从而降低了紫外光同化涂料的同化速度。 2、在粘结剂和密封胶领域 密封胶和粘结剂是量大、使用范围广的重要产品。菜市产品粘度、流动件、旧化速度等有严格要求。目前,国内高档的密封胶和粘结剂都依赖进口。据介绍,国外在这个领域的产品已经采用纳米材料作添加剂,而纳米二氧化硅(SP30)是首选材料。其作用机理是纳米SiO2表面包覆一层有机材料,使之具有疏水特性,将它添加到密封胶中能很快形成一种网络结构,抑制胶体流动,同化速率加快,提高粘接效果,同时由于颗粒细小,更增加了胶的密封性。 3、在纺织领域 随着科学技术的发展和人类生活水平的提高,人们对服装提出了舒适、新颖、保健的要求,各种功能化的纺织品应运而生。在此,纳米二氧化硅(SP30)发挥了巨大的作用,目前,人们已将其应用到防紫外、远红外、抗菌消臭、抗老化等方面。例如,以纳米二氧化硅(SP30F)和纳米二氧化钛(T25F)的适当配比而成的复合粉体是抗紫外辐射纤维的重要添剂,又如,日本帝人公司将纳米二氧化硅(SP30)和纳米ZnO-JS03)混人化学纤维中,得到的化学纤维具有除臭及净化气的功能,这种纤维可被用于制造长期卧床病人和医院的消臭敷料、绷带、睡农等。 4、在杀菌剂领域 纳米二氧化硅(SP30)具有生理惰性、高吸附性,在杀菌剂的制备中常用作载体,当

纳米二氧化硅表面改性研究

文章编号:1003 1545(2011)02 0018 04 纳米二氧化硅表面改性研究 李金玲,王宝辉,李 莉,张钢强,盖翠萍,杨雪凤,邵丽英,隋 欣 (东北石油大学化学化工学院,黑龙江大庆 163318) 摘 要:采用甲苯二异氰酸酯(TD I)接枝聚乙二醇(PEG )对纳米Si O 2进行表面改性,并利用红外光谱(FT I R )和热重(TG )、扫描电镜(SE M )、粒径分析、重力沉降法等方法对改性前后的纳米Si O 2的表面形貌和在介质中的分散稳定性进行了表征和分析。结果表明,改性后的纳米S i O 2表面接枝上了TD I 、PEG 的有机官能团,降低了颗粒的团聚程度,提高了纳米S i O 2在介质中的分散性。当n (TD I):n (PEG )=1:0 8时,分散性最好,接枝率为54 03%。 关键词:纳米S i O 2;表面改性;分散性中图分类号:TQ127.2 文献标识码:A 收稿日期:2010-10-12 基金项目:黑龙江省教育厅科学技术研究项目资助(11531009) 作者简介:李金玲,1984年生,女,在读硕士研究生,主要从事纳米改性水性聚氨酯的研究。E -m a i:l dqp ilj@l 163.co m 纳米二氧化硅是目前世界上大规模工业化 生产的产量最高的一种纳米粉体材料[1] 。特殊的微粒表面层结构和电子能级结构产生了普通粒子所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,导致了其在热、磁、光、敏感特性和表面稳定性等方面不同于常规粒子[2] 。但这些特殊效应同时赋予了纳米S i O 2表层大量羟基,导致羟基间的范德华力、氢键的产生,使粉体间的排斥力变为吸引力,热力学状态不稳定,极易发生凝并、团聚,在介质中难以分散,难以与基料很好结合,纳米粒子的优异特性 得不到充分发挥[3] 。因此要维持纳米粉体的特异性能,拓展其在生物、医药、化工、材料、电子、机械、能源、国防及交叉学科等领域的应用范围,有必要对纳米粉体进行表面改性。 纳米粉体表面改性方法有酯化反应法、偶联剂法、表面活性剂法、接枝聚合物法、高能法等[4] 。本文采用PEG2000、TDI 对纳米二氧化硅进行接枝改性,通过FT I R 、SE M 、TG 、粒度分析、沉降实验等对改性前后的纳米S i O 2进行表征和分析。 1 实验部分 1 1 实验原料 表1 实验药品 药 品生产厂家预处理纳米Si O 2 自制 真空脱水二月桂酸二丁基锡 (DB TDL 分析纯)天津市光复精细化工研究所直接使用 2,4 二异氰酸甲苯酯(TD I 分析纯)天津市化学试剂厂六分厂分子筛干燥无水乙醇(分析纯)沈阳市华东试剂厂直接使用聚乙二醇2000(PEG 分析纯)沈阳市华东试剂厂真空脱水甲苯(分析纯) 沈阳市华东试剂厂 分子筛干燥 1 2 表面改性及表征 将纳米二氧化硅在真空烘干箱中120 烘4h ,以除去表面吸附的水分。将烘好的纳米粒子分散于甲苯溶液中,剪切分散30m i n 、超声分散30m in 后,加入到装有温度计、冷凝管的三口烧瓶中,同时加入TD I 、DBTDL ,在水浴锅中缓慢升温,80 冷凝回流反应4h 后,加入PEG 恒温反应4h 。产物进行离心分离,并用甲苯、无水乙醇各洗涤3次,然后在120 进行真空干燥8h ,得到改性后的纳米Si O 2,研磨待用。 将上述TDI /PEG 分别按摩尔比为1:0 6,1:0 8,1:1 0,1:1 2重复上述实验步骤。

