当前位置:文档之家› 某水利枢纽工程大坝安全监测资料分析报告

某水利枢纽工程大坝安全监测资料分析报告

某水利枢纽工程大坝安全监测资料分析报告
某水利枢纽工程大坝安全监测资料分析报告

万家寨水利枢纽工程

大坝安全监测资料分析报告

建设单位:黄河万家寨水利枢纽有限公司

编制单位:水利部天津水利水电勘测设计研究院

二○○二年五月

总目录

第一卷:建设管理工作报告

第二卷:建设大事记

第三卷:大坝Ⅰ标工程施工管理工作报告

第四卷:厂房Ⅱ标工程施工管理工作报告

第五卷:砂石骨料生产管理工作报告

第六卷:设计工作报告

第七卷:建设监理工作报告

第八卷:机电设备制造监造工作报告

第九卷:金属结构制作监造工作报告

第十卷:运行管理工作报告

第十一卷:质量评定报告

第十二卷:大坝安全监测资料分析报告

第十三卷:水土保持及环境保护专项工作报告

第十四卷:库区右岸渗漏专题工作报告

第十五卷:库区防凌专题工作报告

第十六卷:坝基抗滑稳定处理专题工作报告

第十七卷:低热微膨胀水泥应用专题工作报告

第十八卷:拟验工程清单和未完工程项目的建设安排

第十九卷:档案资料自检工作报告

第二十卷:小沙湾取水工程专项工作报告

第二十一卷:竣工安全鉴定工作报告

第二十二卷:建设征地补偿和移民安置工作报告

批准:何志华

审定:王宏斌陆宗磐

审查:郭潇张军劳杜雷功吴正桥

校核:顾春利李秀明

编制:蒋志勇张秀崧朱伟君

白俊岭李梅

目录

前言 (1)

1 工程概况及大坝安全监测布置简况 (2)

1.1 工程概况 (2)

1.2 监测项目及布置 (2)

2 变形观测资料分析 (15)

2.1 荷载因素分析 (15)

2.2 变形观测资料的整理与分析 (16)

2.3 坝体变形三维有限元计算 (22)

2.4 统计模型分析 (23)

2.5 位移混合模型分析 (26)

2.6 大坝变形观测资料分析综述 (27)

3 渗流观测资料分析 (79)

3.1 坝基扬压力资料分析 (79)

3.2 坝基层间剪切带扬压力观测资料分析 (82)

3.3 坝体渗透压力资料分析 (83)

4 应力、应变及温度观测资料分析 (97)

4.1 应变计组实测资料计算分析 (97)

4.2 测缝计实测资料整理和分析 (100)

4.3 抗剪平硐三向测缝计实测资料分析 (103)

4.4 钢筋计实测资料分析 (104)

4.5 钢板计实测资料分析 (105)

4.6 渗压计实测资料分析 (106)

4.7 基岩变位计实测资料分析 (106)

4.8 温度计实测资料分析 (107)

5 结论与建议 (143)

5.1 结论 (143)

5.2 建议 (145)

前言

万家寨水利枢纽工程1994年底开工,1995年5月开始大坝混凝土浇筑,大坝安全观测仪器与设施,随坝体混凝土施工,逐步埋设安装就位,至1998年10月水库下闸蓄水,大部分观测项目施工完成,并取得了初始值,开始或进行了正常的安全监测。至目前大部分观测项目均已取得了系统且完整的观测资料。受黄河万家寨水利枢纽有限公司委托,我院承担了该工程竣工验收大坝安全观测资料分析任务。本次资料分析含概了除近坝区岩体水平位移、垂直位移及左右岸绕坝渗流观测(甲方均已委托其他单位承担)以外项目的大坝安全观测起始至2001年5月底全部观测资料。观测资料分析依据国家现行规程规范进行,分析中除采用统计方法外,还借助于线弹性有限元对大坝位移等进行了综合分析。通过本次观测资料分析,对该工程大坝安全监测、安全监测成果及大坝工作状态均有了一定的认识,但由于部分观测资料的完整性、系统性较差,也给资料分析和结论的取得带来了一定的困难,有待在今后工作中进一步地完善。

在本报告的编写过程中,提到了中国水利水电科学研究院结构材料研究所张进平、庄万康、黎利兵等专家的指导,同时得到了黄河万家寨水利枢纽有限公司领导及公司电站管理局的大力支持,在此一并表示感谢!

