当前位置:文档之家› 第四节 图像修复与修饰

第四节 图像修复与修饰

第四节 图像修复与修饰

快速数字图像修复技术

快速数字图像修复技术

用高斯内核卷积图像(即计算相邻像素的加权平均数),相当于各向同性扩散(线性热传导方程)。我们的算法使用加权平均的内核,只考虑相邻像素的贡献(即内核中心为零)。图2显示了伪码算法和两个扩散内核。本文中所有重建图像是通过该算法获得,或者是该算法经过轻微的变化获得,将在3.1节解释。 3.1保留边缘 当Ω跨越高对比度边缘的边界时(图3(前左)),该算法最简单版本,会带来附加效果(明显的模糊)。在实践中,只有在Ω和高对比度边缘的相交处,需要各向异性扩散,这些区域通常只占整个区域内很小比例。 创建指定待修复区域的遮盖是修复过程中最耗时的步骤,需用户干预。由于我们的算法可以在短短几秒钟内修复图像,它可用于遮盖互动创建。我们利用这个互动通过扩散障碍进行边界重联,这是Ω内扩散过程的边界。这完成一个边界重建和各向异性扩散类似的的结果,但没有相关的开销。在实践中,扩散屏障是两个像素宽的线段。当扩散过程中达到一个障碍,达到像素进行颜色设定,进程终止。图3进行了说明,图3中(左后方)明显的交叉线代表修复区域。简单扩散修复算法在Ω和高对比度边缘之间的相交处产生模糊点(参见图3中的小圆圈(前左))。通过适当增加扩散屏障(整个遮盖线段图3(右后)),用户停止遮盖两边混合信息的扩散过程。由此产生的直线如图3(前右)所示。 4结果 我们已经在C + +中实施了图2描述的算法,并尝试了两种不同的扩散内核。在这两种情况下的结果相似。文中所有的图片都使用128 MB的内存运行Windows98450兆赫奔腾III 电脑和使用图2所示的最左边内核生成。在图5,8,9和10所示的结果是使用无扩散障碍最简单的版本的算法得到。对于图1,使用了遮盖,两个扩散障碍(图4)。三个女孩的例子,使用了四个扩散障碍,以及有遮盖穿过高对比度边缘的区域(图6(右))。在所有情况下,都用100扩散迭代。 所有修复和线装饰删除系统需要手动遮盖。鉴于有一套功能的绘图系统,创建一个遮盖所需的时间,只依赖于可用的功能,也不受所使用修复算法的影响。对于交互式应用程序,在同一系统中拥有屏蔽功能和修复算法是可取的,以避免在不同的环境之间切换。在我们目前的原型中,我们已经实现了一个简单的绘图系统以及导入和导出JPEG文件的功能。 恢复林肯的画像和三个女孩的图片(图4和6(右),分别)使用的遮盖,是我们的绘画系统创建的。在新奥尔良的例子(图5)所使用的遮盖,通过使用Photoshop中选择颜色

图像修复模型训练方法及系统及图像修复方法与相关技术

图片简介: 本技术介绍了图像修复模型训练方法及系统及图像修复方法,包括:对若干原图图像进行随机掩膜处理,生成训练数据集用于训练图像修复深度神经网络模型;构建图像修复深度神经网络模型,图像修复深度神经网络模型包括:生成模型与判别模型,生成模型用于修复图像残缺区域或模糊区域,判别模型用于判断生成模型的修复结果是否符合预设要求;利用训练数据集训练图像修复深度神经网络模型,得到训练后的图像修复深度神经网络模型;本技术能更有效的修复图像,满足人们对高质量图像的需求,本技术能够解决传统图像修复技术在

