当前位置:文档之家› 设备状态监测与故障诊断

设备状态监测与故障诊断

设备状态监测与故障诊断
设备状态监测与故障诊断

目录

(适用于课程论文、提交报告) ...................... 错误!未定义书签。

一、论述齿轮啮合频率产生的机理及齿轮故障诊断方法 (1)

1.1 齿轮啮合频率的产生机理 (1)

1.1.1 概述 (1)

1.1.2 齿轮的振动机理 (2)

1.2 齿轮故障诊断的方法 (5)

1.2.1齿轮的故障类型 (5)

1.2.2 齿轮故障的特征信息 (5)

1.2.3 齿轮故障诊断的常用方法 (9)

1.3 实例分析 (12)

1.4 小结 (14)

二、滚动轴承故障的特征频率推导计算 (14)

2.1 滚动轴承故障特征频率的经验公式 (14)

2.2 滚动轴承故障的特征频率推导计算 (14)

三、煤气鼓风机状态监测与智能故障诊断 (16)

3.1概述 (16)

3.2煤气鼓风机组成及参数 (17)

3.3煤气鼓风机系统的测点布置 (17)

3.4系统硬件构成图及硬件要求 (18)

3.5系统控制室框架构成 (20)

3.6系统的功能模块组成 (20)

四、感悟和致谢 (21)

一、 论述齿轮啮合频率产生的机理及齿轮故障诊断方法

齿轮是现代工、农业生产设备中极其重要的传动零件,由于其在工作过程中长期承受各种交变载荷、冲击和摩擦力的作用或其本身在制造过程中留下了缺陷,齿轮相对于其他部件较容易出现故障甚至损坏。生产设备中的齿轮发生故障,轻者会使生产设备所加工出来的产品不符合标准要求,重者会导致生产设备停车,从而给生产企业造成经济损失,同时也担误了工时。因此,为了尽可能将这些不确定的机械故障所引起的经济损失降到最低,需要我们在故障初期就能作出诊断,为企业尽早安排检修提供科学依据。对齿轮振动信号进行时频分析就是一种比较实用的方法。

1.1 齿轮啮合频率的产生机理

1.1.1 概述

齿轮传动系统是一个弹性的机械系统,由于结构和运动关系的原因,存在着运动和力的非平稳性。图1.1是齿轮副的运动学分析示意图。图1.1中1O 是主动轮的轴心,2O 是被动轮的轴心。假定主动轮以1w 作匀角速度运动,A 、B 分别为两个啮合点,则有1O A>1O B ,即A 点的线速度A V 大于B 点的线速度B V 。而2O A<2O B ,从理论上有22B v O B

ω=,32A v O A ω=,则23w w <。然而A 、B 又是被动轮的啮合点,当齿轮副只有一个啮合点时,随着啮合点沿啮合线移动,被动轮的角速度存在波动。当有两个啮合点时,因为只能有一个角速度,因而在啮合的轮齿上产生弹性变形,这个弹性变形力随啮合点的位置、轮齿的刚度以及啮合的进入和脱开而变化,是一个随时间变化的力F (t)c 。

齿轮传动系统的啮合振动是不可避免的。振动的频率就是啮合频率。也就是齿轮的特征频率,其计算公式如下:

齿轮一阶啮合频率:060

C N f Z = 啮合频率的高次谐波:0Ci C f i f =?,234n i = 、

、 其中:N ——齿轮轴的转速(r/min ) Z ——齿轮的齿数

图1.1 齿轮副的运动学分析

1.1.2 齿轮的振动机理

齿轮传动的动态激励:

x —在齿面接触力作用下沿作用线产生的齿轮相对位移

M —齿轮副的等效质量,1212

m m M m m =+ C —齿轮啮合阻尼

()K t —齿轮啮合刚度,随时间t 变化

1δ —齿轮受载后的平均弹性变形 图1.2 一对齿轮的力学模型 2δ —齿轮传动误差和故障激励所引起两齿轮间的相对位移

激励源由两部分组成:1()K t δ称为常规啮合激励,也即无故障的正常齿轮在啮合过程中也会产生的向量振动。2()K t δ是由系统的内部激励和外部激励产生的,齿轮故障振动主要由这部分激励引起,所以也称为齿轮的“故障函数”。 内部激励是指轮齿在啮合过程中由于缺陷或故障产生的激励。如齿轮由于制造不精确、装配质量低产生的轮齿周节误差、齿形误差、齿轮偏心、质量不平衡、轴线不对中等故障,还有运行中产生的齿面疲劳、擦伤、磨损和断裂等故障带给齿轮的激励。

外部激励则与齿轮本身问题无关,是齿轮外部输入的激励,但也影响到齿轮的振动情况。例如滚动轴承故障的传递、负载力矩波动、摩擦离合器发生的摩擦激励等。

具体的动态激励有以下四种:

))(()(21δδ+=++t K x t K x C x M

(1)刚度激励(2)传动误差

(3)啮合冲击(4)节线冲击

1.1.

2.1 刚度激励 1212

K K K K K =+ 式中,1K 和2K 分别为主动轮和被动轮的单齿刚度。单齿刚度随啮合位置的

变化而变化。

综合刚度的大小还与齿轮的重合度有关。重合度用来表示直齿齿轮啮合时接触轮齿的平均对数。大多数齿轮啮合的重合度不是整数,在啮合过程中参与啮合的轮齿对数随时间而作周期性变化,因而轮齿啮合的综合刚度也随时间而作周期性变化。从图1.3可以看出直齿啮合过程中的力和刚度变化。

(a )啮合齿上的作用力

(b )啮合齿的刚度

(c )齿轮发生的振动

图1.3 直齿啮合过程中的力和刚度变化

1.1.

2.2 传动误差

传动误差构成了齿轮振动和噪声的主要激发源。传动误差大,则齿轮运转过程中由于进入和脱离啮合时的碰撞加剧,产生较高的振动峰值,并且形成短暂时间的幅值变化和相位变化。

具体有包括:

(1)制造误差

图1.4 齿轮的偏心和周节误差 图1.5 齿轮的齿形误差

(2)装配误差

齿的宽度方向上接触面积少,造成轮齿负荷不均。齿轮轴不平行产生载荷冲击,容易造成齿的断裂。

(3)轮齿损伤误差

齿轮在运行中由于各种故障形成的齿面损伤,在齿轮传动中就会产生齿轮的传动误差激励。传动误差激励正是我们诊断齿轮故障的信息来源。

(4)外部激励误差

外部激励的因素较多,负载波动引起齿轮传递转矩波动、滚动轴承故障的传递、摩擦离合器力矩变化产生的影响等,这些故障信号虽然是从轮齿的外部输入,但是影响到轮齿上的啮合力和弹性变形,其最终结果就是产生轮齿的传动误差。

1.1.

2.3 啮合冲击

齿轮在啮合过程中,由于轮齿误差和受载弹性变形的影响,轮齿进入啮合点和退出啮合点与理论值发生偏差,因而在进入啮合和退出啮合时均会发生冲击,称为“啮合冲击”。

啮合冲击是一种周期性的冲击力。

图1.8 齿面滑动方向

图1.6 一端接触 图1.7 两齿轮轴不平行

1.1.

2.4 节线冲击

主动轮带动从动轮旋转时,主动轮上的啮合点由齿根移向齿顶,啮合半径逐渐增大,速度渐次增高;而从动轮上的啮合点是由齿顶移向齿根,啮合半径逐渐减小,速度渐次降低。两轮齿齿面在啮合点的速度差异就形成了主动轮和从动轮的相对滑动。在主动轮上,齿根和节点之间的啮合点速度低于从动轮上的啮合点速度,因此滑动方向向下;而在节点处,因为两轮上的啮合点速度相等,相对滑动速度为0。因此,摩擦力在节点处改变了方向,形成了节线冲击。

1.2 齿轮故障诊断的方法

1.2.1齿轮的故障类型

齿轮由于某种原因不能正常工作的现象,或者说齿轮在其使用过程中,由于某些原因而丧失工作能力或功能参数漂移到界限值以外的现象,被称为齿轮故障。

从总体上讲,齿轮故障可划分为两大类:

一类是由制造和装配等原因造成的,如齿轮误差、齿轮与内孔不同心、各部分轴线不对中、不平衡等;另一类则是齿轮由于长期运行而形成的,如齿轮表面发生点蚀、疲劳剥落、磨损、塑性流动、胶合以及齿根裂纹,断齿及其他损伤等故障。

齿轮故障若按照振动特征和故障诊断技术应用的角度来分类,大体分为以下两类:

(l)分布式故障

齿面磨损、齿面点蚀及疲劳剥落。

(2)局部故障

齿根裂纹、断齿、局部齿面剥落和塑性变形。

分布式故障分布在一个齿轮的各个轮齿上,而局部故障则集中于某一个或几个齿上。

1.2.2 齿轮故障的特征信息

1.2.2.1 啮合频率

齿轮工作过程中的故障信号频率基本上表现为两部分:一部分为齿轮啮合频率及其谐波构成的载波信号,另一部分为低频成分的幅值和相位变化所构成的调制信号。调制信号包括了幅值调制和频率调制。

从频域和时域上看,齿轮振动信号的主要特征成分有:

1)啮合频率及其谐波成分。

2)幅值调制和频率调制所形成的边频带。

齿轮在啮合过程中,啮合齿上的载荷和

刚度是随时间而变化的,这种变化就会产生

啮合频率的振动。

传动误差、啮合冲击、节线冲击等问题

也会使齿轮在啮合过程中发生啮合频率的振

动。

转轴中心固定的齿轮,其啮合频率为:图1.9正常齿轮的啮合频率波形

1122m f f z f z ==

1f 、2f —主动轮和从动轮的转速频率

1z 、2z —主动轮和从动轮的齿数

当齿面发生磨损,或者负荷增大,齿轮径向间隙过大以及齿轮游隙不适当等原因所引起的故障时,由于轮齿的啮合状况变坏,啮合频率的谐波成分幅值就会明显增大。

1.2.2.2 调制与边频

(1) 幅值调制

设代表啮合频率的载波信号为:)2sin()(0?π+=t f A t g m

代表齿轮旋转频率的调制信号为:()1cos(2)r e t B f t π=+

则调幅后的振动信号为:0()[1cos(2)]sin(2)r m x t A B f t f t ππφ=++ 式中,A —载波信号的振幅;B —调制指数;m f —载波频率(啮合频率);r f —调制波频率(齿轮旋转频率,每旋转一周,故障点产生一次冲击);0φ—初相角。 将上式展开可得:

000()sin(2)sin[2()]sin[2()]22

m m r m r AB AB x t A f t f f t f f t πφπφπφ=+++++-+ 信号图样如图1.11所示。

齿轮表面发生均匀性磨损,将引起

啮合频率及其各次谐波幅值的变化。啮

合频率的高次谐波增长得比基波还快。

磨损厉害时,二次谐波幅值可能超过啮

合基波。

从啮合基频及其谐波幅值的相对增

长量上可反映出齿轮表面的磨损程度。

图1.10 齿面磨损前后的啮合频率及其谐波幅

值变化(实线为磨损前,虚线为磨损后)

(a)载波信号(b)调制信号(c)幅值调制后的信号

图1.11

◆局部性缺陷:发生断齿或大的剥落等,当啮合点进入到缺陷处,齿轮就产生

一个冲击脉冲。由于脉冲信号可以分解为许多正弦分量之和,因此在频谱上形成以啮合频率为中心的一系列边频。其特点是边频数量较多,幅值较低,分布比较均匀平坦。

图1.12

◆均布缺陷:是指比较均匀分布的缺陷,它相当于时域包络线较宽的脉冲。因

此,它在频域中表现为在啮合频率两边产生了一簇幅值较高、起伏较大、分布较窄的边频带。

图1.13

(2) 频率调制

若载波信号为: 0sin(2)m A f t πφ+

制信号为: sin(2)r f t βπ

频率调制可表示为:0()sin[2sin(2)]m r x t A f t f t πβπφ=++ 式中,r

f f β?=—频率调制指数,即调制产生的最大相位移;f ?—最大频率偏差值,也就是齿轮的最大角速度波动量;r f —调制频率,即分度不均匀齿轮的转频。

图1.14 齿距周期性变化产生调频信号和频谱图

图1.15 调频、调幅综合影响下的边频带

(3)典型故障与特征信号的关系

◆断齿或裂纹:以齿轮啮合频率及其谐波为载波频率,故障齿轮所在轴转频及

其倍频为调制频率,调制边频带宽而高。

◆齿轮均匀磨损:齿轮的啮合频率及其谐波的幅值明显增大。

◆齿面剥落等集中性故障:边带的阶数多而分散。

◆齿面点蚀等分布性故障:边带阶数少而集中。

◆齿形误差:以齿轮啮合频率及其谐波为载波频率,齿轮所在轴转频及其倍频

为调制频率的啮合频率调制;

◆轴不对中:调制频率的2倍频幅值最大;

◆轴承故障:齿轮啮合频率的振幅迅速升高,边频的分布和幅值并无变化。

1.2.3 齿轮故障诊断的常用方法

尽管在齿轮振动或噪声信号及其频谱图中包含着丰富的信息,但是由于齿轮动态特性及故障症状的复杂性,不同的齿轮故障具有不同的振动特征及频率结构。因此为了获得有效的故障特征信息,通常需要通过信号处理与分析技术,提取故障特征信息,以便最终给出正确的故障诊断结论。

目前常用的信号分析处理方法有以下几种:

时域分析方法,包括时域波形、调幅解调、相位解调等

频域分析,包括功率谱、细化谱、倒频谱分析

时频域分析方法,包括短时FFT,维格纳分布,小波分析等。

1.2.3.1 时域同步平均分析法

信号同步平均的原理是按齿轮每转一周按脉冲的周期间隔截取信号,然后进行分段叠加处理,以消除随机信号和其它非周期信号的干扰影响。这种方法可以有效降低其他部件和振动源对于信号的影响,提高信噪比。

在测取齿轮振动信号的同时也测取齿轮的转速脉冲信号,脉冲的间隔时间作为齿轮每转的时标。用该脉冲信号去触发A/D转换器工作,从而保证齿轮按旋转周期截取信号,并且每段信号的起始点对应于齿轮的某一角位置。然后再把每段信号进行平均处理和光滑化滤波,最后得到的有效信号中仅保留了周期成分,其它噪声将被逐渐除去。

图1.16 时域同步平均法

1.2.3.2 细化谱分析法

齿轮的振动频谱图包含着丰富的信息,不同的齿轮故障具有不同的振动特征,其相应的谱线也会发生特定的变化。

由于齿轮故障在频谱图上反映出的边频带比较多,因此进行频谱分析时必须有足够的频率分辨率。当边频带的间隔(故障频率)小于分辨率时,就分析不出齿轮的故障,此时可采用频率细化分析技术提高分辨率。

齿轮在几种状态下的时域平均信号

(a)正常齿轮(b)齿轮安装对中不良

(c)齿面严重磨损(d)齿面局部剥落或断齿

图1.17

基于复解析带通滤波器的细化选带频谱分析,具体步骤: 1)确定中心频率及细化倍数。

2)构造一个复解析带通滤波器。

3)选抽滤波。

4)复调制移频。

5)作点FFT和谱分析,取正频率部分。

图1.18

图1.19 齿轮振动信号的频谱分析

从图1.19左图中可几以看出,在所分析的0-2kHz频率范围内,有1-4阶的啮合频率的谱线,还可较清晰地看出有间隔为25Hz的边频带,而在两边频带间似乎还有其他的谱线,但限于频率分辨率已不能清晰分辨。

利用频谱细化分析技术,对其中900-1100Hz的频段进行细化分析,由细化谱中可清晰地看出边频带的真实结构,两边频带的间隔为8.3Hz,它是由于转动频率为8.3Hz的小齿轮轴不平衡引起的振动分量对啮合频率调制的结果。

用振动频谱的边频带进行齿轮不平衡一类的故障诊断时,必须要有足够的频率分辨率,否则会造成误诊或漏诊,影响诊断结果的准确性。

1.2.3.3 倒谱分析法

倒频谱分析又称二次频谱分析,对于同时有数对齿轮啮合的齿轮箱振动频谱图,由于每对齿轮啮合都将产生边带频,几个边频带谱交叉分布在一起,仅进行频率细化分析是不行的,还需要进一步做倒频谱分析。

倒频谱能较好地检测出功率谱上的周期成分,将原来谱上成簇的边频带谱线简化为单根谱线,便于观察。

而齿轮发生故障时的振动频谱具有的边频带一般都具有等间隔(故障频率)的结构,利用倒频谱这个优点,可以检测出功率谱中难以辨识的周期性信号。

倒频谱可以将输入信号与传递函数区分开来,便于识别;还能区分出因调制引起的功率谱中的周期量,找出调制源。

倒频谱的定义是功率谱对数的功率谱,对多段平均的自功率谱取对数,得到对数谱,具体步骤如下:

1) 先进行FFT变换,使时域的卷积等于频域相乘:

y=

(f)x(f)h(f)

2) 取对数,变积为和:

=+

log(y(f))log(x(f))log(h(f))

3) 进行频谱反变换:

C(q)f1(log(y(f))