受时间等方面因素制约,本次资料分析中难免有不足之处,恳请专家们批评指正。

1 工程概况及大坝安全监测布置简况

1.1工程概况

万家寨水利枢纽工程位于黄河干流托克托至龙口峡谷河段内,左岸隶属山西省偏关县,右岸隶属内蒙古自治区准格尔旗。工程的主要任务是供水结合发电调峰,同时兼有防洪、防凌作用。枢纽属一等大(I)型工程,水库最高蓄水位980.00m,正常蓄水位977.00m,水库总库容8.96亿m3,电站装机容量1080MW。整个枢纽由拦河坝、坝后式厂房、泄水建筑物、引黄取水口及GIS开关站等建筑物组成。

拦河坝为混凝土半整体直线重力坝。大坝坝顶高程982.00m,坝顶长度443m,最大坝高105m,拦河坝由22个坝段组成,其中:1#坝段为左岸挡水坝段;2#、3#坝段为引黄取水口坝段;4#坝段为表孔坝段;5#~8#坝段为底孔坝段;9#、10#坝段为中孔坝段;11#坝段为隔墩坝段;12#~17#坝段为电站坝段;18#~22#坝段为右岸挡水坝段。

黄河在坝址区呈南北向,河谷呈宽U型,宽约430m。坝基座落在寒武系中统张夏组第五层的中厚层灰岩夹薄层灰岩上,两岸坝肩地层为寒武系上统崮山组、长山组和凤山组的中厚层灰岩、薄层灰岩、竹叶状灰岩等地层。

坝基地层呈单斜构造,岩层产状平缓,总体走向北东30°,倾向西北,倾角2°~3°。在平缓单斜地层上发育有规模不大的层间褶曲、隆起及裂隙。

1.2 监测项目及布置

本工程大坝观测项目有:变形观测;渗流观测;应力、应变及温度观测;水位、水温、气温观测;水力学观测。

1.2.1变形观测

(1)坝顶水平位移监测。坝顶水平位移观测采用视准线法和大气激光准直线法,布置桩号分别为下0+017.185m和0+017.51m,两种方法互为校核,两端点由设置在1#、22#坝段的正、倒垂线组作为基点。

(2)坝身水平位移监测。在高程975.00m的观测廊道内桩号下0+013.45m处布置一条单向引张线,两端点与1#、22#坝段的正、倒垂线组相结合,中间与7#、14#坝段的正、倒垂线组相结合。

1.2.2垂直位移监测

(1)坝顶垂直位移监测。在每个坝段的坝顶上埋设一个沉陷标点,采用精密水准测量方法进行观测。

(2)坝基垂直位移监测。在灌浆廊道内每个坝段埋设一个沉陷标点,采用精密水准测量方法进行观测。

1.2.3坝体挠度监测

在1#、7#、14#、22#坝段各布置一条正、倒垂线组观测坝体挠度,并为大坝变形观测提供基准值。倒垂线深入基岩深度:1#坝段为42m;7#坝段为30.9m;14#坝段为35m;22#坝段为45m。

1.2.4坝基倾斜监测

在14#坝段灌浆及扬压力观测廊道内,桩号坝0+323.80m、高程898.50m处顺流向安装三台RJ型电容式静力水准仪,并以14#坝段倒垂线作为基点。

1.2.5坝基扬压力监测

选择2#、5#、11#、14#、20#坝段5个横向监测断面,每个断面布置4个以上监测孔,纵向监测断面选在灌浆廊道内,每个坝段布置1个监测孔,另在6#、10#、15#、18#坝段

