当前位置:文档之家› 变压器网络数学模型

变压器网络数学模型

内容提要

1.变压器的参数和数学模型

2.电力线路的参数和数学模型

3.发电机组的运行特性和数学

模型

4.电力网络的数学模型

2.1 变压器的参数和数学模型

问题的提出

1、在电力系统分析中,变压器如何表示?

2、变压器各等值参数如何求取?

变压器的实际图片

变压器内部绕组

简单物理模型

Φ

U1U2

2、11双绕组变压器

一、等值电路

1.〝Τ〞型等值电路

2.〝一〞型等值电路(忽略励磁导纳)

R T

jX T

R 1

jX 1

jX ,

2R ,

2

R m jX m

3.〝Γ〞型等值电路

R T jX T

G T-jB T

在电力系统中一般采用Γ型等值电路

二、各参数的获取1.实验数据获得

短路实验可以获得:

??

??%

)(s U s P 百分值短路电压短路损耗开路实验可以获得:

??

??%

)(00I P 百分值空载电流空载损耗

2.参数的计算 求R T

,,≈??+?=??Fe Fe cu S S T P P P P P R 决定由T N N

T N S R U

S R I P 2

2

333???

? ?

?==?221000N

N S T S

U P R ?=

???

???kV U MVA S kW P N

N s :::

求X T

X T 由短路试验得到的U S %决定

N

N

S T S U U X 100%2=

??

?kV

U MVA S N N ::%100%1003%2

?=?≈

N

T

N N T N S U X S U X I U

求G T :

G T 由开路试验的△P 0决定

T

2N

0cu Fe cu 0G U P ,0P ,P P P =?≈??+?=?3

2N

0T 10

U P G -??=??

??kV

U kW P N ::0

求B T :

B T 由开路试验的I 0%决定

%

100B S U %100I B 3U %I T N 2N

N

T N 0?=?=2

0100%N

N

T U S I B =??

?kV

U MVA S N N ::

注意点:

1.各量单位:

2.U N 为哪侧的,则算出的参数、等值电路为折合到该侧的。

3.三相变压器的原副边电压比不一定等于匝数比

4.三相变压器不论其接法如何,求出的参数都是等值成Y/Y 接法中的一相参数

5.励磁支路放在功率输入侧(电源侧、一次侧)

)

()()()(0kW P MVA S kV U kW P S N N ??、、、

2.12、三绕组变压器

一、等值电路

R 2

jX 2

2

R 1 jX 1

G T

-jB T

1 3

R 3

jX 3

参数的获得

开路试验:一侧加U N ,另两侧开路,得到:

G T 、B T -求法与双绕组相同

短路试验:一侧加低电压,使电流达额定,另两侧中,一侧短路、一侧开路。得到:

%

I ,(kW)00P ???

??????------%U %U %U P P P 1)S(33)S(22)S(11)S(3)3S(22)S(1、、、、

求R 1、R 2、R 3

对于三绕组变压器容量与绕组容量不一定相等,若变压器容量为100(%),绕组额定容量比有

100/100/100、100/100/50、100/50/100等。(1)容量比为时:

设为各绕组对应的短路损耗3

21100

/100/1003

S 2S 1S P P P ???、、

则:

整理得:

???

???+?=??+?=??+?=?---1

S 3S )

13(S 3S 2S )32(S 2S 1S )21(S P P P P P P P P P →[

][][]

?????????

?-?+?=??-?+?=??-?+?=?---------)21(S )32(S )13(S 3S )

13(S )21(S )32(S 2S )

32(S )12(S )21(S 1S P P P 21P P P P 21P P P P 21P ?????

???

???Ω?=Ω?=Ω?=22332

2222

2

11100010001000N N

S N N S N N

S S U P R S U P R S U P R ??????kV

U MVA S kV P N N s :::

?

容量比不相等时,如应该注意以下几点

?

参数是对应变压器额定容量下的参数。

?

50%变压器容量的绕组参与短路试验,只能做到1/2的变压器容量所允许的电流。

?

在折合后的变压器中,绕组间的容量比也就是电流比,而损耗与电流的平方成正比,因此必须将50%容量的绕组对应的短路试验数据归算至变压器容量。

3

21100/50/100

各个测量值为

)(42

)21(2

)21()

21(实测量---'?=???

?

?

??'?=?S N N

S S P I I P P )(42

)32(2

)32()

32(实测量---'?=???

?

?

??'?=?S N N

S S P I I P P )

()13(实测量-?S P

求X1、X2、X3

设为各绕组对应的短路电压U S1%,U S2%,U S3%则:

??

?

??+=+=+=---%U %U %U %U %U %U %U %U %U 1S 3S )13(S 3S 2S )32(S 2S 1S )21(S ????

?

?

??

???==

=

N N

S N

N S N N S S U U X S U U X S U U X 1000%1000%1000%2332222

11→??

?kV

U MVA

S N N ::