纳米二氧化硅微球的应用及制备进展_姜小阳

第30卷第3期 硅酸盐通报Vol.30No.32011年6月BULLETIN OF THE CHINESE CERAMIC SOCIETY June ,2011 纳米二氧化硅微球的应用及制备进展 姜小阳,李霞 (青岛科技大学材料科学与工程学院,青岛266042) 摘要:纳米二氧化硅微球在电子、光学器件、化学生物芯片、催化等领域有着广泛的应用。本文综述了近几年纳米 二氧化硅微球几种制备方法,例如:溶胶-凝胶法、模板法、沉淀法、超重力法、微乳液法等,并对这些工艺方法的优缺 点做了简单评述, 最后对二氧化硅的应用前景进行了展望。关键词:纳米二氧化硅;微球;应用;制备 中图分类号:O613文献标识码:A 文章编号:1001- 1625(2011)03-0577-06Progress in Application and Preparation of Nano-silica Microspheres JIANG Xiao-yang ,LI Xia (College of Materials Science and Engineering ,Qingdao University of Science and Technology ,Qingdao 266042,China ) Abstract :Nanosized silica microspheres have important applications in electronics ,optical devices ,chemical biosensors ,catalysis ,etc.In this thesis ,the preparation methods of nano-silica were reviewed such as sol-gel process ,template process ,precipitation process ,high gravity reactive method ,micro- emulsion method ,etc.The relative merits of each method are introduced.At last ,the application prospect of nano-silica microspheres is depicted. Key words :nano-silica ;microspheres ;application ;preparation 基金项目:国家自然科学基金(No.51072086)资助项目 作者简介:姜小阳(1985-),男,硕士.主要从事纳米二氧化硅微球的制备及应用的研究. 通讯作者:李霞.E-mail :lix@qust.edu.cn 1引言 纳米固体或纳米微粒是指颗粒粒度属于纳米量级(1 100nm )的固态颗粒[1]。纳米二氧化硅微球为无 定型白色粉末,无毒、无味、无污染,表面存在大量羟基和吸附水,具有粒径小、纯度高、比表面积大、分散性能好等特点,并凭借其优越的稳定性、补强性、触变性和优良的光学及机械性能,广泛应用于生物医药、电子、催化剂载体及生物材料、工程材料等领域 [2]。如今,纳米二氧化硅微球的制备和应用研究工作已成为材料科 研领域的一大热点[3]。2纳米二氧化硅微球的应用 纳米二氧化硅在添加剂、橡胶、塑料、纤维、彩色打印、军事材料、生物技术等领域有着广泛的应用。纳米SiO 2表面含有大量的羟基与不饱和键,可以在摩擦副表面形成牢固的化学吸附膜,从而保护金属摩擦表面,改善润滑油的摩擦性能,因此可以作为一种高性能、高环保型润滑油的添加剂 [4]。利用纳米SiO 2可以吸收

浅谈中职学校就业方向英语教学

浅谈中职学校就业方向英语教学 摘要:中职学校英语教学具有很强的挑战性和灵活性,老师不但要具有深厚的专业知识,更需要根据中职学生与普通中学学生性质的不同而有针对性地进行英语教学。中职英语老师需要有针对性的备课,灵活多变的课堂组织教学,以及不可忽略的课后教学。 关键词:中职学生就业方向英语教学 中图分类号: g718 文献标识码: c 文章编号:1672-1578(2011)11-0215-02 许多中等职业学校的教师都认为教学就是把自己所学知识倾囊 相授,这些年教学实践使笔者明白中职英语教学具有很强的挑战性和灵活性,老师不但要具有深厚的专业知识,更需要根据中职学生与普通中学学生的性质不同,而有针对性地进行英语教学。下面笔者主要针对就业方向的中职学生浅谈一下英语教学应该注意的几点: 1 有针对性地备课 中等职业学校学生的文化知识一般比较差,英语老师在教学前是否认真的有针对性的备课是教学是否成功的首要条件,备课时教师要熟悉大纲和教材,把握教学内容;分析教学任务,明确教学目标;研究学生特点和性质以及学生的知识基础,选择教学方法;设计教学过程,编写教学计划,从而为上课做好充分的准备。中等职业学校就业方向的英语教学应以“适用”为备课原则,以求学生能掌握一些基础英语知识以及能说一些日常生活适用的英语,很多属于高