布置4个深层承压水监测孔,共布置59个扬压力监测孔。

1.2.6绕坝渗流监测

在左右岸各布置8个监测孔,监测绕坝渗流情况。

1.2.7渗漏量监测

(1)坝体渗漏量监测。在灌浆廊道上游排水沟内于9#、15#坝段集水井的左右两侧各布置1台YL型电容式量水堰渗流量仪,共4台。

(2)坝基渗漏量监测。在灌浆廊道下游排水沟内于9#、15#坝段集水井的左右两侧各布置了1台YL型电容式量水堰渗流量仪,以监测主排水孔的渗漏量,共4台。

1.2.8应力、应变及温度监测

(1)温度监测。在5#、14#、21#三个典型坝段内,依高程不同,每隔10~15m布设一排温度计,每排3~5个测点进行坝体温度观测;在坝踵、坝趾及坝基中部,沿铅直方向在基岩内距建基面0.0、1.5、3.0、5.0m各布置一支电阻温度计进行基岩温度监测。

(2)纵横缝开合度监测。在典型坝段的各条纵、横缝及左右岸坡坝段的横缝上布置测缝计,监测缝面开合度变化情况。

(3)坝体渗透压力、泥沙压力监测。在5#、14#坝段观测断面高程904.50m和906.00m 布置两排10支渗压计,与坝面的距离为0.25、1.05、2.55、4.55、7.65m;在5#、14#坝段高程948.00m以下,每隔10m左右布置一对土压力计和一支渗压计。

(4)坝体应力、应变监测。在典型坝段的基础截面布置五向应变计组、无应力计,以监测该截面的应力应变;在坝踵部位埋设应变计、测缝计进行应力应变和缝面变化监测;在岸坡坝段布置单向应变计及基岩变位计监测坝肩的受力和变形情况。

(5)钢筋应力监测。在5#坝段底孔孔口、闸墩及9#坝段排水泵房等部位布置钢筋计进行钢筋应力监测。

(6)压力钢管监测。在14#电站坝段压力钢管的上弯段、斜直段及下弯段截取三个垂直于钢管轴线的剖面,在每个剖面的上下、左右侧布置钢板计、钢筋计、测缝计、渗压计、应力计及无应力计对压力钢管的工作状态进行监测。

1.2.9水位、水温、气温监测

(1)水位监测:大坝在水库下闸蓄水前采用上下游水尺进行水位监测,电站机组投入运行后利用19#坝段及电站尾水平台的水位计进行监测。

(2)水温监测:选择上游坝面作为监测断面,利用5#、14#、22#坝段布置的电阻温度计进行水温监测。

(3)气温监测:利用坝址附近即左岸山体上游侧和右岸坝段布置的两个气温观测点,安装百叶箱,采用电阻温度计进行气温监测。

1.2.10坝基抗剪平硐应力应变监测

(1)应力应变监测:在3条坝基抗剪平硐内共埋设20套五向应变计组和无应力计,以监测平硐混凝土内应力状况。

(2)温度监测:在平硐内共埋设温度计63支,进行回填混凝土温度监测。

(3)周边回填缝开度监测:在3条平硐及部分支硐内选择10个观测断面,每个断面分别在两侧及顶部各布置1支测缝计,共计30支,以监测周边回填缝的开合度。

(4)剪切带变形监测:在平硐内SCJ08、SCJ10剪切带上各埋设6套3DM-200型三向测缝计,共计12套。

万家寨水利枢纽工程大坝安全监测测点及仪器布置见图1-1~图1-10。

2 变形观测资料分析

2.1荷载因素分析

2.1.1水位荷载

本工程1998年10月1日下闸蓄水,1998年11月25日到达施工初期运行水位960.00m。至2001年5月底,水库库水位在929.50m至974.54m之间变动,其中2000年3月24日水位降至最低,为929.50m;2001年4月17日水位升至最高,为974.54m。在此期间,库水位主要经历了4次大幅度的变化,分别是1998年10月的蓄水过程,1999年3月和2000年3月库水位的降升过程,2001年3、4月的库水位升高过程。库水位变化过程线见图2-1。

水荷载是坝体及坝基变形的主要影响因素之一。理论分析表明,坝体变形可以用水位的1~4次方表示,本次回归计算分析采用h、h2、h3、h4作为水位分量的因子(其中,h=H/100,H为测时当天的平均库水位)。从回归计算所得的统计模型看,现有变形监测项目的部分测点的实测值统计模型中没有引入水位因子,其原因与大坝前期尚处于边建设边运行之中,观测资料相对较短,而其它因素(如温度、时效等)对大坝变形的影响较水荷载相对明显有关。为弥补现有资料相对较短,并利用有限元计算结果求出水位与外部变形的关系方程,将此方程作为一个因子,结合实测资料,建立了外部变形混合模型。有限元计算及分析详见2.3节。