以太网网络变压器和中心抽头的作用

以太网网络变压器和中心抽头的作用 (2012-02-28 10:43:30) 转载▼ 标签: 杂谈 在以太网设备中,通过PHY接RJ45时,中间都会加一个网络变压器。有的变压器中心抽头接电源,有的又接电容到地。而且接电源时,电源值又可以不一样,3.3V,2.5V,1.8V都有。这个变压器的作用到底是什么呢? 1、中间抽头为什么有些接电源?有些接地?这个主要是与使用的PHY芯片UTP口驱动类型决定的,这种驱动类型有两种,电压驱动和电流驱动。电压驱动的就要接电源;电流驱动的就直接接个电容到地即可!所以对于不同的芯片,中心抽头的接法,与PHY是有密切关系的,具体还要参看芯片的datasheet和参考设计了。 2、为什么接电源时,又接不同的电压呢?这个也是所使用的PHY芯片资料里规定的UTP 端口电平决定的。决定的什么电平,就得接相应的电压了。即如果是2.5v的就上拉到2.5v,如果是3.3v的就上拉到3.3v。 3.这个变压器到底是什么作用呢,可不可以不接呢。从理论上来说,是可以不需要接变压器,直接接到RJ45上,也是能正常工作的。但是呢,传输距离就很受限制,而且当接到不同电平网口时,也会有影响。而且外部对芯片的干扰也很大。当接了网络变压器后,它主要用于信号电平耦合。其一,可以增强信号,使其传输距离更远;其二,使芯片端与外部隔离,抗干扰能力大大增强,而且对芯片增加了很大的保护作用(如雷击);其三,当接到不同电平(如有的PHY芯片是2.5V,有的PHY芯片是3.3V)的网口时,不会对彼此设备造成影响。 总的来说,网络变压器主要有信号传输、阻抗匹配、波形修复、信号杂波抑制和高电压隔离等作用。 中心抽头作用: 1.通过提供差分线上共模噪声的低阻抗回流路径,降低线缆上共模电流和共模电压; 2.对于某些收发器提供一个直流偏置电压或功率源。 集成的RJ45共模抑制可以做的更好些,寄生参数影响也比较小; 选用独立器件有一个好处,就是可以把隔离变压器下面的地分开,即GND和PGND,内部的共模干扰不但不会出去,外部网线即使耦合噪声也会通过网线对PGND的分布电容下到机壳上

电力系统各元件的参数和数学模型

2电力系统元件的运行特性和数学模型 2-1隐极式发电机的运行限额和数学模型 1.发电机的运行额限 发电机的运行总受一定条件,如绕组温升、励磁绕组温升、原动机功率等的约束。这些约束条件决定了发电机组发出的有功、无功功率有一定的限额。 (1)定子绕组温升约束。定子绕组温升取决于定子绕组电流,也就是取决于发 电机的视在功率。当发电机在额定电压下运行时,这一约束条件就体现为其运 行点不得越出以O为圆心,以BO为半径所作的圆弧S。 (2)励磁绕组温升约束。励磁绕组温升取决于励磁绕组电流,也就是取决于发 电机的空载电势。这一约束条件体现为发电机的空载电势不得大于其额定值 E Qn,也就是其运行点不得越出以O’为圆心、O’B 为半径所作的圆弧F。 (3)原动机功率约束。原动机的额定功率往往就等于它所配套的发电机的额定 有功功率。因此,这一约束条件就体现为经B点所作与横轴平行的直线的直线 图2-5运行极限图 BC 。 (4)其它约束。其它约束出现在发电机以超前功率因数运行的场合。它们有定 子端部温升、并列运行稳定性等的约束。其中,定子端部温升的约束往往最为 苛刻,从而这一约束条件通常都需要通过试验确定,并在发电机的运行规范中 给出,图2-5中虚线T只是一种示意,它通常在发电机运行规范书中规定。 归纳以上分析可见,隐极式发电机的运行极限就体现为图2-5中曲线OA、AB、BC 和虚线T所包围的面积。 发电机的电抗和等值电路: 2-2变压器的参数和数学模型 一、双绕组变压器的参数和数学模型 变压器做短路实验和空载实验测得短路损耗、短路电压、空载损耗、空载电流可以用来求变压器参数。 1.电阻 由于短路试验时,一次侧外加的电压是很低的,只是在变压器漏阻抗上的压降,所以铁芯中的主磁通也十分小,完全可以忽略励磁电流,铁芯中的损耗也可以忽略,由于变压

网络隔离变压器

1、中间抽头为什么有些接电源?有些接地?这个主要是与使用的PHY芯片UTP口驱动类型决定的,这种驱动类型有两种,电压驱动和电流驱动。电压驱动的就要接电源;电流驱动的就直接接个电容到地即可!所以对于不同的芯片,中心抽头的接法,与PHY是有密切关系的,具体还要参看芯片的datasheet和参考设计了。 2、为什么接电源时,又接不同的电压呢?这个也是所使用的PHY芯片资料里规定的UTP 端口电平决定的。决定的什么电平,就得接相应的电压了。即如果是2.5v的就上拉到2.5v,如果是3.3v的就上拉到3.3v。 3.这个变压器到底是什么作用呢,可不可以不接呢。从理论上来说,是可以不需要接变压器,直接接到RJ45上,也是能正常工作的。但是呢,传输距离就很受限制,而且当接到不同电平网口时,也会有影响。而且外部对芯片的干扰也很大。当接了网络变压器后,它主要用于信号电平耦合。其一,可以增强信号,使其传输距离更远;其二,使芯片端与外部隔离,抗干扰能力大大增强,而且对芯片增加了很大的保护作用(如雷击);其三,当接到不同电平(如有的PHY芯片是2.5V,有的PHY芯片是3.3V)的网口时,不会对彼此设备造成影响。 总的来说,网络变压器主要有信号传输、阻抗匹配、波形修复、信号杂波抑制和高电压隔离等作用。 另: 数据汞也被叫做网络变压器或可称为网络隔离变压器。它在一块网卡上所起的作用主要有两个,一是传输数据,它把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到不同电平的连接网线的另外一端;一是隔离网线连接的不同网络设备间的不同电平,以防止不同电压通过网线传输损坏设备。除此而外,数据汞还能对设备起到一定的防雷保护作用。 变压器两脚加上信号电压(差模信号)时,经过磁路耦合作用在变压器的次级端感应出感生电压。对于信号电压,由于CMC两绕组同时流过的信号电流大小相等、方向相反,在CMC 的铁芯磁路中产生了方向相反的磁通,相互抵消,不影响差模信号传输。而此时CMT两绕组流过的则是大小相等,方向相同的电流,致使CMT的作用相当于一个大的电阻,阻碍差模信号的通过,对载波信号的传输影响极少。所以差模信号被直接耦合加到负载上。而对共模信号来说,主要是通过变压器的初、次级间的分布电容耦合到次级,而此时CMC两绕组流过的是大小相等、方向相同的电流,这时CMC相当于一个大的电阻,阻止共模电流的传输,而CMT两绕组则是流过大小相等、方向相反的电流,对共模信号相当于短路,这样共模电压基本上不会被传送,而被耦合到负载上。从而既能使载波信号被很好的传输,又能抑制共模干扰信号。 变压器的中间抽头。中间抽头为什么有些接电源?有些接地?这个主要是使用的phy芯片UTP(双绞线)口驱动类型决定的,有两种,如果是电压驱动的就要接电源;如果是电流驱动的就不用了,直接接个电容到地。为什么有些接2.5v?而有些又接3.3v呢?这个由PHY 芯片资料里规定的UTP端口电平决定。如果是2.5v的就上拉到2.5v,如果是3.3v的就上拉到3.3v。