=-

倒频谱分析优点:检测周期性的能力

图1.20

(a) 振动信号频谱:包含啮合频率(4.3kHz)的三次谐波,由于频率分辨率太低(50Hz ),没有边频带

(b) 2000线功率谱(3.5-13.5kHz):包含三次谐波,但不包含两根轴回转频率的低次谐波

(c) 7.5-9.5kHz的细化频谱:看到轴转速形成的边频带

(d) 倒谱:清楚地表明了对应两根轴回转频率(80Hz和50Hz)地分量A1,B1而在高分辩率谱图(c)中却难以分辩。

1.3 实例分析

某集装箱起重机小车运行机构减速箱出现异响,要求对该减速箱进行监测,判断分析齿轮有无故障。图1.21是该减速箱示意图。

测得得电机转速为650r/min,各齿轮齿数分别Z1=13,Z2=58,Z3=15,Z4=82。

图1.21 减速箱示意图

对减速箱1,3,4测点进行振动测量。其中点3处齿轮振动信号图和功率谱图如图1.22所示。

图1.22 点3处齿轮振动信号图和功率谱图

齿轮3的啮合频率:33650135815()36.423Hz 6060

m n z f ***=== 272.8448Hz m f =

3109.2672Hz m f =

在这三个峰值两侧存在间距等同的小峰,说明齿轮3存在缺陷。

对上面的功率谱图进行倒谱分析,得到倒谱图如下:

图1.23 倒谱图

在0.423τ=处的上边频:1 2.364Hz 0.423f ==

齿轮3的转频: 65013

58 2.428Hz

60r f *== 根据频谱图在啮合频率m f 及二阶、三阶频率2m f 、3m f 处强烈谱峰值且有峰值强烈的边频谱值,我们断定齿轮3有严重点蚀存在。经开箱检查,发现在齿轮3上有多个面积较大的凹坑,说明诊断完全正确。

1.4 小结

振动诊断法是齿轮故障诊断的最常用的方法,它是通过提取振动信号的与各种故障相对应的特征信息并进行分析对比来确定齿轮的故障类型、故障发生的位置和故障程度。

目前基于振动的齿轮故障诊断方法已经发展到了相对成熟的水平,广泛应用于各种齿轮故障设备和在线故障检测系统。但是随着新技术新方法的不断出现,齿轮故障诊断的方法也在不断发展。其中智能化诊断系统成为一个重要的方向,并将得到进一步发展。智能专家系统中多种齿轮故障分析方法相互结合使用,如小波分析与神经网络、模糊识别与小波分析相结合等新分析方法应用,这样提高诊断的效率和准确率。

二、滚动轴承故障的特征频率推导计算

2.1 滚动轴承故障特征频率的经验公式

内圈故障频率: 0.6i r f z f =**

外圈故障频率: 0.4o r f z f =**

保持架故障频率: 0.381~0.4c r f f =*

滚动体故障频率: 0.23b r f z f =** (z < 10)

0.18b r f z f =** (z > 10)

外圈与保持架关系: o c f z f =*

外圈与内圈关系: o r f z f =*

(r f 为转频 ;z 为滚动体个数 )

2.2 滚动轴承故障的特征频率推导计算

当轴承元件的工作表面出现局部缺陷时,会以一定的通过频率(取决于转频、 轴承型号)产生一系列的宽带冲击,称为轴承的“通过频率”或“故障频率”,实际中滚动轴承故障振动监测就是检测这个频率。

下面以角接触球轴承为例,通过分析轴承各元件之间的相对运动关系来推出 轴承故障特征频率的计算公式。

图2.1

图2.1所示为滚动轴承各元件之间运动关系示意图。为简单起见,设轴承外圈固定,内圈(即轴)的旋转频率为r f ,轴承节径为D ,滚动体直径为d ,接触角为α,滚动体个数为z ,并假定滚动体与内外圈之间纯滚动接触。

由于外圈固定,所以滚动体上B 点的速度为零,而A 点的速度为: 2(cos )2A C r c v v f D d f D παπ==-=

由此可以得到: (1cos )2r c f d f D

α=- 其中,s f 为滚动体的公转频率,即保持架的转动频率。

设滚动体的自传频率为b f ,则b f 可以这样求得:给整个轴承加一个转动角速度“c f - ”(相当于站在保持架上看轴承运动),则此时保持架固定不动,外圈以c f -转动,滚动体只有自转角速度b f ,根据纯滚动关系,此时B 点的速度(注意此时滚动体上A 点绕其中心C 转动)

(cos )B b c v df D d f ππα==+

由此可得: 22(1()cos )2g r D d f f d D

α=- 进而可得:

(1)个滚动体与外圈上某一固定点接触的频率为: (1cos )2o c r z d f zf f D

α==- (2)个滚动体与内圈上某一固定点接触的频率为: ()(1cos )2i s c r z d f z f f f D

α=-=+ (3)滚动体上某一固定点与外圈或内圈接触的频率为:

22(1()cos )2b g r D d f f f d D

α==- o f 、i f 和 b f 分别称为外圈、内圈和滚动体的通过频率。当上述的“某

一点”是局部损伤点(例如点蚀点、剥落点、烧伤点等)时,o f 、i f 和 b f 分

别成为局部损伤点撞击滚动轴承元件的频率,所以又分别称为外圈、内圈和滚动体的故障特征频率。

综上所述,滚动轴承故障特征频率如下:

当外圈有缺陷时,外圈的故障特征频率为: (1cos )2o r z d f f D

α=- 当内圈有缺陷时,内圈的故障特征频率为: (1cos )2i r z d f f D

α=+ 当滚动体有缺陷时,滚动体的故障特征频率为: 22(1()cos )2b r D d f f d D

α=- 三、 煤气鼓风机状态监测与智能故障诊断

3.1概述

煤气鼓风机是煤化工厂的重点关键设备之一,其性能直接关系到焦炉生产的安全和经济运行。特别是机组结构复杂、故障种类多,且许多故障非常隐蔽,如轴向窜动、转子碰摩、滑动轴承油膜共振、齿轮故障、不平衡、不对中等。这些故障的存在,严重影响煤气鼓风机组运行的经济性和安全性,严重影响正常生产。一旦煤气鼓风机发生事故,将导致生产系统瘫痪,并产生重大污染和严重的经济损失。因此,有关领导、技术人员认为非常有必要尽快为煤气鼓风机机组安装在线监测故障诊断系统。

由于现场操作人员和技术人员不具备专业的动态振动信号分析和故障精密诊断的理论知识和经验,针对不同的现象不善于选用不同的振动信号分析方法,不善于根据振动信号分析的各种图谱诊断故障种类、原因、部位和严重程度。因此,使鼓风机机组的在线监测故障诊断系统中具有在线智能诊断和现场动平衡功能也非常必要。煤气鼓风机在线监测诊断系统在在线监测的同时,计算机在后台在线实时自动地进行各种动态振动信号分析,判别机组运行状态,根据各种分析结果,经智能推理在线实时显示故障种类、原因、部位和严重程度。也可以离线人机交互式进行精密智能诊断。这样,当有故障报警后,就能够及时获得故障种类、原因、部位和严重程度等信息。当诊断结论是不平衡故障(不平衡故障占60%以上)时,通过现场动平衡步骤和软件分析可以获得不平衡量的大小、相位,从而消除不平衡。

3.2煤气鼓风机组成及参数

煤气鼓风机组由电动机、液力耦合器、增速器及鼓风机组成,相互之间由齿轮联轴器联结。除了液力耦合器为滚动轴承外,其它设备为滑动轴承。有关主要参数如下:

名称型号其它参数

电机YBKS500-2 功率:1250KW

转速:2980r/min

调速型

液力耦合器GST50B

额定转速:3000r/min

重量:685kg

功率范围:560-1625KW

增速器GYD-300-1250/1824

传动功率:1250KW

增速比: 1.824

主轴转速:2890r/min

从动转速:5270r/min

煤气鼓风机沈鼓D2000-22 入口压力:-0.007Mpa(G)最低点

进口流量:1083.3Nm3/min

排出压力:0.024Mpa (G)最大点

进口温度:26℃

临界转速:3708 r/min ,9607 r/min 额定转速:5270r/min

实际转速:4800~5000r/min

3.3煤气鼓风机系统的测点布置

图3.1中S1~S4为振动速度传感器;S5~S8为安装在轴承座上的组合式加速度传感器,对检测的加速度信号进行积分变换,可转换为振动速度和振动位移信号,从而便于和有关标准对比。检测的信号频率范围是1-10000Hz,比常规检测仪器或系统的检测范围(20-100Hz)宽、精度高、性能稳定。S9~S12为安装在煤气鼓风机轴承座上直接测量煤气鼓风机转轴的振动信号,S13为推力轴承轴向位移传感器,检测煤气鼓风机转子轴向窜动信号。