考的英语知识点或难点则可以选择不予讲解。 2 进行有效的课堂组织教学 2.1激发学习英语的激情与兴趣 每个教师都明白学习兴趣对于教学的重要性,而在中职学校教学过程中这一点显得尤为重要,中职学生在中学的文化课已经相对薄弱,这严重导致了他们缺乏对文化课的学习兴趣,进入中职学校还要学习文化课,他们显然没有任何的学习兴趣,尤其是英语这一学科,一些学生甚至连26个英语字母都在中学时没能掌握,不能准确的针对国际音标发音,怎能还有学习兴趣?所以作为一名中职学校的英语教师,怎样唤醒中职学生的英语学习兴趣是一个教学过程中的一个重点也是难点,培养中职学生学习英语的激情与兴趣应该从两点出发:首先,要从教师本身出发。我们很多人都认为老师一般都需要在学生面前建立自己的威信,这点的确需要,但是往往很多老师过于严肃,让学生产生了相当大的畏惧心理,再加上教学内容全是枯燥的英语语法知识,中职学生怎能对英语学习充满学习兴趣?其实老师上英语课应该一改严肃的教学风格,上课可以带上丰富的肢体语言,英语语言可以抑扬顿挫,面部表情可以根据授课内容而变化,同时老师面对学生要少一点架子,多一点的尊重和真诚,少一点尖酸刻薄,多一点赏识和信赖,少一些冷漠,多一点的热情和交流.师生之间只有互相了解,互相沟通,互相平等,学生才会喜欢你,才会爱你,到那时候,“亲其师而信其道”,一名这样的英语教师在学生喜欢的环境下教学必定充满了教学乐趣,学生同时也

纳米二氧化硅

1前言 1.1纳米二氧化硅的发展现状及前景 纳米材料是指微粒粒径达到纳米级(1~100nm)的超细材料。当粒子的粒径为纳米级时,其本身具有量子尺寸效应和宏观量子隧道效应等,因而展现出许多特有的性质,应用前景广阔。纳米SiO 是极具工业应用前景的纳米材料,它的应用领域十分广泛,几乎 2 粉体的行业。我国对纳米材料的研究起步比较迟,直到“八五计涉及到所有应用SiO 2 划”将“纳米材料”列人重大基础项目之后,这方面的研究才迅速开展起来,并取得了令人瞩目的成果。1996年底由中国科学院固体物理研究所与舟山普陀升兴公司合作,成 [1],从而使我国成为继美、英、日、德功开发出纳米材料家庭的重要一员——纳米SiO 2 国之后,国际上第五个能批量生产此产品的国家。纳米SiO 的批量生产为其研究开发提 2 供了坚实的基础。 目前,我国的科技工作者正积极投身于这种新材料的开发与应用,上海氯碱化工与华东理工大学[2]建立了连续化的1000t/a规模中试研究装置,开发了辅助燃烧反应器等核心设备,制备了性能优良的纳米二氧化硅产品,其理化性能和在硅橡胶制品中的应用性能,已经达到和超过国外同类产品指标。专家鉴定认为,纳米二氧化硅氢氧焰燃烧合成技术、燃烧反应器和絮凝器等关键设备及应用技术具有创新性,该成果总体上达到国际先进水平,其中在预混合辅助燃烧新型反应器和流化床脱酸两项核心技术方面达到了国际领先水平,对于突破国际技术封锁具有重大价值。但总地来讲,我国纳米SiO 的生 2 产与应用还落后于发达国家,该领域的研究工作还有待突破。 1.2 纳米二氧化硅的性质[3]~[5] 纳米二氧化硅是纳米材料中的重要一员,为无定型白色粉末,是一种无毒、无味、无污染的非金属材料。微结构呈絮状和网状的准颗粒结构,为球形。这种特殊结构使它具有独特的性质: 纳米二氧化硅对波长490 nm以内的紫外线反射率高达70%~80%,将其添加在高分子材料中,可以达到抗紫外线老化和热老化的目的。 纳米二氧化硅的小尺寸效应和宏观量子隧道效应使其产生淤渗作用,可深入到高分子链的不饱和键附近,并和不饱和键的电子云发生作用,改善高分子材料的热、光稳定性和化学稳定性,从而提高产品的抗老化性和耐化学性。 纳米二氧化硅在高温下仍具有强度、韧度和稳定性高的特点,将其分散在材料中,

纳米复合材料制备

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。)原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PV A[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合物,则将其预聚物溶解在含有剥离层状硅酸盐的溶液中,使预聚物吸附在层状硅酸盐上,然后采用物理或化学方法将预聚物转化为目标聚合物,如聚酞亚胺。 1.3.2原位插层聚合法 将层状硅酸盐在液体单体(或单体溶液)中溶胀,然后单体在层间引发聚合,引发可以采