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

电力变压器的参数与数学模型

.-电力变压器的参数与数学模型

————————————————————————————————作者:————————————————————————————————日期:

电力变压器的参数与数学模型 2.3.1理想变压器 对于理想变压器,假定: 绕组电阻为零;因此绕组损耗I2R为零。铁心磁导率是无穷大,所以铁心磁阻为零。不计漏磁通;即整个磁通为铁心和一次侧绕组、二次侧绕组相交链的磁通。不计铁心损耗。 图2-20双绕组变压器内部结构图2-21 双绕组变压器示意图从安培和法拉第定律知: (2-46) 磁场强度矢量Hc 为 (2-47) 其中,磁场强度、磁感应强度和磁通量的关系为 由于理想变压器铁心磁导率为无限大,则磁阻R c近似为零。 (2-48) 上式可写为: 图2-21为双绕组变压器的示意图。 (2-49) 或者 图2-21中的标记点表示电压E1和E2,在标记点侧是+极,为同相。如果图2-21中的其中一个电压极性反向,那么E1与E2相位相差180o。 匝数比k定义如下:

理想单相双绕组变压器的基本关系为 (2-50) (2-51) 由推导可得两个关于复功率和阻抗的关系如下。图2-21中流进一次侧绕组的复功率为 (2-52) 代入(2-50)和(2-51) (2-53) 可见,流进一次侧绕组的复功率S1与流出二次侧绕组的复功率S2相等。即理想变压器没有有功和无功损耗。 如果阻抗Z2与图2-21中理想变压器的二次侧绕组相连,那么 (2-54) 这个阻抗,当折算到一次侧时,为 (2-55) 因此,与二次侧绕组相连的阻抗Z2折算到一次侧,需将Z2乘以匝数比的平方k2。 2.3.2实际双绕组变压器 1.简化条件 实际单相双绕组变压器,与理想变压器的区别如下: 计及绕组电阻;铁心磁导率为有限值;磁通不完全由铁心构成;计及铁心有功和无功损耗。 图2-22实际单相双绕组变压器的等效电路图 电阻串联于图中一次侧绕组,用于计及该绕组损耗I2R。电抗为一次绕组的漏电抗,串联于一次绕组用于计及一次绕组的漏磁通。这个漏磁通是仅与一次绕组交链的磁通的组成部分,它引起电压降落,对应且超前。漏电抗引起无功损耗。类似的,二次绕组中串联了电阻和电抗。 由于变压器铁心磁导率为有限值,式(2-48)中磁阻为非零。除以,化简后得到,

网络变压器个人小结

网络变压器个人小结 LiuSH 各位,我们在设计路由和交换机的时候,在以太网PHY芯片和RJ45接口中间我们会用到一个很常用的器件——网络变压器,又叫做数据汞。(有一些网络变压器是集成在RJ45里面,要注意选型,目前我们少用到这一种) 网络变压器的主要作用就是信号传输、阻抗匹配、波形修复、信号杂波抑制和电压隔离等。 从理论上说,是可以不接这个网络变压器的,我们直接将PHY芯片和RJ45连上,设备也能正常工作,但是这时传输距离就会受到限制.当接了网络变压器后,其一,可以增强信号,使其传输距离更远;其二,使芯片端与外部隔离,抗干扰能力大大增强,而且对芯片增加了很大的保护作用,目前我们如果网口上面没加其它的保护芯片,有网络变压器时能过到2KV的静电和雷击;其三,当接到不同电平(如有的PHY芯片是2.5V,有的是3.3V,或1.8V)的网口时,不会对彼此设备造成影响。 如下面图所示,在发送差分线和接收差分线之间会并联两个49.9或者50Ω(精度1%)的终接电阻,这个电阻的作用是为了实现阻抗匹配,对于初次比1:1的变压器,其输入电阻和输出电阻之比也是1:1,这样并联的结果,在输出端看来就是100Ω的匹配电阻,现在我们所用的双绞线的特征阻抗大多是100Ω。

请大家注意,我们不同的芯片的SCH中,网络变压器的中心抽头有的接了3.3V 的电平,有的接了2.5V或者1.8V,有的悬空了。实际上这个主要与PHY芯片 UTP口驱动类型决定的。这种驱动类型有两种,电压驱动和电流驱动。 电压驱动的接电源,电流驱动的直接接电容到地即可。至于为什么接电源时,所接的电压会不同,这是由所用的PHY芯片规定的UTP端口电平决定的。所以对于不同的PHY芯片,网络变压器的中心抽头会有不同的接法,我们在进行设计时, 需要仔细查看芯片资料和参考设计。再次提醒,如果我们选用了电流型驱动的PHY,而外面网络变压器中间抽头接了电源,功能就会有影响,甚至不能使用!电源要接3.3V的,也不能接为2.5V和1.8V。请注意此点! 网口差分对的走线,以及网口滤波电容和中心抽头供电端磁珠型号以及网络变压器本身的共模压抑比的参数,将直接影响到板子网口端EMI的效果。这一部分在设计的时刻就要注意!