修复区域大、图像颜色差异大的情况下难以修复、修复效果不好,修复后的区域不自然等问题。 技术要求 1.图像修复模型训练方法,其特征在于,所述方法包括: 对若干原图图像进行随机掩膜处理,生成训练数据集用于训练图像修复深度神经网络模型,训练数据集包括:原图图像数据、带有目标边缘信息的图像数据和只有掩膜的图像 数据; 构建图像修复深度神经网络模型,图像修复深度神经网络模型包括:生成模型与判别模型,生成模型用于修复图像残缺区域或模糊区域,判别模型用于判断生成模型的修复结 果是否符合预设要求; 利用训练数据集训练图像修复深度神经网络模型,得到训练后的图像修复深度神经网络 模型。 2.根据权利要求1所述的图像修复模型训练方法,其特征在于,对若干原图图像进行随机掩膜处理,包括: 设定原图图像随机掩膜的超参数; 创建分辨率与原图图像相同的背景图像; 基于背景图像和设定的超参数对原图图像进行随机掩膜处理。 3.根据权利要求2所述的图像修复模型训练方法,其特征在于,原图图像随机掩膜的超参数包括: 掩膜个数、掩膜的最大拐点个数、两个像素点之间的最小距离、两个像素点之间的最大 距离、这两个像素点之间连线的最小宽度、这两个像素点之间连线的最大宽度和最大拐角。 4.根据权利要求2所述的图像修复模型训练方法,其特征在于,创建随机掩膜的流程为:

浅述图像修复技术的发展

龙源期刊网 https://www.doczj.com/doc/928933282.html, 浅述图像修复技术的发展 作者:赵楠 来源:《科学与信息化》2019年第33期 摘要随着计算机科学技术的发展,计算机图像处理学科迅速成长,深入到各个领域。数字图像修复技术是近几年提出的一个具有挑战性的课题,在许多领域都得到了应用。本文通过对图像修复技术及方法的总结和展望,为进一步完善图像修復理论做准备。 关键词图像修复技术;偏微分方程的方法;纹理合成方法 1 图像修复技术的发展 数字图像修复是数字图像处理技术的一个重要分支,其主要工作原理是利用数字图像已知区域来修复未知区域,用前后帧的领域信息来填充未知的图像待修复区。数字图像修复的主要目的是使观察者无法察觉图像已被修改,或者使图像获得更好的视觉效果。图像修复方法可以应用于图像编码、图像修改、目标隐藏、图像传输、图像压缩等方面。 从图像修复的发展历史分析,图像修复方法是一项比较久远的技术,在很早的文艺复兴时期就出现了。战乱年代,由于珍贵的艺术品被多次易手,再经过长期的风化、油墨脱落,就难免有所损伤,人们为了保持作品的原有整体视觉效果,对艺术作品中丢失或损坏的部分进行修复。这种修复主要是由富有经验的人员采用手工方式直接在原始作品上进行处理,处理结果一旦形成就不可能再更改,稍有疏忽就将对珍贵的艺术品造成不可挽回的损失,因而具有相当高的风险。 数字图像修复方法的研究起源于20世纪的50年代初期,当时美国和苏联在太空争霸赛中首次用到了数字图像恢复技术。因为那时人类获得了大量有关地球和太阳系的图片,但是受当时的成像传感器和成像技术条件的限制,使得这些图片存在严重的退化变质现象。为了不让这些通过高科技手段得到的技术研究成果付之东流,人们迫切需要研发新的技术提高这些图片的质量,提取图像中的有用信息,数字图像修复技术就是在这样的背景下产生的。 由于数字图像恢复所处理的问题是一个病态的反问题,它设法用一个数学过程来描述,图像修复也无法表示出其逆过程,人们无法从最终的退化影像中获得准确的原始影像信息。如果破损区域较大,结构比较复杂,对它的修复将有更强的主观性,这时的各种预测只要在边界处能和已知数据吻合的上,就能构成一个成功的修复结果,这就表现出更强的病态性。因此,许多学者一直追求图像修复研究的有效方法。 当今世界日益数字化,图像修复已经成为信息技术领域的一个新的活跃研究方向,在图像处理、视觉分析、电影业等领域中具有极其广泛的应用。一些优秀的图像修复算法已经被集成

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

图像处理技术的应用论文

图像处理技术的应用先展示一下自己用Photoshop处理的图片(做的不好望见谅)

摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 关键字:图像处理发展技术应用 1.概述 1.1图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 1.2图像处理技术 图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 1.3优点分析 1.再现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。 2.处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。 3.适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 2.应用领域 2.1图像技术应用领域

插件修复遥感图像方法

遥感影像条带修复2015/10/9

目录 一.技术流程图 (2) 二.目的及内容 (2) 2.1 目的 (2) 2.2 内容 (2) 三.数据下载 (3) 四.添加补丁 (3) 五.去条带 (4) 5.1. landsat_gapfill插件去条带 (4) 5.2. tm_destripe插件去条带 (6) 六.分析 (9) 七.总结 (10)