二氧化硅纳米颗粒的制备

二氧化硅纳米颗粒制备表征及其应用的研究 周韬 摘要:本实验采用沉淀法和溶胶凝胶法制备了二氧化硅纳米晶体,并对得到的产物进行了红外光谱和粒径分析。 关键词:溶胶凝胶,红外光谱,粒径分析 引言 近几年来用单分散二氧化硅球形颗粒为原料自组装制备光子晶体受到了人们的广泛关注,光子晶体广泛的应用前景,促使人们制备出优良的单分散二氧化硅球形颗粒[1]。 光子晶体是介质的周期排列而构成的一种人工微结构材料, 由于电磁波在其中的传播可以用类似于电子在半导体中传播的能带理论来描述, 故而得光子晶体之名, 以此表明光子之晶体与电子之晶体(半导体)的区别与联系。光子晶体被认为是控制光子(电磁波)传播的行之有效的工具, 光子晶体的典型特点是具有光子带隙。当物质的自发辐射频率处在光子带隙内时, 它可以用于抑制光子晶体内的物质的自发辐射。同时, 当在光子晶体内引入缺陷时,如果物质的自发辐射频率和缺陷模的频率一致, 又可用于增强物质的自发辐射, 而且这种自发辐射有类似于受激辐射的特性。光子晶体可以用于制备超高品质因子的微腔, 用于研究腔量子电动力学效应,是量子通讯和量子信息处理的有力工具[2]。 本实验采用溶胶凝胶的方法尝试制备二氧化硅纳米颗粒。 1、实验部分 1.1原理 二氧化硅的制备方法也有很多种,依据反应是否在溶液中发生,分为干法和湿法。干法主要有气相法和电弧法,湿法主要有溶胶-凝胶法,沉淀法,水热法及微乳液法等。其中,溶胶凝胶法(以下简称Sol-Gel法)利用活性较高的前驱体作为原料,在含水的溶液中水解,生成溶胶,然后溶胶颗粒间进一步发生相互作用,与溶剂共同生成凝胶,干燥后、煅烧获得前驱体相应的氧化物。 二氧化硅的制备主要分为如下两步: 第一步水解 ?Si?OR+H2O →?Si?OH+ROH

纳米复合材料制备

纳米复合材料制备文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发

生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。) 原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PVA[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合

纳米二氧化硅的制备

纳米二氧化硅的制备 专业:凝聚态学号:51110602021 作者:张红敏 摘要 本文简单综述了一下纳米二氧化硅的各种制备方法,包括化学沉淀法、气相法、溶胶-凝胶法、微乳液法、超重力法、机械粉碎法,并对未来制备纳米二氧化硅的方法提出了一点展望。 关键词:纳米二氧化硅,制备,展望

1. 引言 纳米二氧化硅为无定型白色粉末,是一种无毒、无味、无污染的无机非金属材料,其颗粒尺寸小,粒径通常为20~200nm,化学纯度高,分散性好,比表面积大,耐磨、耐腐蚀,是纳米材料中的重要一员。由于纳米二氧化硅表面存在不饱和的双键以及不同键合状态的羟基,具有常规粉末材料所不具备的特殊性能,如小尺寸效应、表面界面效应、量子隧道效应、宏观量子隧道效应和特殊光电性等特点[1],因而表现出特殊的力学、光学、电学、磁学、热学和化学特性,加上近年来随着纳米二氧化硅制备技术的发展及改性研究的深入, 纳米二氧化硅在橡胶、塑料、涂料、功能材料、通讯、电子、生物学以及医学等诸多领域得到了广泛的应用。 2. 纳米二氧化硅的制备 经过收集资料,查阅一些教科书籍和文献,发现二氧化硅有各种形形色色不同的制备方法, 主要包括化学沉淀法、气相法、溶胶-凝胶法、微乳液法、超重力法、机械粉碎法等等。现在一个个介绍如下: 2.1. 化学沉淀法 化学沉淀法是目前生产纳米二氧化硅最主要的方法。这种方法的基本原理是利用金属盐或碱的溶解度, 调节溶液酸度、温度、溶剂, 使其产生沉淀, 然后对沉淀物进行洗涤、干燥、热处理制成超细粉体[2]。 可以采用硅酸钠和氯化铵为原料, 以乙醇水溶液为溶剂, 采用化学沉淀法制备得到纳米SiO2[3]。将去离子水与无水乙醇以一定浓度混合盛于三口瓶中, 加入一定质量的硅酸钠和少量分散剂, 置于恒温水浴中, 凋节至40±1℃, 搅拌状态下加入氯化铵溶液, 即出现乳白色沉淀, 洗涤, 抽滤, 100℃烘干,置于马弗炉450 ℃焙烧1h, 得到白色轻质的SiO2 粉末。所得SiO2颗粒为无定形结构, 近似球形, 粒径30~50nm, 部分颗粒间通过聚集相互联结, 表面有蜂窝状微孔。 以水玻璃(模数为3.3)和盐酸为原料[4],在超级恒温水浴中控制在40~50℃左右进行沉淀反应, 控制终点pH 值5~6, 得到的沉淀物采用离心法洗涤去掉Cl-, 然后在110℃下干燥12 h, 再于500℃进行焙烧即可得到产品。制得SiO2粒