2.3-电力变压器的参数与数学模型

2.3-电力变压器的参数与数学模型

电力变压器的参数与数学模型 2.3.1理想变压器 对于理想变压器,假定: 绕组电阻为零;因此绕组损耗I2R为零。铁心磁导率是无穷大,所以铁心磁阻为零。不计漏磁通;即整个磁通为铁心和一次侧绕组、二次侧绕组相交链的磁通。不计铁心损耗。 图2-20双绕组变压器内部结构图2-21 双绕组变压器示意图从安培和法拉第定律知: (2-46) 磁场强度矢量Hc 为 (2-47) 其中,磁场强度、磁感应强度和磁通量的关系为 由于理想变压器铁心磁导率为无限大,则磁阻R c近似为零。 (2-48) 上式可写为: 图2-21为双绕组变压器的示意图。 (2-49) 或者 图2-21中的标记点表示电压E1和E2,在标记点侧是+极,为同相。如果图2-21中的其中一个电压极性反向,那么E1与E2相位相差180o。 匝数比k定义如下:

理想单相双绕组变压器的基本关系为 (2-50) (2-51) 由推导可得两个关于复功率和阻抗的关系如下。图2-21中流进一次侧绕组的复功率为 (2-52) 代入(2-50)和(2-51) (2-53) 可见,流进一次侧绕组的复功率S1与流出二次侧绕组的复功率S2相等。即理想变压器没有有功和无功损耗。 如果阻抗Z2与图2-21中理想变压器的二次侧绕组相连,那么 (2-54) 这个阻抗,当折算到一次侧时,为 (2-55) 因此,与二次侧绕组相连的阻抗Z2折算到一次侧,需将Z2乘以匝数比的平方k2。 2.3.2实际双绕组变压器 1.简化条件 实际单相双绕组变压器,与理想变压器的区别如下: 计及绕组电阻;铁心磁导率为有限值;磁通不完全由铁心构成;计及铁心有功和无功损耗。 图2-22实际单相双绕组变压器的等效电路图 电阻串联于图中一次侧绕组,用于计及该绕组损耗I2R。电抗为一次绕组的漏电抗,串联于一次绕组用于计及一次绕组的漏磁通。这个漏磁通是仅与一次绕组交链的磁通的组成部分,它引起电压降落,对应且超前。漏电抗引起无功损耗。类似的,二次绕组中串联了电阻和电抗。 由于变压器铁心磁导率为有限值,式(2-48)中磁阻为非零。除以,化简后得到,

Ethernet_Transformer网络变压器的作用

网络变压器作用、原理及主要参数 前言 图1所示的网络变压器(Ethernet Transformer,也称数据汞/网络隔离变压器)模块是网卡电路中不可或缺的部分,它主要包含中间抽头电容、变压器、自耦变压器、共模电感。该变压器一般都安装在网卡的输入端附近。工作时,由收发器送出的上行数据信号从络变压器的Pin16-Pin15进入,由Pin10-Pin11输出,经RJ45型转接头,再通过非屏蔽双绞线送往服务器;服务器送来的下行数据信号经另一对非屏蔽双绞线和RJ45型转接头,由Pin7-Pin6进入,由Pin1-Pin2输出,然后送到网卡的收发器上。 本文将主要分析网络变压器的原理、主要参数及实现的功能。 图1:网络变压器电路图 功能 Ethernet Transformer主要实现以下三个功能: 1.满足IEEE 80 2.3电气隔离要求 2.无失真传输以太网信号 3.辐射发射的抑制 电气隔离 任何CMOS制程的芯片工作的时候产生的信号电平总是大于0V的(取决于芯片的制程和设计需求),PHY输出信号送到100米甚至更长的地方会有很大的直流分量的损失。而且如果外部网线直接和芯片相连的话,电磁感应(打雷)和静电,很容易造成芯片的损坏。 再就是设备接地方法不同,电网环境不同会导致双方的0V电平不一致,这样信号从A 传到B,由于A设备的0V电平和B点的0V电平不一样,这样可能会导致很大的电流从电势高的设备流向电势低的设备。 网络变压器把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。这样不但使网线和PHY之间没有物理上的连接而换传递了信号,隔断了信号中的直流分量,还可以在不同0V电平的设备中传送数据。 网络变压器本身就是设计为耐2KV~3KV的电压的。也起到了防雷保护作用。有些朋友的网络设备在雷雨天气时容易被烧坏,大都是PCB设计不合理造成的,而且大都烧毁了设备的接口,很少有芯片被烧毁的,就是变压器起到了保护作用。

MATLAB变压器仿真

扬州大学 专业软件应用综合设计报告 水能学院13级电气专业题目变压器综合仿真设计二 学生某某某学号131504207指导教师张建华 2015年12月30日

目录 一、设计题目 (2) 二、正文 (2) 1、引言 (2) 2、设计依据及框图 (3) 2.1 设计平台 (3) 2.2 设计思想 (4) 2.3 设计结构框图或流程图 (6) 2.4各模块功能简介 (6) 3、软件调试分析 (10) 4、结语 (23) 5、参考文献 (25) 6、致谢 (25) .