一.技术流程图 图1 技术流程图二.目的及内容 2.1 目的 学会下载LANDSAT_7 ETM+影像和修复条带2.2 内容 (1)LANDSAT_7 ETM+影像下载 (2)tm_destripe插件修复条带 (3)landsat_gapfill插件修复条带

三.数据下载 到地理空间数据云下载行列号为118 038的上海部分影像,时间为2013年5月1日,经度为121.92,纬度为31.73,云量为0,如图2所示。 图2landsat数据信息 由于Landsat-7 ETM+机载扫描行校正器(SLC)故障导致2003年5月31日之后获取的图像出现了数据条带丢失,严重影响了Landsat ETM遥感影像的使用。因此需要对LANDSAT-7 ETM+影像进行去条带处理,以方便对影像信息的提取及研究分析。 四.添加补丁 ENVI去条带补丁有tm_destripe和landsat_gapfill,常用的补丁为tm_destripe。将补丁插件添加到根目录对应文件夹下, ENVI4.8为:C:\Program Files (x86)\ITT\IDL\IDL80\products\envi48\save_add,ENVI5.1为:C:\Program Files\Exelis\ENVI51\classic\save_add 重启ENVI软件,即可使用去条带插件。

数字图像修复技术的研究与应用

西安建筑科技大学硕士学位论文 数字图像修复技术的研究与应用 专 业:信号与信息处理 硕 士 生:李苏莉 指导教师:王慧琴 教授 摘要 数字图像修复可以对局部区域内有数据丢失或损坏的数字图像按照某种特定规则进行修复,使其恢复图像的完整性。该技术在修复文物字画、修复由网络传输等原因引起的残缺图像、去除图像及视频中的文字和划痕、以及移除图像中的目标物等方面得到广泛应用。 本文概述了数字图像修复技术的基本原理和研究现状,分析了多种典型的数字图像修复算法的优缺点及其适用范围。在此基础上,提出了两种数字图像修复算法: (1) 基于p-Laplace算子的CDD图像修复算法。该算法利用图像的局部正交坐标系,分析其扩散能力。利用了p-Laplace算子的可变参数p值介于1与2之间时既能克服由CDD模型引入的阶梯效应,又能杜绝由调和模型引入的边缘模糊的优点来填充受损区域,采用半点差分格式,设计图像修补的数值算法。该算法主要修复有划痕的旧照片和被文字覆盖的图像。仿真实验表明,该算法能快速收敛,图像边缘过渡更加自然,修复效果得到改善。 (2) 自适应模板的图像修复算法。该算法在进行搜索匹配时采用自适应模板,即匹配模板的大小可根据图像的局部块均匀度而自适应地变化;在更新置信度时,为了避免“累计误差”导致错误匹配的持续发生,取“累计误差”的双曲正切函数作为更新后的置信度,从而可以截断错误匹配。仿真实验结果证明,该方法比基于样本的图像修复方法能更好地修复图像边缘和复杂纹理,减少了因“累计误差”而产生的“垃圾物”。 关 键 词:数字图像修复;曲率驱动扩散;p-Laplace算子;块均匀度;置信度; 优先值