2.1.2温度荷载

气温是影响坝体运行状态的重要外部条件,对坝上、下游水温、坝体混凝土温度、

坝基温度有直接影响,从而影响到坝的变形、应力、渗透等。

万家寨水利枢纽坝址地处北纬39.6°,该地区属温带季风大陆性气候,冬季寒冷且时间漫长,气候干燥,多风沙;夏季炎热;春、秋季短。气温年、季及昼夜变化大,骤降频繁。统计资料表明,本工程所在地区,一年四季均有寒潮发生,且寒潮降温幅度大,覆盖时间长。

实测枢纽工程区气温变化过程线见图2-2。因气温资料仅到2001年3月21日,为使环境量相对完整,便于回归分析,对此后4、5两个月的气温,用2000年同期的资料进行补充。根据1995年12月9日至2001年3月31日每天平均气温的统计,在此时段内坝址处最高气温出现在1998年6月29日,最高气温为32.8℃;最低气温出现在1998年1月18日,最低气温为-21.9℃。

在进行坝体变形回归分析时,根据本工程的实际情况,采用了两类温度分量因子:

一类为前期平均气温因子,包括T

7、T

15

、T

30

、T

60

、T

90

、T

120

等(下标表示所取测时前的

天数);一类为周期因子,包括sin(s)、sin2(s)、cos(s)、cos2(s)和sin(s)·cos(s),其中,s=2πt′/365,t′为测时距分析起始日期的时间长度(天)。变形测点实侧值回归议程中送入的年周期、半年周期和测时前期气温平均因子不全相同,反映了因测点位置不同,受温度边界条件影响(气温、水温)程度的不同。

2.2变形观测资料的整理与分析

本次资料分析中,位移方向按常规设定为:水平位移向下游及向左岸位移为正,上下游方向为纵轴Y,左右岸方向为横轴X;垂直位移向下为正。

2.2.1数据可靠性检查及精度估计方法

在进行观测资料的整理分析前,对观测数据进行了可靠性检查,并对其中不可避免地存在的以下三类误差分别进行了处理。

(1)疏失误差(人工误差):是指由于观测人员的疏忽而产生的误差,如仪器操作错误、记录错误、计算错误、计算机输入错误等。本次分析工作开始时,大坝观测自动化系统尚未投入正常运行,分析采用的所有资料均为人工观测、人工计算后输入到计算机,所以资料中疏失误差难以避免。因此,在资料分析前,对原始记录进行了大量的复核,对明显的疏失误差进行了插值补缺或非真值剔除。

(2)系统误差:是指由于观测设备、仪器、操作方法不完善或外界条件变化所引起的一种有规律的误差,如电缆接长或剪短、电缆接头硫化处理不当、不同测时更换测量仪器等,其可能的形式较为复杂,比疏失误差难于发现和处理。对这种误差,首选将

观测数据中的系统性变化(如系统性跳动或趋势性变化)分辩出来,然后根据测量系统的工作特性及结构变化对其产生的原因进行判断。对判定为测量因素引起的系统性变化(系统误差),采用曲线平移的方法进行必要的处理。

(3)偶然误差:是指由于若干偶然原因所引起的微量变化的综合作用所造成的误差。对具体观测项目而言,可以对测点的理论观测精度进行估计,但重要的是实测值的测量精度,它直接关系到测值的实用价值。对观测数据进行回归分析时,不存在严重欠拟合现象的条件下,其剩余量主要是由观测的偶然误差引起的,对不同的观测项目,用剩余标准差S对测量精度的上限进行了估计。