其他测点还包括各机组的电流(每台电机三相)、温度(每台机组15个测点)、压力(每台机组2个测点)等,以实现机组多征兆参数的获取。

图3.1 系统测点布置图

3.4系统硬件构成图及硬件要求

系统的实施基本路线是:传感器固定安装,在线采集信号,在线状态监测,离线信号分析,离线故障诊断。

整个系统的运行建立在系统硬件的正确连接和正常工作的基础上。本系统的硬件包括信号采集子系统、计算机子系统及辅助部件等部分。信号采集子系统的硬件主要包括电涡流振动位移传感器及前置器、速度传感器、转速传感器、网络数据采集卡、交换机、各类型电缆等。系统硬件构成如图4.2所示。

(1)传感器

传感器是将测试中的振动、温度、压力、噪声等具有不同物理特性的信号转换为电信号的仪器。其输出的电信号分为两类:一类是电压、电荷及电流;另一类是电阻、电容和电感等电参数。应采用非接触式电涡流轴向位移振幅传感器,选用的传感器应具有频响宽、线性测量范围宽、抗干扰能力强、适应性强、安装使用方便等优点。振动速度传感器应该有较低的输出阻抗,对输出插头和电缆无特殊要求。

(2)网络数据采集卡

网络数据采集卡应集信号调理仪和A/D的功能与一体,应使用国际标准网络接口规范TCP/IP协议,还应具有自动数据块采集能力和极高的数据传输效率,可圆满的实现实时数据处理、连续快速采集存盘等高等数采功能。

各机组采集站分别安装在3台机组旁边,采集站之间通过网线连接,各采集站和系统主机机构成了监控局域网。其中1#机组采集站和2#机组采集站通过网线接入3#机组采集站的交换机。各传感器的信号进入采集站后,通过以太网传入值班室的系统主机中。

采集站直接输出各传感器的振动数字波形信号,对3台机组进行故障诊断,例如:利用频谱分析方法,可在频域中将动态信号分为低频、中频和高频,在低频内主要包含了转子不平衡、不对中、窜动、主轴弯曲、机座松动、油膜涡动、水泵叶片等故障;在中频内主要包含了齿轮故障、转子碰磨,共振频带等故障;在高频内主要包含了流体噪声、冲击脉冲、流体空穴、结构共振、流体振荡等故障。以上各种故障具有不同的频率和不同的频谱结构,故障的严重程度由其对应的频率幅值高低来表示。此外,利用波形分析、轴心轨迹分析、数字滤波分析、解调分析、通频全息谱分析等方法也能得到许多有用的分析结果。

图4.2系统结构图

电气设备状态监测与故障诊断

电气设备状态监测与故障诊断 发表时间:2018-07-05T16:32:13.820Z 来源:《电力设备》2018年第9期作者:官韵[导读] 摘要:我国经济的快速发展离不开电力行业的大力支持,同时经济的发展带动电力行业的不断进步。 (国网重庆市电力公司江津区供电分公司 402260)摘要:我国经济的快速发展离不开电力行业的大力支持,同时经济的发展带动电力行业的不断进步。在电力工程中,输变电设备是电网的重要组成部分,输变电设备的可用性与稳定性直接影响到电网的安全运行。及时发现并排除输变电设备的潜伏性故障是电网企业关注的一项重要课题。随着我国电力工业的发展,一方面,电网规模不断发展,输变电设备数量激增,用户对供电可靠性要求不断提高;另一 方面,设备的信息化程度越来越高,设备状态监测技术日益成熟,设备运行数据与测试数据激增,基于大数据的电气设备在线监测与故障诊断技术地发展已经逐渐成为焦点,借助信息技术对设备进行故障诊断势在必行。 关键词:电气设备;状态监测;故障诊断引言 电力行业的快速发展和技术水平的提升在我国经济建设上发挥很大的作用。在电力行业中,电气设备就是电力系统中电力线路、变压器、发电机、断路器等的统称。依据不同测量方式和传感器来反映设备实际运行状态的化学量和物理量的一种方式就是设备状态监测,主要就是为了能够检测是否具备正常运行的设备状态。这种电气设备的状态监测与故障诊断技术属于新型的交叉科学,实际应用的时候还是处于初级研究阶段,由于不断发展科学技术,逐渐运用信号技术、数据仓库技术、计算机网络技术、电子技术、传感技术等,从而一定程度上提高了电气设备的状态监测与故障诊断技术的整体水平。 1电气设备状态监测与故障诊断系统功能 1.1数据浏览功能 在系统的状态监测与故障诊断系统中,需要通过网络技术来实现数据的浏览,用户在监控系统过程中,可以通过联网计算机实现对设备运行相关数据的查询和分析。其主要是由于在设备的运用过程中,通过传感器可以将设备运行的状态发送到计算机中,通过处理器的分析功能,可以实现对数据的整理和反馈,从而可以实现对设备运行状态的监控和诊断。 1.2信号变送和评估诊断 电器设备在线运行参数采用各种传感器进行采集,例如电压、电流、湿度、温度、压力等,将各项参数转换为电信号送入到后续单元,是在线监测系统是否准确的前提;对采集的信号通过先进的评估算法对设备运行状态进行评估,给出评估结果,为制定检修策略提供依据。 1.3智能诊断功能 在电气设备运行中,通过系统可以实现对设备的数据收集,而用户将专家系统、神经网络以及人工智能等手段应用于设备的监控中,可以实现对设备运行状态的综合诊断,降低了人力资源的使用率,同时提升了设备诊断的质量和效率。 2电气设备状态监测与故障诊断技术的方法 2.1电气设备在线状态监测与故障诊断技术 第一,局部放电监测技术。局部放电监测技术、超声波监测法及电容器祸合监测法、电容器祸合监测法。第二,油色谱监测技术。现阶段比较常用的UI中设备绝缘检测方式就是油中气体分析法。第三,介损监测技术。这种技术主要应用在电容型设备中,电容型设备实际上就是部分或者全部绝缘,依据电容式设计设备绝缘结构,主要目的就是用来检测设备介电特性。合理应用测量方式能够在一定程度上克服上述问题,也就是说在相同变电站中安装容性设备,并且对比分析容性设备绝缘情况,可以及时获得出现大变化容性设备。在对比分析相同电容型设备电容量比值和介损值的时候,需要合理利用介损差值变化量来对设备绝缘情况进行判断。 2.2发电机状态监测与故障诊断 发电机状态监测与故障诊断在实际应用的时候主要作用就是检测设备初始阶段的问题和缺陷,以便于能够有计划的对设备进行维修,最大限度降低设备停机概率。在设备运行使用的过程中尽可能缩短发电机维修时间以及延长无故障时间,可以在一定程度上降低维修发电机的费用,从而增加设备可用性。现阶段发电机就是在运行中利用发电机射频监视仪、发电机状态监视器以及发电机光纤测漏仪进行状态检测,上述系统可以监测和报警发电机内部故障,引导相关操作人员能够及时了解以及重视设备实际运行情况,为操作人员进一步调整负荷进行指导以及检测是否出现停机问题。国内现阶段也开始研究氢冷发电机,依据化学量分析方式来诊断氢气中杂质成分,以此来判断设备故障。发电机设备状态检测以及系统故障诊断的时候需要采集和观测很多机械、电气、物理、化学特征和数据,形成相应的数据处理系统,为监测提供正确的缺陷和异常数据信息。利用早期故障预报来判断和分析计算机故障情况,并且提供相对合理的检修方案。诊断发电机故障的时候主要包括以下几方面:定子类故障:绕组振动故障、引出线套管故障、绝缘故障、铁心故障;转子类故障:绕组故障、本体及护环故障、绝缘故障以及油系统故障、氢系统故障、水系统故障。 2.3真空断路器控制回路电气特性的在线监测 真空断路器控制回路电气特性的在线监测主要是针对断路器控制回路电流、电压的监测。如果真空断路器的分间速度过高,那么在触头接触时整个机构就会承受过大的冲击力与机械应力,严重时会对真空断路器的一些部件产生损坏,大大缩短真空断路器的使用寿命;真空断路器的机械特性参数对真空断路器的使用乃至整个电力系统的稳定运行都有至关重要的意义。电磁铁是触发断路器完成开关动作的关键元件,因此对控制回路电流、电压信号的监测中,最直观有效的方法就是对分、合闸电磁铁线圏电流、电压进行监测。分、合闸电磁铁作为真空断路器动作过程中的第一级控制元件,是操动机构中最重要的部件。它主要传递执行断路器发出的动作命令,以电磁力的形式触发断路器的机械传动机构,从而完成分、合闸动作。然而,断路器如果长期运行,分、合闸电磁铁随着动作时间和频率的增大就会出现各种故障,例如铁芯卡涩、匝间短路、接触不良等故障,甚至会进一步发展成严重的断路器拒合、拒分、误合、误分等故障,严重影响断路器的动作性能。在断路器的分、合闸动作过程中,操动机构任何运行状态或者健康状况的变化都有可能引起电磁铁线圈电流的变化,因此,线圈电流信号中包含着丰富的操动机构状态信息。这些信息能准确反映电磁铁本身以及操动机构其他运动部件的工作状况,如铁芯有无卡滞、脱扣、传动机构的变动情况、阻间短路或者接触不良等等,从而为在线监测和故障的针对性诊断提供了重要依据。 2.4系统的发展与展望