高分子纳米复合材料的制备

高分子纳米复合材料的制备 摘要: 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”[1, 2]。 关键词:高分子纳米复合材料,纳米单元,制备 由于纳米微粒尺寸小、比表面积大,表面原子数、表面能和表面张力随粒径的下降急剧增大,表现出小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特点,从而使纳米粒子出现了许多不同于常规固体的新奇特性,展示了广阔的应用前景;同时它也为常规的复合材料的研究增添了新的内容,含有纳米单元相的纳米复合材料[5]通常以实际应用为直接目标,是纳米材料工程的重要组成部分,正成为当前纳米材料发展的新动向,其中高分子纳米复合材料[6~10]由于高分子基体具有易加工、耐腐蚀等优异性能,且能抑止纳米单元的氧化和团聚,使体系具有较高的长效稳定性,能充分发挥纳米单元的特异性能,而尤受广大研究人员的重视。 高分子纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成分分可以是金属,也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相,也可以是多相,涉及的范围很广,广义上说多相高分子复合材料,只要其某一组成相至少有一维的尺寸处在纳米尺度范围(1 nm~100 nm)内,就可将其看为高分子纳米复合材料。对通常的纳米粒子/高分子复合材料按其复合的类型大致可分为三种:0-0复合,0-2 复合和0-3复合,纳米粒子在高分子基体中可以均匀分散,也可以非均匀分散;可能有序排布,也可能无序排布,甚至粒子聚集体形成分形结构;复合体系的主要几何参数包括纳米单元的自身几何参数,空间分布参数和体积分数,本文主要涉及后两种类型的高分子纳米复合材料。此外,还有1-3复合型,2-3复合型高分子纳米复合材料,高分子纳米多层膜复合材料,有机高分子介孔固体与异质纳米粒子组装的复合材料等等[1]。 纳米单元与高分子直接共混 此法是将制备好的纳米单元与高分子直接共混,可以是溶液形式、乳液形式,也可以是熔融形式共混。可用于直接共混的纳米单元的制备方法种类繁多[15~18],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法)。总体上又可分为物理方法、化学方法和物理化学方法三种。 物理方法有物理粉碎法,采用超细磨制备纳米粒子,利用介质和物料间相互研磨和冲击,并附以助磨剂或大功率超声波粉碎,达到微粒的微细化;物理气相沉积法(PVD):在低压的惰性气体中加热欲蒸发的物质,使之气化,再在惰性气体中冷凝成纳米粒子,加热源可以是电阻加热、高频感应、电子束或激光等,不同的加热方法制备的纳米粒子的量、大小及分布等有差异;还有流动液

纳米二氧化硅

纳米二氧化硅SiO2的研究现状及其运用(邓奕鹏、夏常梁、宁波、赵英孜、王娜) 摘要通过国内外的影响力较大数据库,查找期刊、杂志、论文中的相关文献来了解二氧化硅(SiO2)、在国内外科技前沿的研究现状及运用情况。探究其是否能够作为“荷叶自洁效应及其表膜纳米功能材料的研究及运用“的纳米材料载体。 0 前言“荷叶自洁效应及其表膜纳米功能材料的研究及运用”需要一种纳米材料来构成像荷叶表面的“乳突”的型式结构。以使这种涂层能够具有自清洁效果的。二氧化硅(SiO2)具有来源广泛,耐腐蚀、高硬度、高强度、高韧性、生物友好性等特征。把二氧化硅(SiO2)作为这种乳突的型式结构是一种不错的选择。而且具有可操作性!因此,我们有必要对这些材料有更深的认识,以了解他们的制备方法、表面特征的相关属性。来达到更好的利用二氧化硅(SiO2)的目的。增加自己对二氧化硅(SiO2)的了解。 1、纳米二氧化硅的性质: 1.1 物理性质纳米Si02为无定型白色粉末,是一种无毒、无味、无污染的无机非金属材料。经透射电子显微镜测试分析.这种材料明显显现出絮状或网状的准颗粒结构,颗粒尺寸小,比表面积大。工业用Si02称作自炭黑,是一种超微细粉体,质轻,原始粒径O.3 微米以下,相对密度2.319~2.653熔点1750℃,吸潮后形成聚合细颗粒。

1.2 化学性质纳米Si02的体积效应和量子隧道效应使其产生渗透作用,可深入到高分子化合物的“键附近,与其电子云发生重叠,形成空间网状结构,从而大幅度提高了高分子材料的力学强度、韧性、耐磨性和耐老化性等。因而,人们常利用纳米Si02的这些特殊结构和性能对塑料及涂料进行改性或制各有机Si02复合材料,提高有机高分子材料的综合性能。 1.3 光学性质纳米Si02微粒由于只有几个纳米到几十个纳米,因而,它所表现出来的小尺寸效应和表面界面效应使其具有与常规的块体及粗颗粒材料不同的特殊光学特性。采用美国Varian公司Cary一5E分光光谱仪对纳米Si02抽样测试表明,对波长200~280 nm 紫外光短波段,反射率为70%~80%;对波长280~300 nm的紫外中波段,反射率为80%以上:在波长300~800 nm之间,纳米Si02材料的光反射率达85%;对波长在800~1300 nm的近红外光反射率也达70~80%。