数字图像修复技术在文物保护中的应用

数字图像修复技术在文物保护中的应用 【摘要】当今信息化的时代,计算机技术的快速发展,极大的促进了社会的进步。文物保护在文艺复兴时期就已经开始,对文物进行修复对当时的修复工作者提出了巨大的技术要求,稍有疏忽便会造成巨大的损失。随着科学技术的进步,数字成像技术逐渐应用到文物保护当中来,许多有价值的文物因此得到保护。本文将重点论述数字图像修复技术在文物保护中的应用,针对数字图像修复文物虚拟图片的概念及意义进行讲述,同时为大家呈现运用数字图像修复技术保护文物的历史和方式方法,最后还将展现这一前沿科技在实际实践当中的运用,展示数字图像修复技术在文物保护当中的巨大作用。 【关键词】数字图像;文物保护;虚拟修复;计算机技术 当今信息化的时代,计算机技术的快速发展,极大的促进了社会的进步。目前,数字图像随处可见,随着数码相机、数字摄像机等设备的发展,越来越多的实体被转化为数字图像,这些图像经过计算机的加工、创造与设计,最后在多种媒体上展示给人们。 同时,文物实体修复的研究和应用已经非常普遍,文物是人类在历史发展过程中遗留下来的产物,它从不同程度上反映了人类社会生活的状态,是人类研究自身文化进步的宝贵遗产。 但是,经过历史的侵蚀,遗留下来的文物并不是所有的都会完整的保留下来,很大一部分信息都会在历史的冲刷中丢失。文物修复贯穿整个文物的研究和交流,经过文物修复可以满足文物研究和保护的需求,也更能满足文物观赏上的视觉要求。文物修复和图像修复存在共性,早期文艺复兴时期艺术品的修复就是运用图像修复对文物进行还原。 当今世界,结合数字图像修复技术,可以将文物领域的修复通过计算机在电脑上实现虚拟修复。这一项应用在国内都处于起步阶段,本文也将首先这一技术概念与意义,方式方法以及技术运用进行一些论述。 一、数字图像文物虚拟修复的概念和意义 “基于数字图像修复技术的文物虚拟修复技术就是针对文物数字图像损失和损坏的部分,利用现存的图像信息,按照一定规则对其进行修补,其目的是恢复已有信息损的图像,使修补后的数字图像接近或者达到原图视觉效果”。[1]我们没有足够的信息能够保证被损毁的部分能够被完整的正确的修复,只能从人类心理这一角度进行完善,提出各种可能的方案来处理这个问题。 在文物领域,由于很多不可抗拒的因素,出土时期的文物不可避免会存在一些物理或者化学上的反应,致使文物无法完整的呈现在我们的面前,文物的缺失和不完整,极大的影响了文物的交流和欣赏。长期以来,文物的修复都是通过文

数字图像修复技术在缺损照片处理中的应用探讨

数字图像修复技术在缺损照片处理中的应用探讨 随着我国科学技术的不断提高,数字图像修复技术的应用也越来越显著,其是数字图像处理中一个很重要的技术手段,可有效地将一些破损图片、照片、画作以及电影胶片等元素修复归位。同时为了满足当下人们对于图像和视频的多元化需求,数字图像修复技术也在不断地创新和改进,并在各领域中获得民众的一致好评,如:视频通信、文字档案、生物医学、遥感测绘、工业生产等领域,文章主要针对数字图像修复技术在缺损照片处理中的应用做进一步的探讨和分析。 标签:数字图像修复技术;缺损照片处理;应用探讨 21世纪是一个技术信息的时代,各种数字产品、电子产品的应用也越来越受到人们的欢迎,可以给其日常生活带来很大的便利。因此数字图像修复技术也就逐渐突显出它在各领域中的技术优势,其可以将一些有划痕的图片、移除文字后的缺损区等元素进行有效的填充和修补,使之还原成本来面貌,从而恢复正常使用功能。并能对不同受损程度的照片采取新的修复技术,从而提升数字图像修复质量,为社会发展和人们多元化的需求做出应尽的贡献和义务。 1 数字图像修复技术概述 所谓图像修复,是指对图像中信息残缺的部位进行有效的填充和修补,使之还原成完整面貌的一个补全过程。图像修复技术起源于欧洲文艺复兴时期,在以往应用过程中,其通常对一些因保存不善出现裂痕或缝隙的作品进行完整的修补,修补方式极为单一和滞后,主要是依靠人手工修复来完成,不仅修补周期较长,而且也给工作人员增加了很大的负担。随着社会的不断进步和发展,很多图像作品也都采用了数字化的处理技术,修复人员只需用电脑将其扫描,然后再利用电脑中事先安装好的相应程序,对作品进行自动修复,这样就完成了整个修复过程,既提高了修复效率,又节省了修复时间和人工成本,从而保证了作品的完整性和有效性。现阶段,数字图像修复技术已在大范围内推广和使用,也被越来越多的学者和专家们所认同,其不仅适用于静态图像的修复,还可以在动态图像中发挥优势,目前,我国数字图像修复技术主要包括两种技术形式,一种是基于变分PDE模型的数字图像修复技术,一种是基于纹理合成的数字图像修复技术,基于纹理结构的数字图像修复技术。前者可修复一些小尺度破损的数字图像,其修复原理是根据待修补区域的边缘信息来确定,没有任何局限性可同时填补多个不同结构和背景的区域。而对于一些较大面积信息丢失的图像而言,其处理手段就要采用基于纹理合成的图像修复技术来实现,这种修复技术又包含图像分解的纹理合成修复技术和样本的纹理合成修复技术,其修复原理是先把待修复的图像根据结构和纹理分成两部分,然后再把其中属于结构部分的图像利用PDE模型处理修补算法来处理,而剩下的纹理部分图像则采用纹理合成的方法来填充,这样分割式修复既能从根本上提升图像修复质量,又可以保持图像的清晰和完整,从而满足当下广大用户修复的需求[1]。 2 数字图像修复技术在缺损照片处理中的应用