智能变电站二次设备的状态监测技术探析 许嘉玲

智能变电站二次设备的状态监测技术探析许嘉玲 发表时间:2018-06-08T11:14:00.270Z 来源:《基层建设》2018年第7期作者:许嘉玲 [导读] 摘要:随着相关技术的发展以及日益成熟,智能变电站在电力系统中的应用愈来愈广泛。 南通电力设计院有限公司 226000 摘要:随着相关技术的发展以及日益成熟,智能变电站在电力系统中的应用愈来愈广泛。智能变电站状态监测指的是对变电站设备进行实时监测,然后对数据进行保存和分析,从而掌握设备实际运行情况。本文对探讨了智能变电站的系统构成,对其二次设备的运行特征展开了合理的分析,然后阐述了状态监测技术在智能变电站二次设备监测中的应用。 关键词:智能变电站;二次设备;状态监测 现如今,电力市场发展迅速,供电公司逐渐意识到电力设备检验和维修保护的重要性,只有对电力设备进行状态监测,明确设备运行情况,并采取具体的养护维修措施,才能够保障设备正常运行,提高电力企业生产经营效益。 1 智能变电站的系统构成 (1)站控层 智能变电站站控层中有很多电力设备,包括站域保护设备、对视系统以及自动化系统等等。站控层的运行目标是对整个变电站中的一次设备进行监测和管控,同时还能够进行对数据、同步相量以及电能量进行采集,在保护信息管理方面应用优势明显。 (2)间隔层 智能变电站间隔层设备具体而言指的是继电保护装置、故障录波等二次设备。 (3)过程层 智能变电站过程层不仅包括智能设备,而且还包括一次设备、合并单元以及智能终端等等。通过过程层,能够实现变电站测量、分配、状态监测以及保护等工作。将一次设备应用于过程层中,能够更好的符合过程层和间隔层信息传递标准。 2 智能变电站二次设备的特点 2.1 绿色环保 现如今,智能变电站主要采用光纤电缆,同时还采用高集成且功耗较低的电子元件,并且淘汰传统的充油式互感器,改用电子式互感器,因此,在设备使用方面能够极大的降低能源消耗,不仅能够有效节约智能变电站运行成本,而且在生态保护方面也能够发挥十分重要的作用。 2.2 智能化管理 在智能变电站二次设备中,GOOSE 主要提供二次回路保护所需的各种信号,GOOSE 在二次设备保护方面应用优势明显,因此,可以有效避免二次接触可能会造成的不良影响。智能变电站中所用信息都是统一的,比如,智能变电站二次设备自动化优势明显,在二次设备管理方面,可以通过光纤传输信号,有利于提高智能变电站设备维护管理效率。 2.3 采用感应系统 在智能变电站中,所有信息都是统一进行录入的,同一个通信网络能够依据同一个通信标准介入变电内部通信网络所接受的所有数据信息。另外,智能变电站二次设备主要采用感应系统,而通过感应系统,能够有效避免在设备运行过程中发生安全事故。在传统变电站中,设备操作技术难度大、工序复杂,如果工作人员操作失误,就会造成严重的人员伤亡问题,而推广智能变电站就能够有效避免这类安全事故。 3 智能变电站的二次设备状态监测 由于智能变电站中综合运用了计算机技术以及网络技术,因此继电保护设备的自检能力比较强,而这也为二次设备状态监测创造了重要条件。与传统变电站相比,智能变电站的二次电流以及电压输入方式不同,主要采用光纤以太网传输的方式;另外,传统变电站保护动作出口主要是重合闸接点,而智能变电站光纤以太网传输信息为GOOSE 开关量。由此可见,智能变电站一次设备状态监测和二次设备状态监测有很大区别,前者需要另外安装监测设备,而后者由于继电保护设备具有自检能力和通讯功能,因此,不需要安装其他监测设备,只需要通过自身自检装置以及设备之间的互相监测,即可实现在线监测。在智能变电站二次设备在线监测系统的设计和建立方面,应该结合情况,开发出具有全面监测和保护功能的智能化设备。现阶段,在智能变电站继电保护装置监测活动中,主要的监测对象主要有以下几个方面:(1)继电保护装置电流、电压以及sv 通道的实际运行状态。(2)继电保护装置遥信、遥控等GOOSE 通道实际运行状态。(3)继电保护装置直流逆变电源的实际运行状态。(4)对于继电保护装置本身的自检,包括装置的重启次数、扇区健康状况以及看门狗是否发生动作等等。 由于智能变电站中配备有数字化保护测控装置,因此,在二次设备状态监测方面更加稳定、可靠,因此,智能变电站二次设备状态监测的优势十分明显。 3.1 分布式数字化保护装置的状态监测 在智能变电站中,IEC61850 标准由于提供了数字化变电站的通信框架,并且应用了电子式互感器ECT、EVT,因此,可以将模拟信号转变的数字信号,而且还能够将数字信号传以光纤传输的方式传送至保护装置中。当输出保护动作后,还能够应用光纤以太网有效传递GOOSE 信息,由此可见,智能变电站中继电保护状态监测实现方式更为便捷。智能变电站分布式保护装置具有单台IED 的功能,并且以间隔为单位。另外,在不同间隔之间,可以配置继电保护设备,在重要的间隔,还可以实行双重化配置,比如母线间隔、主变间隔等等。 在智能变电站中,由于采用电子式互感器,因此,更容易实现数字化保护装置的状态监测,在这种情况下,光数字信号可以顺利进入继电保护装置,因此,在数字信息采样以及状态监测的实现方面难度较小。另外,装置本身也能够监测SMV 采样值报文,如果在此过程中出现接收中断、数据帧丢失等问题,则必须尽快告警SMV 采样异常。 由于智能变电站中应用了数字化智能开关,因此,可以通过软件编程的方式实现二次控制系统控制智能化,这样一来,二次控制系统本身就会具备监测能力,突破常规变电站无法实现回路在线监测的问题。另外,智能变电站使用光纤传输信号的方式,因此,不需要对回路绝缘状况进行监测。除此以外,以太网通信技术的应用也能够有效提高智能变电站二次设备在线监测的有效性和可靠性。

最新设备状态监测管理制度

设备状态监测管理制度 1 目的 为了加强设备状态监测的管理,保证装置安全、稳定、长周期运行,依据国家相关法律、法规制定本制度。 2 范围 本制度规定了设备状态监测管理内容。 本制度适用于本厂设备状态监测。 3 职责 3.1 主管设备管理工作的厂领导,依据《设备管理制度》的管理要求和职责,全面负责设备状态监测的管理工作。 3.2 生产设备技术部职责: 3.2.1 负责甲醇厂设备状态监测工作的归口管理,负责制定甲醇厂设备状态监测的有关制度及实施细则,并监督、检查、考核。 3.2.2 建立甲醇厂设备状态监测管理体系,根据设备分级管理要求,制定不同级别设备的状态监测管理策略。 3.2.3 将状态监测数据进行保存,定期对监测工作进行总结。 3.2.4 负责定期组织监测数据的归纳、整理、分析,了解设备运行状况,为转动设备运行、维护、检修提供依据,对监测发现异常的设备,组织有关人员对故障进行分析并处理。 3.2.5 负责组织状态监测相关技术交流和培训。 3.2.6 负责或参与状态监测系统配置技术方案的设计审查、安装、调试和验收工作。

3.3 各车间职责 3.3.1 负责本单位状态监测的日常管理,制定状态监测计划,落实状态监测责任,做好本单位状态监测管理工作。 3.3.2 负责组织监测数据记录,依据分析结果,评价设备运行状态,对发现的故障征兆,及时组织协调有关单位诊断、处理。 3.3.3 归纳、整理状态监测数据、收集技术资料。 3.4 车间主操作人员职责 3.4.1 严格按照工艺卡片参数操作。 3.4.2 及时通报设备状态监测信息,指导运行和检修。 4 内容 4.1 设备状态监测组织机构(参照设备管理组织机构) 4.2 甲醇厂的大型机组空压机、氧压机、合压机、焦压机、增压膨胀机应逐步建立、完善在线监测系统。 4.3 对已建立的原厂监测系统,应完善诊断系统,按时检查、分析监测数据。 4.4 未建立在线监测系统的转动设备,按照分级管理要求,认真做好离线监测计划,依据“定人员、定设备、定测点、定仪器、定周期、定标准、定路线、定参数”的原则进行状态监测,对监测结果及时进行分析提出运行、维修建议。 4.5 监测发现转动设备异常时,应增加监测频次,必要时采用精密诊断故障进行分析,及时掌握故障的发展趋势,防止事故发生。 4.6 加强状态监测、故障诊断技术培训和交流,定期总结成果和经验,提高状态监测人员的技术素质。 5 相关文件记录