2.2.2水平位移监测资料的整理分析

(1)坝顶视准线

视准线布置在坝顶桩号0+017.185m处,共21个测点。视准线以1#、22#坝段两端作为变形观测基点,通过1#、22#坝段正、倒垂线组测得的坝顶水平位移进行绝对位移转换,由于1#坝段正、倒垂线组因各种原因未取得连续完整的测值,所以本次分析也无法换算得出坝顶绝对水平位移的系列测值。为了解坝顶的绝对水平变位,工作中通过对已完成的大坝外部变形控制网测量的成果的初步分析,再根据相同或相近测时视准线及引张线测量结果,换算出各测点4个测时的绝对位移,作出绝对位移沿坝段的分布图。由于只可以换算出4次绝对位移,测次较少,无法对坝顶绝对位移进行过程分析,所以本次重点分析坝段的相对水平位移。

视准线始测日期为1998年10月16日,视准线测值过程线见图2-3,不同日期测值相对于1#、22#坝段的位移分布曲线见图2-9~图2-11,视准线测值与库水位年相关图见图2-23、图2-24。通过外部变形控制网5次测量结果,换算出的坝顶各测点绝对位移分布图见图2-12,各测点相对位移特征值统计见表2-1。

当不考虑温度和时效时,坝体水平位移计算结果和水位相关线为单值曲线,作7#、14#坝段坝顶视准线测值与水位年相关图(见图2-23、图2-24),可以看到,相关线并不为单值曲线,可见影响坝顶水平位移的不仅仅是水位荷载。

为进一步分析气温和时效是否对坝顶水平位移产生影响,分别作出各坝段同水位同气温位移分布图(图2-9)、同水位不同气温位移分布图(图2-10)、不同水位同气温位移分布图(图2-11)【此处所说的同气温,并不是指测时气温,因为气温对坝体位移的影响有一定的滞后,真正影响坝体位移的是测时前一段时间的平均气温,这一点在统计模型分析中能反映出来,故在气温无反常的情况下,取月份相近的测时,认为两测时

前期平均气温基本相同】。

视准线同水位、同气温位移分布图(图2-9)中,两次测时相差一年,但各坝段坝顶位移基本相等,说明时效对坝顶水平位移影响很小或基本没有影响。

视准线同水位、不同气温位移分布图(图2-10)中,两测次测时月份不同,分别为5月和10月,从测时前期平均气温(测时前1~2月)来看,10月份前期平均气温较5月高,1999年5月19日各坝段坝顶水平位移测值比2000年10月6日的大很多(右边4个坝段除外),说明气温与坝顶水平位移呈负相关,气温越高,坝顶向下游的水平位移越小。右边4个坝段两次测值变化不大,可能是因为这4个坝段受右岸山体和下游主、副厂房的影响,受日光直接照射的时间较少,坝体内温度随气温变化幅度较其它坝段相对要小。

视准线不同水位、同气温位移分布图(图2-11)中,两测次测时均在2月份,气温对坝顶水平位移的影响应基本相同,但水位961.31m时,各坝段坝顶的水平位移较水位955.25m时要大,说明随着库水位的升高,坝顶水平位移增大。

从视准线位移分布图(图2-9、图2-10、图2-11)还可以看到,坝顶水平位移分布呈河床坝段大,边坡坝段小的趋势,这符合坝体变形分布规律。同时,由外部变形控制网测量成果初步分析的1#、22#坝段测点位移,通过视准线换算出的7#、14#坝段坝顶水平位移值基本相同。【图2-12为由外部变形控制网测量成果初步分析的1#、22#坝段测点水平位移值,结合视准线测量结果换算出的坝顶各测点水平位移绝对值的分布】综上所述,坝顶各测点水平位移测值并不是单一的与水位或气温变化相关,而是受两者综合作用的结果。当库水位升高时,坝顶水平位移向下游增大,反之减小;当气温升高时,坝顶水平位移向上游增大,这一变化符合坝体变化规律。视准线过程线图中,几乎所有测点水平位移测值在2000年4月下旬有一明显增大的过程,这主要是因为在该时段水位明显升高,到970.00m高程左右,水位升高使坝顶水平位移向下游明显增大;而2000年7月下旬坝顶水平位移有一明显减小的过程,这主要是因为在该时段水位下降,而气温明显升高,两者的综合作用,造成坝顶水平位移偏向上游。2001年4月份水位升到最高,最高达974.54m,而此时气温也较低,绝大部分测点水平位移最大值也出现在此时段,说明水位和气温变化对坝顶水平位移影响明显。