纳米二氧化硅在PVC中的应用

PVC/超细二氧化硅复合材料的制备及其性能研究 超细SiO2因其粘合力强、比表面积大、分散性好、光学性能和机械性能优良,广泛应用于催化剂载体、高分子复合材料、电子封装材料、精密陶瓷材料、橡胶等诸多行业的产品中。由于超细二氧化硅与PVC结构相差甚远,很难将其均匀分散在PVC中,需要对二氧化硅进行表面改性。本实验采用的改性剂硅烷偶联剂遇水极易分解,若将其直接滴加在水溶性二氧化硅溶胶中,实验很难成功。因此,作者首先用BS-12将二氧化硅从水溶胶中沉淀出来,然后与无水乙醇共混进行常压蒸馏将大量的水带出,再加入硅烷偶联剂进行改性,使二氧化硅表面接枝上大分子支链。然后利用常规聚合物共混加工手段,将改性后的超细微粒填充入聚合物中,使PVC的性能得到了改善。 1 实验 1.1 主要材料 纳米SiO2溶胶,安徽科纳新材料有限公司; KH-560硅烷偶联剂,南京大学应化所; PVC,SG5型,葫芦岛锦化聚氯乙烯有限公司; ACR,201型,山东莱芜市合成化工厂; 超细碳酸钙,工业级,江西永平永发轻钙厂; 三盐基硫酸铅、环氧大豆油、BS-12、聚乙烯醇,均为工业纯,市售。 1.2 仪器及设备

转矩流变仪,XSS-300,上海轻工机械公司;开炼机,XK-160,南京橡塑机械厂;平板硫化机,QLB350×350×2,无锡市第一橡塑机械厂;万能实验机;RGT-30A,深圳市瑞格尔仪器有限公司;冲击试验机,JB6,吴忠材料实验机厂;扫描电镜,JSM-5610LV。 1.3 纳米二氧化硅的表面处理 在250 mL三口瓶中,加入100 g纳米SiO2溶液,搅拌。将适量的聚乙烯醇和BS-12缓慢滴加入纳米SiO2溶液中,使溶液变成膏状。加入50 g无水乙醇,强烈搅拌0.5 h,调低转速,加热到液体共沸温度83℃开始常压蒸馏,待体系变粘稠时,停止加热,冷却至室温。重复以上操作三次,再加入50 g乙醇,强烈搅拌后,滴加1.5 g KH-560,在70℃以下反应2 h,蒸馏,将所得粉体在50℃下真空干燥,研磨。 1.4 试样制备 将各种物料称重混匀后,在密炼机上进行密炼。密炼机转速50 r/min,温度175℃,密炼时间10min。从密炼机出料后在开炼机上进行开炼,然后在平板硫化机上模压成型,时间为10min,温度180℃。 1.5 性能测试 1.5.1 冲击强度的测定,按国家标准GB043-79测试。 1.5.2 拉伸、屈服强度及断裂伸长率的测定

纳米二氧化硅的发展现状及前景

纳米二氧化硅的发展现状及前景 范文斌 (2010级电信2班) 摘要:对纳米二氧化硅的制备技术进行了全面介绍,对各种制法的优缺点进行了评述:阐明了改性机理,列举了常见的改性方法;对具体的应用,尤其是近年来各新兴领域的应用作了简要的概括,分别叙述了纳米SiO2有各个应用领域所表现的优越性和一些奇异特性。 关键词:纳米SiO2: 1前言 1.1纳米二氧化硅的发展现状及前景 纳米材料是指微粒粒径达到纳米级(1~100nm)的超细材料。当粒子的粒径为纳米级时,其本身具有量子尺寸效应和宏观量子隧道效应等,因而展现出许多特有的性质,应用前景广阔。纳米SiO2是极具工业应用前景的纳米材料,它的应用领域十分广泛,几乎涉及到所有应用SiO2粉体的行业。我国对纳米材料的研究起步比较迟,直到“八五计划”将“纳米材料”列人重大基础项目之后,这方面的研究才迅速开展起来,并取得了令人瞩目的成果。1996年底由中国科学院固体物理研究所与舟山普陀升兴公司合作,成功开发出纳米材料家庭的重要一员——纳米SiO2[1],从而使我国成为继美、英、日、德国之后,国际上第五个能批量生产此产品的国家。纳米SiO2 的批量生产为其研究开发提供了坚实的基础。 目前,我国的科技工作者正积极投身于这种新材料的开发与应用,上海氯碱化工与华东理工大学[2]建立了连续化的1000t/a规模中试研究装置,开发了辅助燃烧反应器等核心设备,制备了性能优良的纳米二氧化硅产品,其理化性能和在硅橡胶制品中的应用性能,已经达到和超过国外同类产品指标。专家鉴定认为,纳米二氧化硅氢氧焰燃烧合成技术、燃烧反应器和絮凝器等关键设备及应用技术具有创新性,该成果总体上达到国际先进水平,其中在预混合辅助燃烧新型反应器和流化床脱酸两项核心技术方面达到了国际领先水平,对于突破国际技术封锁具有重大价值。但总地来讲,我国纳米SiO2的生产与应用还落后于发达国家,该领域的研究工作还有待突破。 1.2 纳米二氧化硅的性质[3]~[5]

二氧化硅的制备

纳米二氧化硅颗粒的制备与表征 一、实验目的 颗粒。 1、学习溶胶—凝胶法制备纳米SiO 2 颗粒物相分析和粒径测定。 2、利用粒度分析仪对SiO 2 颗粒进行表征。 3、通过红外光谱仪对纳米SiO 2 4、通过热重分析仪测试煅烧温度。 二、实验原理 纳米SiO 具有三维网状结构,拥有庞大的比表面积,表面上存在着大量的羟基基团, 亲水2 性强, 众多的颗粒相互联结成链状,链状结构彼此又以氢键相互作用,形成由聚集体组成的立体 网状结构。 图1 纳米二氧化硅三维网状结构 图2 纳米二氧化硅表面上存在着大量的羟基基团 溶胶凝胶法(Sol-Gel法):利用活性较高的前驱体作为原料,在含水的溶液中水解,生成溶