《电气设备状态监测与故障诊断技术》复习提纲(附答案)

《电气设备状态监测与故障诊断技术》复习提纲 1 预防性试验的不足之处(P4) 答: 1、需停电进行试验,而不少重要电力设备,轻易不能停止运行。 2、停电后设备状态(如作用电压、温度等)与运行中不符,影响判断准确度。 3、由于是周期性定期检查,而不是连续的随时监测,绝缘仍可能在试验间隔期发生故障。 4、由于是定期检查和维修,设备状态即使良好时,按计划也需进行试验和维修,造成人力 物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓过度维修。 2 状态维修的原理(P4) 答:绝缘的劣化、缺陷的发展虽然具有统计性,发展的速度也有快慢,但大多具有一定的发展期。在这期间,会有各种前期征兆,表现为其电气、物理、化学等特性有少量渐进的变化。随着电子、计算机、光电、信号处理和各种传感技术的发展,可以对电力设备进行在线状态监测,及时取得各种即使是很微弱的信息。对这些信息进行处理和综合分析,根据其数值的大小及变化趋势,可对绝缘的可靠性随似乎做出判断并对绝缘的剩余寿命做出预测,从而能早期发现潜伏的故障,必要时可提供预警或规定的操作。 3 老化的定义(P12) 答:电气设备的绝缘在运行中会受到各种因素(如电场、热、机械应力、环境因素等)的作用,部将发生复杂的化学、物理变化,会导致性能逐渐劣化,这种现象称为老化。 4 电气设备的绝缘在运行常会受到哪些类型的老化作用?(P12) 答:有热老化、电老化、机械老化、环境老化、多应力老化等。 5 热老化的定义(P12) 答:由于在热的长期作用下发生的老化称为热老化。 6 什么是8℃规则?(P13) 答:根据V.M.Montsinger提出的绝缘寿命与温度间的经验关系式可知,lnL和t呈线性关系,并且温度每升高8℃,绝缘寿命大约减少一半,此即所谓8℃规则。 7 可靠性、失效与故障的定义(P21) 答:可靠性:产品在规定条件下和规定的时间区间完成规定功能的能力。 失效:产品终止完成规定功能的能力这样的事件。 故障:产品不能执行规定功能的状态。 8 典型的不可修复元件,其失效率曲线呈什么形状?有哪些组成部分?(P22) 答:典型的不可修复元件,一般为电子器件,其失效率曲线呈浴盆状,可分为三个部分:早期失效期、恒定失效期和耗损失效期。 9 寿命试验的目的和方式(26)

智能状态监测与故障诊断教程文件

智能状态监测与故障诊断 测控一班 高青春 20091398

第一章 绪论 在现代化的机械设备的生产和发展中,滚动轴承占很大的地位,同时它的故障诊断与监测技术也随着不断地发展,国内外学者对轴承的故障诊断做了大量的研究工作,各种方法与技巧不断产生、发展和完善,应用领域不断扩大,诊断精度也不断提高。时至今日,故障诊断技术己成为一门独立的跨学科的综合信息处理技术,它以可靠性理论、信息论、控制论、系统论为理论基础,以现代测试仪器和计算机为技术手段,总的来说,轴承故障诊断的发展经历了以下几个阶段:第一段:利用通用的频谱分析仪诊断轴承故障。第二阶段:利用冲击脉冲技术诊断轴承故障。第三阶段:利用共振解调技术诊断轴承故障。第四阶段:以计算机为中心的故障诊断。 国外的滚动轴承的故障诊断与监测技术要先于中国,而且这项技术的发展趋势啊已经趋向智能化状态,因为它机械化迅速,技术和设备都比较先进些,目前的技术也比较完善。但是总体来看,这其中的距离在不断拉近,我们相信不久的将来,中国也会使机械完善大国,也会完善和提高技术的精密度和准确度。【2】【3】

1.1轴承监测与故障诊断的意义 滚动轴承是机械各类旋转机械中最常用的通用零件部件之一,也是旋转机械易损件之一,在机械生产中的作用不可取代,据统计旋转机械的故障有30%是由轴承故障引起的,它的好坏对机器的工作状态影响极大,轴承的缺陷会导致机器剧烈振动和产生噪音,甚至会引起设备的损坏,因此,对重要用途的轴承进行状态监测与故障诊断是非常必要的【3】而且,可以生产系统的安全稳定运行和提高产品质量的重要手段和关键技术,在连续生产系统中,如果某台设备因故障而不能继续工作,往往会影响全厂的生产系正常统运行,从而会造成巨大的经济损失,甚至可能导致机毁人亡的严重后果。未达到设计寿命而出现故障的轴承没有被及时的发现,直到定期维修时才被拆下来报废,使得机器在轴承出现故障后和报废前这段时间内工作精度降低,或者未到维修时间就出现严重故障,导致整部机器陷于瘫痪状态。因此,进行滚动轴承工作状态及故障的早期检测与故障诊断,对于设备安全平稳运行具有重要的实际意义。【14】 1.2滚动轴承故障的分类: 滚动轴承的故障多种多样,有生产过程中产生的也有使用过程中后天造成一系列故障,其失效形式有: 1.2.1疲劳剥落: 指滚动体或滚道表剥落或脱皮在表面上,形成不规则 凹坑等甚至会一定深度下形成能裂纹,继扩展到接触表面发生剥落坑,最后大面积剥落,造成失效。【12】

二次设备在线监控规范

Q/GDW ***-**** ______________________________________________________________________________- 智能电网调度技术支持系统 应用功能系列规范 第505部分:二次设备在线监控 Strong & Smart Grid Dispatching Supporting System Series Application Specifications Part 505: 2009-XX-XX 发布 2009-XX-XX 实施 _______________________________________________________________________________ 国家电网公司发布 ICS 备案号: Q/GDW 国家电网公司企业标准

修订历史记录(暂时保留,正式发布时去掉)

目次 前言 (1) 1范围 (1) 2规范性引用文件 (1) 3术语和定义 (1) 4二次设备在线监控 (2) 4.1数据信息处理 (2) 4.1.1实时数据处理 (2) 4.1.2信息过滤 (2) 4.1.3数据类型 (2) 4.1.4二次设备模型管理 (3) 4.2运行监视 (3) 4.2.1装置运行工况 (3) 4.2.2运行信息监视 (3) 4.2.3动作信息告警 (3) 4.2.4事件报警监视 (4) 4.2.5在线故障显示 (4) 4.3装置定值查询与校核 (4) 4.3.1装置定值在线查询与存储 (4) 4.3.2定值核对 (4) 4.4远程控制功能 (5) 4.5统计查询 (6) 4.6全景回放 (6) 4.7界面要求 (6) 4.8数据接口 (6) 4.8.1数据输入 (6) 4.8.2数据输出 (7) 5性能 (7)

MDS-4000输变电设备状态监测与故障诊断系统

MDS-4000输变电设备状态监测与故障诊断系统 MDS-4000系统简介 MDS-4000输变电设备状态监测与故障诊断系统是为满足国家电网公司智能电网建设、集约化生产管理及“三集五大”中大生产体系集中监控要求而开发的重要技术支撑系统。 MDS-4000输变电设备状态监测与故障诊断系统是智能电网建设的重要内容,它通过各种先进的传感技术、数字化技术、嵌入式计算机技术、广域分布的通信技术、在线监测技术以及故障诊断技术实现各类电网设备运行状态的实时感知、监视、分析、预测和故障诊断。输变电设备状态监测技术是实现智能变电站建设的关键支撑技术,是智能变电站建设的核心内容。因此,输变电设备状态监测与故障诊断系统的建设对提高国家电网公司生产管理水平、加强状态监测检修辅助决策应用、推动智能电网建设具有积极而深远的意义。 MDS-4000系统可为智能变电站提供在线监测与故障诊断的整体解决方案。系统可对变压器温度及负荷、油中溶解气体、油中微水、套管绝缘、铁芯接地电流、局部放电、辅助设备(冷却风扇、油泵、瓦斯继电器、有载分接开关等)、断路器及GIS中SF6气体密度及微水、GIS局部放电、断路器动作特性、GIS室内SF6气体泄露、电流互感器及容性电压互感器绝缘、耦合电容器绝缘和避雷器绝缘等信息进行综合监测。MDS-4000系统具有准确性高、可靠性高、互换性好等特点,是按照统一的结构方式、通讯标准、数据格式等的全面集成。 MDS-4000输变电设备状态监测与故障诊断系统依据获得的电力设备状态信息,采用基于多信息融合技术的综合故障诊断模型,结合设备的结构特性和参数、运行历史状态记录以及环境因素,对电力设备工作状态和剩余寿命作出评估;对已经发生、正在发生或可能发生的故障进行分析、判断和预报,明确故障的性质、类型、程度、原因,指出故障发生和发展的趋势及其后果,提出控制故障发展和消除故障的有效对策,达到避免电力设备事故发生、保证设备安全、可靠、正常运行的目的。 MDS-4000系统特点 MDS-4000系统技术特点