从各坝段相对于1#、22#坝段变位测值的统计(见表2-1)可以看出:向下游最大位移出现在2001年4月11日的13#坝段,最大位移值为13.90mm;最小位移出现在1999年2月20日的3#坝段,最小位移为-3.14mm;最大变幅发生在11#坝段,为15.70mm;各

测点变幅为3.04~15.70mm。

(2)高程975.00m观测廊道引张线

引张线布置在高程975.00m观测廊道桩号下0+013.45m处,共21个测点。引张线两端也以1#、22#坝段正、倒垂线组测值为基准,因垂线的原因,本次也只重点分析引张线各测点的相对位移。

引张线始测日期为1998年10月12日,引张线过程线见图2-4,不同日期测值相对于1#、22#坝段的位移分布曲线见图2-13~2-15。通过大坝外部变形控制网5次测量结果换算出的引张线各测点绝对位移分布图见图2-16,各测点相对位移特征值统计见表2-2。

通过7#、14#坝段高程975.00m廊道引张线测值与水位年相关图(见图2-25、图2-26),可以看到,相关线也不是单值曲线,可见影响测点水平位移的也不仅仅是水位荷载。

同视准线一样,分别作出各坝段同水位同气温位移分布图(图2-13)、同水位不同气温位移分布图(图2-14)、不同水位同气温位移分布图(图2-15),以进一步分析气温和时效是否对高程975.00m处的水平位移产生影响。

引张线同水位、同气温位移分布图(图2-13)中,两次测时相差一年,但各坝段引张线实测位移基本相等,说明时效对高程975.00m处水平位移影响很小或基本没有影响。

引张线同水位、不同气温位移分布图(图2-14)中,两测次测时月份不同,分别为3月和10月,从测时前期平均气温(测时前1~2月)来看,10月份前期平均气温较3月高,1999年3月31日各坝段坝顶水平位移测值比2000年10月7日的大很多,说明气温与测点处水平位移呈负相关。气温越高,测点处向下游的水平位移越小。

引张线不同水位、同气温位移分布图(图2-15)中,两测次测时在4、5月份,气温对坝顶水平位移的影响应基本相同,但水位973.43m时各坝段坝顶的水平位移较水位970.13m时要大,说明随着库水位的升高,坝顶水平位移增大。

为进一步分析高程975.00m观测廊道处水平位移与库水位的关系,取1999年2、3月份短时间内(气温对水平位移影响很小)库水位大幅度变化时,7#、14#坝段的几次测值作出库水位与测点水平位移相关图(见图2-27、图2-28)。从相关图可以看到,位移与水位相关关系明显,且水位下降过程与水位升高过程的相关线几乎完全重合,说明坝体处于弹性变形。分别将这几次测值与有限元计算结果进行比较(见表2-9、表2-10),绝大部分实测位移值比有限元计算结果稍小(此处位移测值为相对1#、22#坝段的位移,这会对实测位移结果有一定的影响),但两者的变化规律基本相同。

各坝段水平位移分布呈边坡坝段小、河床坝段大,符合坝体水平位移分布规律。【图2-16为由外部变形控制网测量结果初步分析的1#、22#坝段测点水平位移值,结合高程975.00m廊道引张线测量结果换算出的高程975.00m廊道引张线各测点水平位移绝对值的分布】

同时从测值过程线可以看到,各坝段测值过程线变化趋势基本相同,且随水位和气温综合影响变化趋势明显,当库水位升高时,各测点水平位移向下游增大反之减小;当气温升高时,各测点水平位移向上游增大。引张线过程线同视准线测值一样,所有水平位移测值在2000年4月下旬有一明显增大的过程,而在2000年7月下旬坝顶水平位移有一明显减小的过程,这与视准线反映的规律一致,是水位、气温两者综合影响的结果。2001年4月份水位升到最高,而引张线绝大部分测点水平位移最大值也出现在此时,也说明水位变化对坝顶水平位移影响明显。对比视准线和引张线各测点测值过程线可以看到,引张线测值过程线较视准线平滑,说明引张线测量精密较坝顶视准线高,这从两个项目各测点测值统计模型回归标准差也能看出。