变压器综合仿真设计二 摘要:随着变压器技术的进步,传统仿真已经受到了很大的限制。并且当下要推动变压器技术的发展,已经不能再依靠传统仿真。因此,对于变压器的计算机仿真技术势在必行。 本为通过MATLAB软件,对变压器的运行特性进行了仿真。主要仿真的内容包括:变压器磁路电流畸变以及变压器负载运行特性曲线研究。仿真所用到的方法为数值计算方法,通过插值的方法实现了对曲线的拟合。仿真时,结合实际情况可输入不同参数便于研究。文中给出了各种运行特性的仿真结果图,并且结合理论对其做了简单的分析,验证了仿真方法的准确性和可行性。 关键字:变压器;MATLAB仿真分析;曲线拟合 1 引言 设随着科学技术进步,电工电子新技术的不断发展,新型电气备不断涌现,人们使用电的频率越来越高,人与电的关系也日益紧密,对于电性能和电气产品的了解,已成为人们必需的生活常识。 变压器是一种静止的电气设备,它是利用电磁感应原理把一种电压的交流电能转变成同频率的另一种电压的交流电能,以满足不同负载的需要。在电力系统中,变压器是一个重要的电气设备,它对电能的经济传输,灵活分配和安全使用具有重要的作用,此外,也使人们能够方便地解决输电和用电这一矛盾。由于计算机仿真技术的出现,传统的物理仿真系统逐渐的被计算机仿真系统代替。计算机仿真系统所具有的效率高、精度高、重复性和通用性好、容易改变仿真参数等优点,还可以实现物理仿真无法实现的有危险性的或者是成本昂贵的仿真。在我国电力行业发展迅速的今天,变压器的仿真技术不能够再依托于传统的物理仿真系统,而是需要能够采用能够促进变压器技术发展的仿真技术。 对变压器特性的仿真涉及到很多方面,比如变压器空载励磁电流在饱和和磁滞影响时的特性、变压器磁滞回环在不同电压等级下的数据仿真、变压器空载合闸时的过电流现象、变压器在突发短路时的过电流现象,还有基本的比如效率特性、外特性、短路试验、空载试验等。 在学习完本课程后,运用MATLAB相关仿真技术对变压器进行仿真研究,本文的仿真主要以变压器磁路电流畸变以及变压器负载运行特性曲线为主要研究对象,通过结合实际进行曲线拟合、波形分析,得出相应结论。

网络变压器简介

网络变压器简介 网络变压器具体有T1/E1隔离变压器;ISDN/ADSL接口变压器;VDSL 高通/低通滤波器模块、接口变压器;T3/E3、SDH、64KBPS接口变压器;10/100BASE、1000BASE-TX网络滤波器;RJ45集成变压器;还可根据客户需要设计专用变压器。产品主要应用于:高性能数字交换机;SDH/ATM传输设备;ISDN、ADSL、VDSL、POE受电设备综合业务数字设备;FILT光纤环路设备;以太网交换机等等,如裕泰电子的YL18-2050S,YL18-3002S等比较常见! 数据泵是消费级PCI网卡上都具备的设备,数据泵也被叫做网络变压器或可称为网络隔离变压器。 它在一块网卡上所起的作用主要有两个,一是传输数据,它把PHY送出来的差分信号用差模耦合 的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到不同电平的连接网线的另外一端;一 是隔离网线连接的不同网络设备间的不同电平,以防止不同电压通过网线传输损坏设备。除此 而外,数据汞还能对设备起到一定的防雷保护作用。 编辑本段网络变压器在以太网中的作用 在以太网设备中,通过PHY接RJ45时,中间都会加一个网络变压器。有的变压器中心抽头接到地。而且接电源时,电源值又可以不一样,3.3V,2.5V,1.8V都有。这个变压器的作用分析如下: 1、中间抽头为什么有些接电源?有些接地?这个主要是与使用的PHY 芯片UTP口驱动类型决定的,这种驱动类型有两种,电压驱动和电流驱动。电压驱动的就要接电源;电流驱动的就直接接个电容到地即可!所以对于不同的芯片,中心抽头的接法,与PHY是有密切关系的,具体还要参看芯片的datasheet和参考设计了。 2、为什么接电源时,又接不同的电压呢?这个也是所使用的PHY芯片资料里规定的UTP端口电平决定的。决定的什么电平,就得接相应的电压了。即如果是2.5v的就上拉到2.5v,如果是3.3v的就上拉到3.3v。 3.这个变压器到底是什么作用呢,可不可以不接呢。从理论上来说,是可以不需要接变压器,直接接到RJ45上,也是能正常工作的。但是呢,传输距离就很受限制,而且当接到不同电平网口时,也会有影响。而且外部对芯片的干扰也很大。当接了网络变压器后,它主要用于信号电平耦合。其一,可以增强信号,使其传输距离更远;其二,使芯片端与外部隔离,抗干扰能力大大增强,而且对芯片增加了很大的保护作用(如雷击);其

过程特性与数学模型

第四章过程特性与数学模型 教学要求:了解过程特性的类型的四种类型 掌握描述过程特性的参数的物理意义及对控制通道、扰动通道的影响 学会一阶对象、二阶对象的建模 掌握机理分析法建模的一般步骤 了解实验测试法 重点:描述过程特性的参数的物理意义及对控制通道、扰动通道的影响 运用机理分析法建模 难点:时间常数的物理意义 过程特性的参数对控制通道、扰动通道的影响 过程控制系统的品质是由组成系统的各个环节的结构及其特性所决定。过程即为被控对象,它是否易于控制,对整个系统的运行情况有很大影响。 §4.1过程特性 被控过程的种类常见的有:换热器、锅炉、精馏塔、化学反应器、贮液槽罐、加热炉 等。这些被控过程的特性是由工艺生产过程和工艺设备决 定的。 被控过程特性-----指被控过程输入量发生变化时,过程输出量的变化规律。通道------被控过程的输入量与输出量之间的信号联系 控制通道-----操纵变量至被控变量的信号联系 扰动通道-----扰动变量至操纵变量的信号联系 一、过程特性的类型 多数工业过程的特性可分为下列四种类型: 1.自衡的非振荡过程 2. 无自衡的非振荡过程 3. 有自衡的振荡过程 4. 具有反向特性的过程 二、描述过程特性的参数 用放大系数K、时间常数T、滞后时间τ三个物理量来定量的表示过程特性。(主要针对自衡的非振荡过程) 1.放大系数K ⑴K的物理意义 K的物理意义:如果有一定的输入变化量ΔQ作用于过程,通过过程后被放大了K倍,变为输出变化量ΔW。