智能变电站二次设备状态监测技术研究 张韶光

智能变电站二次设备状态监测技术研究张韶光 发表时间:2018-10-01T11:29:21.370Z 来源:《电力设备》2018年第16期作者:张韶光[导读] 摘要:社会进步和经济增长有效地促进了中国电力工业的发展,智能变电站建设规模不断扩大,为中国电力工业的进一步发展奠定了良好的基础。 (国网河北省电力有限公司检修分公司河北石家庄 050000) 摘要:社会进步和经济增长有效地促进了中国电力工业的发展,智能变电站建设规模不断扩大,为中国电力工业的进一步发展奠定了良好的基础。作为智能变电站的重要组成部分,二次设备的运行状态不仅影响整个变电站的安全,也影响整个变电站的运行。基于此,本文以智能变电站二次设备状态监测技术为主要研究对象,通过对智能变电站和二次设备特点的概述,进一步详细探讨了智能变电站二次设 备状态监测方法。 关键词:智能变电站;二次设备;状态监测变电站二次设备状态检修是强化变电设备安全管理及电网可靠性运行的重要举措。也是智能变电站发展的必然趋势。在电力系统设备中,不仅要重视一次设备的状态监测,二次设备也同样需要进行全面的状态监测,这样才能保证智能变电站的安全和效率。智能变电站状态监测系统通过对全站关键一次设备运行状态进行实时监测,保存历史监测数据,综合实时监测数据和历史监测数据对一次设备运行状态进行评估分析,给出预警信息和诊断结果。 1智能变电站概述 所谓的智能变电站,指的是利用先进的科学技术手段,将集成、环保的智能设备有效结合到一起,能够自动对电网进行控制,主动对电网进行调节的变电站。针对智能变电站内部结构作用的不同,可以将其分为三个部分:一是站控层,该层是智能变电站内最主要的一部分,其中由大量的电力设备构成,如自动化设备、保护设备等,其主要功能是监测变电站内的一次设备,获得相关的数据,从而为二次设备的运行提供良好的帮助。二是间隔层,该部分主要由机电保护设备、故障录波设备构成,其主要工作包括以下几个方面:①对一次设备提供保护;②将另外两层采集的信息进行整理;③提供闭锁功能;④针对其他两层的运行情况,发布相关的指令等。三是过程层,即对整个系统进行控制的结构,包括发电机、变压器等。其主要功能为对电气量进行监测,变电站内设备各项状态参数的监测等。 2智能变电站二次设备的特征 作为智能变电站中的重要组成部分,二次设备具有以下三个方面的特征:一是绿色环保。近年来,在科学技术快速发展的基础上,使得智能变电站也不断的更新与完善,大多数智能变电站都是通过光纤,将集成度较高,能耗较低的电子元件进行连接,同时,还抛弃了传统的充油互感器,安装了电子互感器,使得整个智能变电站运行过程中,有效减少了对能源的使用,从而达到了绿色环保的目的。二是智能化管理。智能变电站二次设备内,建立了goose模块,该模块能够为二次回路的保护,提供相应的信号,从而降低二次接触故障的出现,有效提升了智能变电站管理的效果。三是感应迅速。智能变电站运行过程中,全部数据均为同时输入,并且每个通信网络,都可以根据相应的通信标准,对全部信息进行分析。同时,在整个二次设备内,还加入了感应系统,使得变电站出现故障时,能够第一时间发出警报最大程度上降低了安全事故的发生。 3二次设备状态监测技术在智能变电站中的应用 3.1分布式数字化 目前,自我国大多数变电站中,主要的监测重点便是电压和电流的实时情况,而装置本身的检测包括看门狗检测、装置开启次数、工作区健康状况等。在智能变电站中,可利用数字化保护装置,对二次设备运行状态进行有效监测。例如,在智能变电站调度自动化系统监测过程中,相关工作人员可以利用变电站整体数字规划,与电子互感器相结合,将监测信号转化成数字信号,并利用光纤将信息传输到指定系统中。在光纤选择上,应根据相关标准,通过合并器加工而形成,主要应用于信息传递,确保相关装置接收到完整的信息。在分布式保护装置安装过程中,一定要保证装置本身具有LED功能,而且在每个间隔中安装独立接口程序和继电保护装置。有的保护装置发挥的作用较大,需对其进行双重配置,如主变间隔等。二次电压、电流的出现。另外,保护装置可以对数据采集工作进行监控,一旦出现信息丢失等情况,便会立刻报警,工作人员根据报警信息,可迅速恢复系统,以保证工作效率。 3.2集中式数字化 集中式数字化保护装置可以可以赋予很多设备LED功能。该保护装置可同时进行多条线路监测工作,提高工作效率。一般情况下,集中式数字化在工作中需要两套或者以上的保护装置。集中式与分布式存在很大不同,它靠监测对象的减少,实现了操作的简化,可以让监测内容更加一目了然。双套保护成功避开了装置和自检间的互相检测,简化了操作过程。集中保护可以将分布装置看做是不同的监测个体,在每一个装置上都配有软压板监测等不同功能,而这些功能在集中式保护装置上又实现了完美统一,大大缩小了监测范围,只需一个监测通道便可以实现多个设备的实施监测,实现了工作量的有效降低。与此同时,工作人员还可以在变电站运行过程中及时发现问题,例如,集中式保护可以通过电源数量的减少,增加对二次设备的监测效果,为监测工作增加便捷性,避免因为工作量大导致变电站运行出现混乱。 3.3 智能变电站二次设备状态监测 在对智能变电站建造时,应用了大量先进的科学技术,如计算机技术,互联网技术等,正是这些先进技术的存在,使得智能变电站运行过程中,具有非常强大的自检功能,从而为二次设备状态监测奠定了良好基础。与常规的变电站相比,不论是二次电流,还是电压输入方式,均存在一定差异,并且对信息进行传递时,以光纤为主。此外,常规变电站进行保护时,主要在重合闸接点处完成的,而在智能变电站内,则加入了大量的 goose 开关量,通过其对保护动作进行控制。所以说,对与智能变电站来说,一次设备的状态监测与二测设备的状态监测存在非常明显的差异。其中,对一次设备进行监测时,应通过其他装置完成,而对二次设备进行监测时,无需其他装置,自身即可完成整个监测活动。而在当前的智能变电站二次设备运行的过程中,主要对下述几项内容进行监测:①整个系统内电流、电压与 SV 通道的运行状态;②遥信、遥控等 goose 通道的运行状态;③继电保护装置自身运行的状态等。通过上述几个方面的监测,使得整个监测结构更加精确,从而为智能变电站的运行提供了重要帮助。 4智能变电站二次设备状态监测技术的发展

状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱 一、常规图谱 常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。 1. 机组总貌图 机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。 2. 单值棒图 较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。 3. 多值棒图 多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。 正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5倍频微量或无,可选频段很小,残余量不大。 其中: (1)通频值~即总振动值,为各频率振动分量相互矢量迭加后的总和。 (2)一倍频~为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n/60 [Hz];转子动不平衡及轴弯曲、轴承不良(偏心)、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。 (3)二倍频~二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等,都会引起二倍频振动分量增大,绝大多数是轴系不对中。 (4)0.5倍频~0.5倍工频,又称半频,油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。 (5)可选频段~由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6)倍工频或(0.3~0 .8)倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。 (6)残余量~除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时,转子有可能发生摩擦、高频气流脉动等。 4. 波形图 波形图显示了振动位移与时间的关系,又称幅值时域图。 波形图显示了振幅、周期(即频率)、相位,特别是波形的形状和状态。 图中:① 振幅为正峰与负峰之间的位移量,比较各周期对应的峰高,即可知振幅值是否稳定;② 二个亮点之间为一个旋转周期,波形图的周期数可以选取,想了解波形重复性