图像修复技术

Inpainting algorithm for Jacquared Image Based on Phase-Field Model Zhilin Feng1, Jianwei Yin2, Jianan Zhou3 1. College of Zhijiang, Zhejiang University of Technology, Hangzhou, 310024, China 2. State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou, 310027, China 3. Department of Information and Technology, Zhejiang Vocational College of Commerce, Hangzhou, 310053, China zjhzjacky@https://www.doczj.com/doc/928933282.html,, zjuyjw@https://www.doczj.com/doc/928933282.html,, pearl@https://www.doczj.com/doc/928933282.html, Abstract Jacquard image inpainting is an interesting new research topic in pattern preprocessing for jacquard CAD. Phase field model has been well acknowledged as an important method for image inpainting. This paper discussed the problem of jacquard image inpainting by approaching the phase field paradigm from a numerical approximation perspective. The basic idea is to represent the damaged pattern of interest in implicit form, and fill-in the damaged parts with a system of geometric partial differential equations derived from phase-field model. The novelty of our approach lies primarily in exploiting explicitly the constraint enforced by the numerical solving of the sequential evolving of phase-field model. Extensive experiments are carried out in order to validate and compare the algorithm both quantitatively and qualitatively. They show the advantages of our algorithm and its readily application to jacquard texture. 1. Introduction CAD technique has been broadly used in jacquard texture industry. One of the most important aspects of the jacquard CAD system is to simulate the appearance of jacquard texture during output[1]. Automatic inpainting and restoration are closely related to jacquard CAD system[2]. Jacquard image inpainting is to restore a damaged image with missing information, so it is needed to determine which parts of the image the computer needs to retouch and in many cases the missing delineation of objects yields valuable information[3]. Jacquard image inpainting has become an indispensable process to quantitative analysis of images for jacquard CAD system. The process of inpainting is challenging due to poor image contrast and artifacts that result in missing or diffuse pattern boundaries. Thus, this task involves incorporating as much prior information as possible into a single framework. Traditionally, jacquard image inpainting techniques require some form of expert human supervision to provide accurate and consistent identification of pattern structures of interest[4]. A key difficulty associated with digital inpainting is to set up a measure of visual sensitivity towards defects which can be used in computer code. Most inpainting mechanisms use a singular resolution approach on the extrapolation or interpolation of pixels. Oliveira et al. introduced a simple and faster mechanism to filling the damaged area[4]. This algorithm can inpainting an image in just a few seconds, it can be used for interactive construction of tight masks. Bertalmio et.al decomposes the original image into two components, one of which is processed by inpainting and the other by texture synthesis[5]. The output image is the sum of the two processed components. This approach still remains limited to the removal of small image gaps, however, as the diffusion process continues to blur the filled region. Chan and Shen develop inpainting schems from the viewpoint of variational principles and image prior mode [6]. The method explains successfully some aspects of the human disocclusion process in vision psychology. Esedoglu et al. [7] have presented a technique for filling image regions based on a texture-segmentation step and a tensor-voting algorithm for the smooth linking of structures across holes. In the last decades, many algorithms that deal with image processing using phase-field models have been presented in the literatures [8-11]. The range of applications of phase field models in image processing includes noise removal, image segmentation and shape optimization problems. What is common to all these models is that they are all solved by minimization of an ___________________________________ 978-1-4244-2197-8/08/$25.00 ?2008 IEEE