⑵放大系数K对系统的影响 对控制通道的影响 对扰动通道的影响 2. 时间常数T ⑴时间常数T的物理意义 时间常数是被控过程的一个重要的动态参数,用来表征被控变量的快慢程度。 时间常数T的物理意义还可以理解为:当过程受到阶跃输入作用后,被控变量保持初始速度变化,达到新的稳态值所需要的时间就是时间常数T。 ⑵时间常数T对系统的影响 对控制通道的影响 对扰动通道的影响 3. 滞后时间τ ⑴纯滞后τ0(P142) ⑵容量滞后τn ⑶滞后时间τ对系统的影响 对控制通道的影响 对扰动通道的影响 §4.2 过程数学模型的建立 过程的(动态)数学模型---是指表示过程的输出变量与输入变量间动态关系的数学描 述。 过程的输入是控制作用u(t)或扰动作用f(t), 输出是被控变量y(t). 数学模型:非参数模型,即用曲性或数据表格来表示,如阶跃响应曲线、脉冲响应曲线 和频率特性曲线;另一种是 参数模型,即用数学方程式来表示,如微分方程(差分方程)、传递函数、 状态空间表达式等。本节所涉及的模型均为用微分方程描述的 线性定常动态模型。 建立数学模型的基本方法 机理分析法-----通过对过程内部运动机理的分析,根据其物理或化学变化规律, 在忽略一些次要因素或做出一些近似处理后得到过程特性方 程,用微分方程或代数方程。这种方法完全依赖于足够的先验 知识,所得到的模型称为机理模型。机理分析法一般只能用于 简单过程的建模。机理分析法 实验测试法-----由过程的输入输出数据确定模型的结构和参数。 4.2.1机理分析法 微分方程建立的步骤归纳如下: ⑴根据实际工作情况和生产过程要求,确定过程的输入变量和输出变量。 ⑵依据过程的内在机理,利用适当的定理定律,建立原始方程式。 ⑶确定原始方程式中的中间变量,列写中间变量与其他因素之间的关系。 ⑷消除中间变量,即得到输入、输出变量的微分方程。 ⑸若微分方程是非线性的,需要进行线性化处理。

2.3 电力变压器的参数与数学模型.

电力变压器的参数与数学模型 2.3.1理想变压器 对于理想变压器,假定: 绕组电阻为零;因此绕组损耗I2R为零。铁心磁导率是无穷大,所以铁心磁阻为零。不计漏磁通;即整个磁通为铁心和一次侧绕组、二次侧绕组相交链的磁通。不计铁心损耗。 图2-20双绕组变压器内部结构图2-21 双绕组变压器示意图从安培和法拉第定律知: (2-46) 磁场强度矢量Hc 为 (2-47) 其中,磁场强度、磁感应强度和磁通量的关系为 由于理想变压器铁心磁导率为无限大,则磁阻R c近似为零。 (2-48) 上式可写为: 图2-21为双绕组变压器的示意图。 (2-49) 或者 图2-21中的标记点表示电压E1和E2,在标记点侧是+极,为同相。如果图2-21中的其中一个电压极性反向,那么E1与E2相位相差180o。 匝数比k定义如下:

理想单相双绕组变压器的基本关系为 (2-50) (2-51) 由推导可得两个关于复功率和阻抗的关系如下。图2-21中流进一次侧绕组的复功率为 (2-52) 代入(2-50)和(2-51) (2-53) 可见,流进一次侧绕组的复功率S1与流出二次侧绕组的复功率S2相等。即理想变压器没有有功和无功损耗。 如果阻抗Z2与图2-21中理想变压器的二次侧绕组相连,那么 (2-54) 这个阻抗,当折算到一次侧时,为 (2-55) 因此,与二次侧绕组相连的阻抗Z2折算到一次侧,需将Z2乘以匝数比的平方k2。 2.3.2实际双绕组变压器 1.简化条件 实际单相双绕组变压器,与理想变压器的区别如下: 计及绕组电阻;铁心磁导率为有限值;磁通不完全由铁心构成;计及铁心有功和无功损耗。 图2-22实际单相双绕组变压器的等效电路图 电阻串联于图中一次侧绕组,用于计及该绕组损耗I2R。电抗为一次绕组的漏电抗,串联于一次绕组用于计及一次绕组的漏磁通。这个漏磁通是仅与一次绕组交链的磁通的组成部分,它引起电压降落 ,对应且超前。漏电抗引起无功损耗。类似的,二次绕组中串联了电阻和电抗。 由于变压器铁心磁导率为有限值,式(2-48)中磁阻为非零。除以,化简后得到,

电力系统各元件的参数和数学模型

2电力系统元件的运行特性和数学模 型 2-1隐极式发电机的运行限额和数学模型 1. 发电机的运行额限 发电机的运行总受一定条件,如绕组温升、励磁绕组温升、原动机功率等的约束。这些约束条件决定了发电机组发出的有功、无功功率有一定的限额。 (1) 定子绕组温升约束。定子绕组温升取决于定子绕组电流,也就是取 决于发电机的视在功率。当发电机在额定电压下运行时,这一约束 条件就体现为其运行点不得越出以 O 为圆心,以BO 为半径所作的圆弧S 。 (2) 励磁绕组温升约束。励磁绕组温升取决于励磁绕组电流,也就是取 决于发电机的空载电势。这一约束条件体现为发电机的空载电势不得大于其额定值E Qn ,也就是其运行点不得越出以O ’为圆心、O ’B 为半径所作的圆弧F 。 (3) 原动机功率约束。原动机的额定功率往往就等于它所配套的发电机 的额定有功功率。因此,这一约束条件就体现为经B 点所作与横轴平行的直线的直线 BC 。 (4) 其它约束。其它约束出现在发电机以超前功率因数运行的场合。它 们有定子端部温升、并列运行稳定性等的约束。其中,定子端部温升的约束往往最为苛刻,从而这一约束条件通常都需要通过试验确定,并在发电机的运行规范中给出,图2-5中虚线T 只是一种示意,它通常在发电机运行规范书中规定。 归纳以上分析可见,隐极式发电机的运行极限就体现为图2-5中曲线OA 、AB 、BC 和虚线T 所包围的面积。 发电机的电抗和等值电路: 2-2变压器的参数和数学模型 一、 双绕组变压器的参数和数学模型 变压器做短路实验和空载实验测得短路损耗、短路电压、空载损耗、空载电流可以用来求变压器参数。 F P O C Q B S A O 图2-5运行极限图