胶,然后溶胶颗粒间进一步发生相互作用,与溶剂共同生成凝胶,干燥后、煅烧获得前驱体相应的氧化物。 第一步水解: 硅烷的水解过程ROH ?→ ? - -2 - - + Si Si+ O OH H OR 第二步缩合: 硅烷的缩聚过程O ?→ ? - - - - - - + - H Si O Si Si HO + Si2 OH - 总反应:ROH ?→ - Si ? + - - - - Si O 22+ O H Si2 OR 硅烷的浓度,硅烷溶液的pH 值,溶剂成分,水解时间与温度均会影响到硅烷的水解缩聚过程。 其中,pH 值能影响硅烷溶液的水解缩聚反应速率。一般认为酸性和碱性条件下均有利于硅烷的水解反应,而碱性条件下更能促进缩聚反应的进行。因此,选择合理的pH 值能控制硅烷的水解与缩合反应速率。 水含量除了影响硅烷的水解与缩聚反应速率外,还影响其溶解性;而醇溶剂对硅烷分子起到助溶与分散的作用,还起到调节水解速率的作用。 三、仪器及试剂 仪器常规玻璃仪器,不同型号移液枪,坩埚,研钵,水浴锅,磁子,磁力搅拌器,烘箱,马弗炉,傅里叶红外光谱仪,差热-热重分析仪,粒度分析仪; 试剂乙醇(AR),去离子水,TEOS,1:1 氨水,浓氨水、浓盐酸,精密pH 试纸。 四、实验步骤 颗粒 ①Stober 法制备纳米SiO 2 取75mL 无水乙醇于烧杯中,加入25mL 去离子水,搅拌使其均匀。向其中加入10mL TEOS,同时搅拌。用1:1 氨水溶液调节硅烷溶液的pH 值至7,搅拌10min。将上述硅烷溶液放入水浴锅中,水温35℃,陈化1h。向溶液中逐滴加入浓氨水,使其刚好产生果冻状凝胶为止。静置,至溶液全部转化为凝胶。 将所得的凝胶捣碎放入烘箱中,烘箱温度为100℃,烘干,即得SiO 前躯体粉末。将粉末碾 2 粉末。 碎后在300℃煅烧20min 即得SiO 2

纳米复合材料及其制备技术综述

第23卷第4期2002年7月 江苏大学学报(自然科学版) Journal of Jiangsu U niversity(Natur al Science) V ol.23No.4 July2002 纳米复合材料及其制备技术综述 赵晓兵,陈志刚 (江苏大学材料科学与工程学院,江苏镇江212013) [摘 要]纳米材料是一种新型高性能的材料,已在工业生产中得到了广泛的应用 由于它具有特殊的用途和性能,更多地应用于一些特定的场合 纳米材料的制备方法一直是人们关注的热点问题,本文综述了纳米复合材料的制备方法,着重介绍了制备纳米复合材料的关键 纳米粉体的分散技术,重点介绍了几种常用的分散方法及其原理,并较全面地分析了纳米复合材料的应用前景 [关键词]纳米复合材料;制备方法;分散 [中图分类号]TB383 [文献标识码]A [文章编号]1671-7775(2002)04-0052-05 纳米材料是指三维空间中至少有一维处于纳米尺度的范围或由它们作为基本单元构成的材料 在纳米量级的范围内,材料的各种限域效应能够引起各种特性发生相当大的改变[1,2] 这些变化可以提高材料的综合性能,为发展新型高性能材料创造了条件 然而,单一的纳米晶材料在制备技术上存在困难,往往不能满足实际应用的需要,许多研究将纳米粒子和其他材料复合成纳米复合材料,这种复合材料有可能同时兼顾纳米粒子和其他材料的优点,具有特殊的性能 纳米复合材料的概念最早是由Rey和Kom arneni在20世纪80年代提出的[3] 纳米复合材料是由两种或两种以上的不同相材料组成,其复合结构中至少有一个相在一个维度上呈纳米级大小 纳米复合材料的组成可以是金属/金属、金属/陶瓷、陶瓷/陶瓷、无机(金属、陶瓷)/聚合物、聚合物/无机及聚合物/聚合物等不同的组合方式 1 纳米粉体的分散 由于纳米组分粒径小、比表面积大,极易形成尺寸较大的团聚体[4],从而使纳米复合材料中不存在或存在很少的纳米相,难以发挥纳米相的独特作用 因此,纳米组分在基体中的分散是制备纳米复合材料的关键,受到广泛的重视,目前主要采用以下几种方法实现纳米级分散 1 1 超声波分散 利用超声空化时产生的局部高温、高压或强冲击波和微射流等,弱化纳米粒子间的纳米作用能,可有效地防止纳米粒子的团聚 Lu将平均粒径为10nm的CrSi2加到丙烯晴-苯乙烯共聚物的四氢呋喃溶液中,经超声分散得到包裹高分子材料的纳米晶体[5] 采用超声波分散时,若停止超声波振荡,仍有可能使纳米粒子再度团聚 另外,超声波对极细小的纳米颗粒,其分散效果并不理想,因为超声波分散时,颗粒共振加速运动,使颗粒碰撞能量增加,可能导致团聚 1 2 机械搅拌分散 借助外力的剪切作用使纳米粒子分散在介质中 在机械搅拌下纳米粒子的特殊结构容易产生化学反应,形成有机化合物枝链或保护层,使纳米粒子更易分散 但搅拌会造成溶液飞溅,反应物损失 1 3 分散剂分散 1 3 1 加入反絮凝剂形成双电层 选择适当的电解质作分散剂,使纳米粒子表面吸引异电离子形成双电层,通过双电层之间的库仑排斥作用使纳米粒子分散 例如,用盐酸处理纳米Al2O3后,在纳米Al2O3粒子表面生成三氯化铝(AlCl3),三氯化铝水解生成AlCl2+和AlCl2+,犹如纳米Al2O3粒子表面吸附了一层AlCl2+和AlCl2+,使纳米Al2O3成为一个带正电荷的胶粒,然后胶粒吸附OH-而形成一个庞大的胶团 如图1所示 由此可得分散较好的悬浮液 [收稿日期]2002-03-04 [基金项目]江苏省教育厅自然科学基金资助项目(99KJD430004) [作者简介]赵晓兵(1975-),男,河北石家庄人,江苏大学硕士生