数字图像复原技术综述

数字图像复原技术综述 摘要图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。 图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。 本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。 关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、 1 引言 数字图像复原技术(以下简称复原技术)是数字图像处理的重要组成部分。最早的复原技术研究可以追溯到19世纪50至60年代早期美国和前苏联的空间项目。恶劣的成像环境、设备的振动,飞行器旋转等因素使图像产生不同程度的退化。在当时的技术背景下,这些退化造成了巨大的经济损失。为此,业内人士围绕着解决退化问题展开了复原技术的研究。反映复原技术的发展现状和趋势。考虑到彩色图像复原问题的特殊性,也归人到该部分进行讨论;最后,对复原技术的研究方法进行总结与展望。 2、图像复原概述 在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。通常,称由于这些因素引起的质量下降为图像退化。 图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。 图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像

国外大牛的图像修复综述

Inpainting Marcelo Bertalm′?o,Vicent Caselles,Simon Masnou,Guillermo Sapiro Synonyms –Disocclusion –Completion –Filling-in –Error concealment Related Concepts –Texture synthesis De?nition Given an image and a region?inside it,the inpainting problem consists in modifying the image values of the pixels in?so that this region does not stand out with respect to its surroundings.The purpose of inpainting might be to restore damaged portions of an image(e.g.an old photograph where folds and scratches have left image gaps)or to remove unwanted elements present in the image(e.g.a microphone appearing in a?lm frame).See?gure1.The region?is always given by the user,so the localization of?is not part of the inpainting problem.Almost all inpainting algorithms treat?as a hard constraint,whereas some methods allow some relaxing of the boundaries of?. This de?nition,given for a single-image problem,extends naturally to the multi-image case therefore this entry covers both image and video inpainting. What is not however considered in this text is surface inpainting(e.g.how to?ll holes in3D scans),although this problem has been addessed in the literature. Fig.1.The inpainting problem.Left:original image.Middle:inpainting mask ?,in black.Right:an inpainting result.Figure taken from[20]. Background

基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术 王洪珏 (温州医学院,浙江,温州) 摘要:MATLAB是当今流行的科学计算软件,它具有很强的数据处理能力。在其图像处理工具箱中有四个图像复原函数,本文就这些函数的算法原理、运用和恢复处理效果结合实力效果作简要对比讨论。 0前言 图像复原时图像处理中一个重要的研究课题。图像在形成、传输和记录的过程中,由于传感器的噪声、摄像机未对好焦、摄像机与物体相对运动、系统误差、畸变、噪声等因素的影响,使图像往往不是真实景物的完善影像。这种图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像质量下降的过程称为图像的退化。图像复原就是通过计算机处理,对质量下降的图像加以重建或恢复的过程。 图像复原过程一般为:找退化原因→建立退化模型→反向推演→图像复原 1算法产生概述 开发算法时,首先要创建图像退化的线性数学模型,接着选择准则函数,并以适当的数学形式表达,然后进行数学推演。推演过程中通常要进行表达形式(即空域形式、频域形式、矩阵-矢量形式或变换域形式)的相互转换,最后得到图像复原算式。 退化数学模型的空域、频域、矢量-矩阵表达形式分别是: g(x,y)=d(x,y)*f(x,y)+n(x,y) G(u,v)=D(u,v)〃F(u,v)+N(u,v) g=HF+n 其中:g(x,y)、d(x,y)、f(x,y)、n(x,y)分别为观测的退化图像、模糊函数、原图像、加性噪声,*为卷积运算符,(x=0,1,2,…,M-1),(y=0,1,2,…,N-1)。 2运动模糊的产生 景物与相机之间的相对运动通常会使相机所成的像存在运动模糊。对于线性移不变模糊,退化图像u0可以写成,u0=h*u+n,其中h为模糊核,*表示卷积,n为加性噪声。 由du/dt=0,文献[5]将这种运动模糊过程描述为波动方程:

数字图像修复技术规范

司法鉴定技术规范 SF/Z JD0302003——2018 数字图像修复技术规范 Standard for repair of damaged digital images 2018-11-08发布2019-01-01实施

目次 前言................................................................................ II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 设备和工具 (1) 5 方法和步骤 (1) 6 修复结果输出 (2) 7 记录要求 (2)