网络变压器

变压器几乎在所有的电子产品中都要用到,它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。一、变压器的基本原理图1是变压器的原理简体图,当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2所抵消的那部分磁通,以保持铁心里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈而改变次级电压,但是不能改变允许负载消耗的功率。二、变压器的损耗当变压器的初级绕组通电后,线圈所产生的磁通在铁心流动,因为铁心本身也是导体,在垂直于磁力线的平面上

就会感应电势,这个电势在铁心的断面上形成闭合回路并产生电流,好象一个旋涡所以称为“涡流”。这个“涡流”使变压器的损耗增加,并且使变压器的铁心发热变压器的温升增加。由“涡流”所产生的损耗我们称为“铁损”。另外要绕制变压器需要用大量的铜线,这些铜导线存在着电阻,电流流过时这电阻会消耗一定的功率,这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损”。所以变压器的温升主要由铁损和铜损产生的。由于变压器存在着铁损与铜损,所以它的输出功率永远小于输入功率,为此我们引入了一个效率的参数来对此进行描述,η=输出功率/输入功率。三、变压器的材料要绕制一个变压器我们必须对与变压器有关的材料要有一定的认识,为此这里我就介绍一下这方面的知识。1、铁心材料:变压器使用的铁心材料主要有铁片、低硅片,高硅片,的钢片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少。我们通常称为加了硅的钢片为硅钢片,变压器的质量所用的硅钢片的质量有很大的关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-11000,高硅片为12000-16000,2、绕制变压器通常用的材料有漆包线,沙包线,丝包线,最常用的漆包线。对于导线的要求,是导电性能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。一般情况下最好用Q2型号的高强度的聚脂漆包线。3、绝缘材料在绕制变压器中,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用酚醛纸板制作,层间可用聚脂薄膜或电话纸作隔离,绕阻间可用黄腊布作隔离。4、浸渍材料:变压器

电力系统各元件的参数和数学模型

2电力系统元件的运行特性和数 学模型 2-1隐极式发电机的运行限额和数学模型 1. 发电机的运行额限 发电机的运行总受一定条件,如绕组温升、励磁绕组温升、原动机功率等的约束。这些约束条件决定了发电机组发出的有功、无功功率有一定的限额。 (1) 定子绕组温升约束。定子绕组温升取决于定子绕组电流,也就是取决于发电机的视在功率。当发电机在额定电压下运行时,这一约束条件就体现为其运行点 不得越出以O 为圆心,以BO 为半径所作的圆弧S 。 (2) 励磁绕组温升约束。励磁绕组温升取决于励磁绕组电流,也就是取决于发电机 的空载电势。这一约束条件体现为发电机的空载电势不得大于其额定值E Qn ,也就是其运行点不得越出以O ’为圆心、O ’B 为半径所作的圆弧F 。 (3) 原动机功率约束。原动机的额定功率往往就等于它所配套的发电机的额定有功功率。因此,这一约束条件就体现为经B 点所作与横轴平行的直线的直线 BC 。 (4) 其它约束。其它约束出现在发电机以超前功率因数运行的场合。它们有定子端部温升、并列运行稳定性等的约束。其中,定子端部温升的约束往往最为苛刻, 从而这一约束条件通常都需要通过试验确定,并在发电机的运行规范中给出, 图2-5中虚线T 只是一种示意,它通常在发电机运行规范书中规定。 归纳以上分析可见,隐极式发电机的运行极限就体现为图2-5中曲线OA 、AB 、BC 和虚线T 所包围的面积。 发电机的电抗和等值电路: 2-2变压器的参数和数学模型 一、 双绕组变压器的参数和数学模型 变压器做短路实验和空载实验测得短路损耗、短路电压、空载损耗、空载电流可以用来求变压器参数。 1.电阻 由于短路试验时,一次侧外加的电压是很低的,只是在变压器漏阻抗上的压降,所以铁芯中的主磁通也十分小,完全可以忽略励磁电流,铁芯中的损耗也可以忽略,由于变压器短路损耗k P 近似等于额定电流流过变压器时高低压绕组中的总铜耗,即 而铜耗与电阻之间有如下关系 可得 k P T N N R U S 22 式中,U N 、S N 以V 、VA 为单位,P k 以W 为单位。如U N 改以kv 为单位,S N 改为以MVA 为单位,则可得 式中 R T -变压器高低压绕组的总电阻(Ω); P k -变压器的短路损耗(kW ) S N -变压器的额定容量(MVA ); F P O C Q B S A O 图2-5运行极限图

三相变压器建模及仿真及MATLAB仿真

XXXXXXX学院课程设计报告 课程名称: 系部: 专业班级: 学生姓名: 指导教师: 完成时间: 报告成绩: 学院教学工作部制

目录 摘要 (3) 第一章变压器介绍 (4) 变压器的磁化特性 (4) 变压器保护 (4) 励磁涌流 (7) 第二章变压器基本原理 (9) 变压器工作原理 (9) 三相变压器的等效电路及联结组 (10) 第三章变压器仿真的方法 (11) 基于基本励磁曲线的静态模型 (11) 基于暂态磁化特性曲线的动态模型 (13) 非线性时域等效电路模型 (14) 第四章三相变压器的仿真 (16) 4. 1 三相变压器仿真的数学模型 (16) 电源电压的描述 (20) 铁心动态磁化过程简述 (21) 第五章变压器MATLAB仿真研究 (25) 仿真长线路末端电压升高 (25) 仿真三相变压器 T2 的励磁涌流 (28) 三相变压器仿真模型图 (34) 变压器仿真波形分析 (36) 结论 (40) 参考文献 (41)