设备状态在线监测2011年度工作总结

设备状态在线监测2011年度工作总结 在股份公司领导和检修车间领导的支持和指导下,设备状态在线监测不断的茁壮成长,监测员们密切配合,爱岗敬业,恪尽职守,在不断的学习和探索中,积累总结经验,发现设备异常和故障分析的技术日趋成熟,为股份公司设备长周期稳定运行奠定了坚实的基础,在这一年里,提前发现问题,及时反馈设备异常近200余起,再结合各个车间现场操作人员的积极配合,避免了多起设备安全事故近50余起。 现对过去的一年中设备状态在线监测小组的工作收获及工作成绩简要回顾总结如下: 一、设备状态在线监测于2010年10月份成立以来,在这一年里,大家在工作上严于律己,在上班的八个小时中,时刻保持精神状态集中,认真观察在线监控的每台设备的振动趋势,仔细分析每个异常数据的频谱图、时域图、瀑布图。在付班时,也都来到工作岗位对股份公司的近百台的离线检测设备进行测量、分析和诊断工作,通过不断学习,总结,相互交流,共同提高。大家的口头禅:“只要数据异常,肯定有原因”,是信号干扰,是负荷波动,还是设备已出现故障,都会到现场仔细观察,测量设备的每一个测点,尽最大努力保证每个测量数据的准确性、每个故障的及时发现,认真的与现场操作人员沟通,询问近期设备运行状况,再和设

备近期的振动趋势做对照,进而详尽的分析设备的运行状况。当发现设备运行异常时,及时到现场查看联系相关人员协调解决,或及时电话通知现场人员注意该设备的运行趋势和运行状态。在线监测工作中,我们公司的“严,实,细,快”得到了充分的贯彻和发展。在线监测工作取得的成绩可以说是在很多数据的收集整理中取得的,我们的操作制度和考核制度齐备和严谨,首先要严守岗位,对待测量数据,要严谨,细致,结合现场的实际状况,设备运行的原始参数,确保取得真实的测量数据,严格,认真分析,发现异常及时、快速反应,迅速联系现场人员加强巡检,做好预防工作和检修的准备,对待设备异常要提前发现提前预知、提前做好检修预案,杜绝设备安全事故的发生! 二、在大家的共同努力下,尽管我们在设备状态线监测成立时间较短,但是取得的成绩是有目共睹的,预测出近50余起设备安全事故,如:如往复式压缩机轴瓦磨损,往复式压缩机十字头连接螺栓松动,缸体活门损坏,旋转式设备地脚松动,轴承磨损和润滑不良,联轴器的同轴度,同心度不良,以及叶轮转子不平衡等等。简单列举如下:1、10月30日尿素6#CO2压缩机一段中体垂直振动测点V4,振动加速度趋势,突然波动较大,且上升趋势明显,由正常情况下的0.15g上升至0.36g。查看频谱图,1X较高,在50~350Hz之间存在少量幅值较低的高倍频成分。从瀑布图上看,高倍频

状态监测与故障诊断

状态监测与故障诊断与飞设密不可分 刚刚接触这门课的时候,我只知道这是民航飞行学院开设的课程,但还不知道这门课到底讲什么东西,对我们飞设来说到底有什么借鉴之处。经过几周的学习,我初步了解了这门课。简单说,状态监测与故障诊断和飞设之间有着密切的联系。他们是一种表里关系,是一种感知和应用的关系,两者互为支撑,共同促进了航空工业的进步发展。 状态监测与故障诊断促进了设计行业的发展。 状态监测与故障诊断为设计飞机提供了大量的、可靠的数据。 这提供了一种实验。通过对飞行器飞行状态、各个零部件的工作状态、各个系统的运行情况进行检测,我们可以获得大量的实时数据,进而进行详细的分析,即故障诊断。一方面我们可以检测出飞行器的故障来源,对飞行器进行维修。同时,我们可以统计飞行器各部分发生故障的频率和原因等,进而分析得出设计上的缺陷。这也可以作为设计飞机的依据,比如发动机轴承要用什么材质,设计寿命多长时间最为合适。再者,分析得到的数据可以对目前的设计理论进行验证,这对飞行器设计来说更为至关重要。 状态监测与故障诊断也可以给设计提出新的问题与要求。比如国内大气污染严重,飞机的空调系统收到了巨大的影响。这就要求飞机设计时采取某些措施来防止这些问题发生。 设计行业也促进了状态监测与故障诊断的发展。 飞行器设计理论可以指导状态监测与故障诊断的实际应用。 应用已经提出验证的的理论,我们可以初步分析出各部件的特性,这样便可以某些易损坏或是极度危险的零部件进行重点监控,这样不但更具可行性,而且还大大节约了人力物力,降低航空公司的运营成本。比如发动机是飞行器的核心部分之一,构建复杂,极易出现故障,所以要重点监测。 同时已有的理论基础可以为状态监测提供必要的手段,使其具有可行性。最简单的就是发动机的涡轮叶片,我们可以通过测量转子的惯性矩来分析判断叶片是否有松动,这样方便可行。 在理论方面,飞行器设计理论也在指导状态监测与故障诊断的发展,经过传感器采集的数据杂乱无章而且数目极为庞大。如果没有现有理论的指导,我们很难得到数据处理的方向方法,这样就得不到有价值的数据,更不要说进行故障诊断了。而应用现有理论我们可以有方向,有目的的对数据进行处理,这样我们就可以判断出是哪一方面有问题,到底有什么样的问题。 总之,状态监测与故障诊断给了我一个新的视角去看待问题,从另一个角度认识飞设这个专业。打个比方,过去我们专业所关注的是从已知到要求的问题,我们知道各种数据,所做的是对数据的分析与应用。而状态监测与故障诊断则是从要求到已知的问题,是一个反问题,我们要做的是我们如何才能得到我们所需要的数据,如何才能保证所得导数据的可靠性等。 除此之外,还有就是这门课的感受吧。 这门课也进行大半了,但是自己并没有达到自己想要的水平。总感觉有些遗憾。很多东西还是一知半解,还不能应用。我想一方面与专业基础有关系,很多基础性东西我们不懂不会,这就对理解内容造成了困难,先是听不懂,然后就不想听了,紧接着更听不懂了,直至彻底放弃掉。当然这也和上课态度以及这门课是拓展课有关吧。有的人说这门课对我没用,但我想说大

电气设备状态监测与故障诊断

电气设备状态监测与故障诊断 1前言 1.1状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,状态监测”是特征量的收集过程,而故障诊断”是特征量收集后的分析判断过程。 广义而言,诊断”的含义概括了状态监测”和故障诊断”:前者是诊”;后者是断”。 1.2状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

设备状态监测

1)设备状态监测的概念 对运转中的设备整体或其零部件的技术状态进行检查鉴定,以判断其运转是否正常,有无异常与劣化征兆,或对异常情况进行追踪,预测其劣化趋势,确定其劣化及磨损程度等,这种活动就称为状态监测(Condition Monitoring)。状态检测的目的在于掌握设备发生故障之前的异常征兆与劣化信息,以便事前采取针对性措施控制和防止故障地发生,从而减少故障停机时间与停机损失,降低维修费用和提高设备有效利用率。 对于在使用状态下的设备进行不停机或在线监测,能够确切掌握设备的实际特性有助于判定需要修复或更换的零部件和元器件,充分利用设备和零件的潜力,避免过剩维修,节约维修费用,减少停机损失。特别是对自动线、程式、流水式生产线或复杂的关键设备来说,意义更为突出。 (2)设备状态监测与定期检查的区别 设备的定期检查是针对实施预防维修的生产设备在一定时期内所进行的较为全面的一般性检查,间隔时间较长(多在半年以上),检查方法多靠主观感觉与经验,目的在于保持设备的规定性能和正常运转。而状态监测是以关键的重要的设备(如生产联动线、精密、大型、稀有设备,动力设备等)为主要对象,检测范围较定期检查小,要使用专门的检测仪器针对事先确定的监测点进行间断或连续的监测检查,目的在于定量地掌握设备的异常征兆和劣化的动态参数,判断设备的技术状态及损伤部位和原因,以决定相应的维修措施。 设备状态监测是设备诊断技术的具体实施,是一种掌握设备动态特性的检查技术。它包括了各种主要的非破坏性检查技术,如振动理论,噪音控制,振动监测,应力监测,腐蚀监测,泄漏监测,温度监测,磨粒测试(铁谱技术),光谱分析及其他各种物理监测技术等。 设备状态监测是实施设备状态维修(Condition Based Maintenance)的基础,状态维修根据设备检查与状态监测结果,确定设备的维修方式。所以,实行设备状态监测与状态维修的优点有:①减少因机械故障引起的灾害;②增加设备运转时间;③减少维修时间;④提高生产效率;⑤提高产品和服务质量。 设备技术状态是否正常,有无异常征兆或故障出现,可根据监测所取得的设备动态参数(温度、振动、应力等)与缺陷状况,与标准状态进行对照加以鉴别。表5-9列出了判断设备状态的一般标准。 表5-9 判断设备状态的一般标准

电气设备状态监测与故障诊断word版本

电气设备状态监测与故障诊断 1 前言 1.1 状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 “监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。 广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。 1.2 状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

相关主题
文本预览
相关文档 最新文档