二氧化硅的制备

二氧化硅的制备 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

纳米二氧化硅颗粒的制备与表征 一、实验目的 1、学习溶胶—凝胶法制备纳米SiO2 颗粒。 2、利用粒度分析仪对SiO2 颗粒物相分析和粒径测定。 3、通过红外光谱仪对纳米SiO2 颗粒进行表征。 4、通过热重分析仪测试煅烧温度。 二、实验原理 纳米SiO 具有三维网状结构,拥有庞大的比表面积,表面上存在着大量的 2 羟基基团, 亲水性强, 众多的颗粒相互联结成链状,链状结构彼此又以氢键相互作用,形成由聚集体组成的立体网状结构。 图1 纳米二氧化硅三维网状结构 图2 纳米二氧化硅表面上存在着大量的羟基基团 溶胶凝胶法(Sol-Gel法):利用活性较高的前驱体作为原料,在含水的溶液中水解,生成溶胶,然后溶胶颗粒间进一步发生相互作用,与溶剂共同生成凝胶,干燥后、煅烧获得前驱体相应的氧化物。 第一步水解: 硅烷的水解过程ROH ? ?→ + - -2 - O OH Si H OR Si+ - 第二步缩合: 硅烷的缩聚过程O ? ?→ - - - - - - + - O Si Si - Si H + Si2 OH HO 总反应:ROH - ?→ ? - - - - + O O Si 22+ Si H Si2 OR 硅烷的浓度,硅烷溶液的pH 值,溶剂成分,水解时间与温度均会影响到硅烷的水解缩聚过程。

其中,pH 值能影响硅烷溶液的水解缩聚反应速率。一般认为酸性和碱性条件下均有利于硅烷的水解反应,而碱性条件下更能促进缩聚反应的进行。因此,选择合理的pH 值能控制硅烷的水解与缩合反应速率。 水含量除了影响硅烷的水解与缩聚反应速率外,还影响其溶解性;而醇溶剂对硅烷分子起到助溶与分散的作用,还起到调节水解速率的作用。 三、仪器及试剂 仪器常规玻璃仪器,不同型号移液枪,坩埚,研钵,水浴锅,磁子,磁力搅拌器,烘箱,马弗炉,傅里叶红外光谱仪,差热-热重分析仪,粒度分析仪; 试剂乙醇(AR),去离子水,TEOS,1:1 氨水,浓氨水、浓盐酸,精密pH 试纸。 四、实验步骤 ①Stober 法制备纳米SiO2 颗粒 取75mL 无水乙醇于烧杯中,加入25mL 去离子水,搅拌使其均匀。向其中加入10mL TEOS,同时搅拌。用1:1 氨水溶液调节硅烷溶液的pH 值至7,搅拌10min。将上述硅烷溶液放入水浴锅中,水温35℃,陈化1h。向溶液中逐滴加入浓氨水,使其刚好产生果冻状凝胶为止。静置,至溶液全部转化为凝胶。 前躯体将所得的凝胶捣碎放入烘箱中,烘箱温度为100℃,烘干,即得SiO 2 粉末。 粉末。将粉末碾碎后在300℃煅烧20min 即得SiO 2 ② SiO2颗粒的粒径测试 先将大烧杯中装满水,对大烧杯进行清洗,倒去水。向大烧杯中装入部分水,测试背景。将小烧杯中预先搅拌好的二氧化硅浊液倒入大烧杯中,进行充分混合均匀,对其进行粒径分析。 ③SiO2颗粒红外光谱测试

相关主题
相关文档 最新文档