摘要 在电力变压器差动保护中,励磁涌流和内部故障电流的判别一直是一个关键问题。文章阐述了励磁涌流的产生及其特性,利用 MATLAB 对变压器的励磁涌流、内部故障和外部故障进行仿真,对实验的数据波形分析,以此来区分故障和涌流,目的是减少空载合闸产生的励磁涌流对变压器差动保护的影响,提高保护的灵敏性。 本文在Matlab的编程环境下,分析了当前的变压器仿真的方法。在单相情况下,分析了在饱和和不饱和的励磁涌流现象,和单相励磁涌流的特征。在三相情况下,在用分段拟和加曲线压缩法的基础上,分别用两条修正的反正切函数,和两条修正的反正切函数加上两段模拟饱和情况的直线两种方法建立了Yd11、Ynd11、Yny0和Yy0四种最常用接线方式下三相变压器的数学仿真模型,并在Matlab下仿真实现。通过对三相励磁涌流和磁滞回环波形分析,三相励磁涌流的特征分析,总结出影响三相变压器励磁涌流地主要因素。最后,分析了两种方法的优劣,建立比较完善的变压器仿真模型。 关键字: 变压器;差动保护;励磁涌流;内部故障;外部故障;波形分析;仿真;数学模型

网络变压器和连接器的设计及应用

《网络变压器设计原理和连接器应用》 连康科技有限公司培训教材 编制:宋迁审核:核准:

简介 A.变压器的最基本型式包括两组,绕有导线之线圈,并且彼此以电感方式耦合一起,当一交流 电流(具有某一己知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之 交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度,变压器区分为升压与降压 变压器两种,大部分的变压器均有固定的铁芯,其上绕有一次与二次的线圈. 变压器之主要构造可分为下述三项: ①铁芯由:铁钴、镍等合金之导磁材料构成,作为导磁回路籍以增强电磁感应作用,提高变压 器之电磁转换效率. ②线圈:以铜铝及其合金作成导电回路,围绕于铁芯之上,用来传送输入及输出之电流. ③绝缘物:包含各种固态、液态及汽态之不导电绝缘材料.如纸,纱,漆,陶瓷,树脂及 N2,CO2,SF6 等汽体.用以支持隔离导电回路及协助散热,冷却. 2.变压器分类: 依频率分为:①高频变压器②低频变压器③音频变压器 . 依材料分为:①矽钢片变压器②镍钢片变压器③IRON POWER变压器④KOOL变压器⑤ 矽钢卷变压器⑥Ferrite变压器. 依功能分为:①低频电源变压器②高压变压器③线性滤波器④镇流器⑤高频电源 变压器⑥电流变压器⑦DC/AC逆交变压器⑧网络变压器⑨通讯变压器⑩通信 变压器 (11)匹配变压器. 在通讯网络或局域网中,变压器经常被用在电路的物理层部份或模拟部份,主要起隔离、滤 波、阻抗匹配以及倒相作用,优化电路以求信号在传输过程中有最小的损失从而达到最佳的 信号传输效果。 近年来由于网络通讯的飞速发展,网络变压器发展尤为迅速,市场需求量十分巨大,在ISDN、 10/100/1000BASET以太网、ADSL/VDSL、T1/P1上都有大量的使用。 二.变压器的基本工作原理 1.器的基本原理图如(图二),当给变压器初级绕组加上电压Ui时,在该绕组中产生电流 i1,电流i1建立了沿铁芯磁路而闭合的磁通Ф0,该磁通同时也穿过次级绕组,并在次级绕 组中产生感应电动势E2。 按电磁感应定律可得:

1第一章 电力网络的数学模型及求解方法

第1章电力网络的数学模型及求解方法电力网络的数学模型是现代电力系统分析的基础。例如,正常情况下的电力潮流和优化潮流分析、故障情况下短路电流计算以及电力系统静态安全分析和动态稳定性的评估,都离不开电力网络的数学模型。这里所谓电力网络,是指由输电线路、电力变压器、并(串)联电容器等静止元件所构成的总体[1]。从电气角度来看,无论电力网络如何复杂,原则上都可以首先做出它的等值电路,然后用交流电路理论进行分析计算。本章所研究的电力网络均由线性的集中参数元件组成,适用于电力系统工频状态的分析。对于电磁暂态分析问题,当涉及到高额现象及波过程时,需要采用分布参数的等值电路。 电力网络通常是由相应的节点导纳矩阵或节点阻抗矩阵来描述的[2,3]。在现代电力系统分析中,我们需要面对成干上万个节点及电力网络所连接的电力系统。对电力网络的描述和处理往往成为解决有关问题的关键[4]。电力网络的导纳矩阵具有良好的稀疏特性,可以用来高效处理电力网络方程,是现代电力系统分析中广泛应用的数学模型。因此。电力网络节点导纳矩阵及其稀疏特性是本章讨论的核心内容。节点阻抗矩阵的概念在处理电力网络故障时有广泛应用,将在1.4节中介绍。 此外,虽然关于电力网络的等值电路在一般输配电工程的教科书中都有论述,但在建立电力网络数学模型时,关于变压器和移相器的处理却有一些特点,因此1.1节中首先介绍这方面的内容。 1.1 基础知识 1.1.1 节点方程及回路方程 通常分析交流电路有两种方法,即节点电压法和回路电流法[3]。这两种方法的共同特点是把电路的计算归结为一组联立方程式的求解问题;其差别是前者采用节点方程,后者采用回路方程。目前在研究电力系统问题时,采用节点方程比较普遍,但有时以回路方程作为辅助工具。 以下首先以简单电力网络为例,说明利用节点方程计算电力网络的原理和持点。

自动控制系统数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入下的闭环传递函数、误差传 递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构 。 图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式的余子式 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式 2.0引言:

相关主题
相关文档 最新文档