前言 本技术规范按照GB/T 1.1-2009给出的规则起草。 本技术规范由司法鉴定科学研究院提出。 本技术规范由司法部公共法律服务管理局归口。 本技术规范起草单位:司法鉴定科学研究院和上海交通大学。 本技术规范主要起草人:施少培、杨旭、卢启萌、曾锦华、李岩、卞新伟、陈晓红、孙维龙、奚建华、邱卫东、黄征。 本技术规范为首次发布。

数字图像修复技术规范 1 范围 本技术规范规定了声像资料司法鉴定中数字图像修复的方法和步骤、修复结果输出、记录要求。 本技术规范适用于声像资料司法鉴定中的数字图像修复。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 SF/Z JD0300001 声像资料鉴定通用规范 SF/Z JD0302002 图像资料处理技术规范 3 术语和定义 SF/Z JD0300001中界定的以及下列术语和定义适用于本文件。 3.1 数字图像修复repair of damaged digital image 对损坏的数字图片或视频进行修复,使之能够正常显示或播放。 4 设备和工具 本技术规范所需的设备包括: a)写保护设备; b)完整性备份设备; c)数字图像修复工具; d)哈希值计算工具。 5 方法和步骤 5.1 准备 准备过程包括: a)了解检材图像形成及损坏情况; b)要求委托方提供原始的存储介质,并进行完整性备份; c)必要时,要求委托方提供拍摄设备。 5.2 图像数据搜索与分析

基于样本的数字图像修复技术研究

基于样本的数字图像修复技术研究 数字图像修复一般是利用计算机技术对图像所丢失的信息或者丢失信息的区域进行修复或者填充。文章从图像修复的技术原理以及特征两个方面概述了它的含义,并论述了基于样本的数字图像修复技术应用的重要性,最后对基于样本的数字图像修复技术进行了深入的分析。 标签:样本;数字图像;图像修复技术 1 图像修复技术概述 1.1 技术原理 图像修复技术属于半自动图像智能处理技术,并且它是当前计算机图形学科技术中的一个研究热点。图像修复在一定程度上,是利用计算机技术对图片当中出现的污点以及划痕等进行修复,使经过修复后的图片能够在一定程度上,不被人眼察觉的一种图像处理技术。当下,现有的图像处理软件,在一般情况下均能对图片进行后期处理,例如,Photoshop、光影魔术手等图像修复软件。 1.2 特征 图像修复技术在当前计算机图像学科中已被广泛应用,这种修复技术对文物保护、广播电视后期特效,以及想要表现虚拟现实,具有十分重要的作用。一般情况下,图像修复在一定程度上会受到很多因素的影响,使其局部信息出现损伤。例如:在某种条件下,为了某种特殊要求而利用图像修复技术,将完整的图片或者图像中的信息移动到另外的地方,又如:某些图片或者图像在数字媒体技术下,进行获取、处理、压缩,在这个过程中由于信息丢失,最终导致图像所留下的信息出现缺损区域等。由此可见,为了保证图像信息的完整性,这就需要图像修复技术在一定基础上为图像重新扫描、处理,从而使图像恢复完整性[1]。 2 基于样本的数字图像修复技术应用的重要性 首先,它是对静态图像的裂痕以及污点进行修复。数字图像修复技术,在一定基础上对污点以及有损伤的图像进行清理,从而利用数字化技术对这些污点图像进行整合,最后呈现给人们一个视觉“完整”并且合理的图像。当下在我国印刷行业,对于一些破损的老照片或者有划痕的照片均可以利用这种技术进行简单的修复。 其次,数字图像修复也是动态影像修复。如今,我国计算机技术的发展越来越迅猛,因此图像修复技术,不仅能对一些静态的图片进行简单修复,而且这种技术在我国乃至全世界的影视行业也应用广泛。例如:这种技术可以在一定基础上对制作好的影视进行修复。

遥感图像处理方法

遥感图像处理方法 随着遥感技术的快速发展,人们已经从遥感集市中获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌 如果工作区跨多景图像,还必须在计算机上进行图像镶嵌,才能获取整体图像。镶嵌时,除了对各景图像各自进行几何校正外,还需要在接边上进行局部的高精度几何配准处理,并且使用直方图匹配的方法对重叠区内的色调进行调整。

相关主题
文本预览
相关文档 最新文档