各测点实测水平相对位移的统计(见表2-2)表明:向下游最大位移出现在2001年4月16日的14#坝段,最大位移为13.01mm;最小位移出现在1998年10月20日的9#坝段,最小位移为-1.60mm;最大变幅为14#坝段的13.01mm;各测点变幅为 2.05~13.01mm。从统计结果看,引张线所反映的位移变化规律和视准线基本一致。

2.2.3垂直位移监测资料的整理分析

(1)坝顶垂直位移

坝顶垂直位一移采用精密水准测量方法定期观测,每个坝段布置一个沉陷标点(4#坝段两个测点),共23个测点。坝顶垂直位移从1998年10月12日始测,各测点垂直位移过程线见图2-5,不同时段测值分布曲线见图2-17~图2-20,特征值统计见表2-3。

分别作出各坝段坝顶垂直同水位同气温位移分布图(图2-17)、同水位不同气温位移分布图(图2-18)、不同水位同气温位移分布图(图2-19),以进一步分析库水位、气温和时效对坝顶垂直位移的影响。

同水位、同气温坝顶垂直位移分布图(图2-18中),两测次测时月份不同,分别为1999年2月和2000年6月,测时气温相差较大,从测时前期平均气温(测时前1~2月)看,2000年6月份前期平均气温较1999年2月份前平均气温高,1999年2月9日各坝段坝顶垂直位移测值比2000年6月30日的大很多。说明坝顶垂直位移与气温呈负相关,气温越低,坝顶重直位移越大,且气温对坝顶垂直位移的影响较大。

不同水位、同气温坝顶垂直位移分布图(图2-19)中,三次测时均在4月份,气温对坝顶垂直位移的影响应基本相同,但不同水位时各坝段坝顶垂直位移基本相同,说明库水位对坝顶垂直位移影响不大。

各坝段坝顶垂直位移分布曲线(图2-17~2-20)反映出,坝顶垂直位移沿坝段分布呈河床坝段大、边坡坝段小的规律,不同时间的分布规律基本相同,从分布图中可以看出,4#坝段垂直位移较相邻坝段偏小,这可能是因为该坝段为表孔坝段,体型和其它坝段有一定区别,太阳照射对坝顶垂直位移的影响较其它坝段相对较小。

从坝顶垂直位移过程线也可以看到,测值随气温变化较水位明显,呈周期性变化。坝顶垂直位移除受坝体刚性变化影响外,受坝体下游面混凝土热胀冷缩影响较大,气温上升,垂直位移减小。主要是因为坝体下游面在日照条件下,气温升高时,下游面升温膨胀,致使坝体向上游倾斜,坝顶下游垂直位移测点处上升,符合混凝土重力坝坝顶垂直位移变化规律。从2000年3月以后,过程线较前期平滑,说明后期坝顶垂直位移测量精度较前期高。

对坝顶各测点实测垂直位移的统计(见表2-3)表明:最大位移出现在2000年2月17日的16#坝段,最大位移为12.02mm;最小位移出现在1999年9月9日的17#坝段,最小位移为-0.67mm;最大变幅发生在16#坝段为12.02mm;各测点变幅为5.31~12.02mm。从统计结果看,各测点垂直位移最大值均出现在2、3月份,主要因为该时段气温较低,从而进一步说明了坝顶垂直位移随气温下降而增大的规律,同时也说明气温是影响坝顶垂直位移变化的主要因素。

(2)坝基垂直位移

坝基垂直位移通过埋设设灌浆廊道内的沉陷标点,采用精密水准测量方法进行观测,每一坝段一个测点,共22个标点。原设计通过14#、22#坝段高程传递孔,采用因瓦钢尺进行高程传递,实际现场测量时,高程由布置在大坝下游河床两侧的近坝区岩体垂直位移控制网点引入廊道。对大坝外部变形观测资料初步分析的结果显示,近坝区岩体垂直位移控制网点没有垂直位移现象。

坝基垂直位移从1998年10月2日始测,各坝段测点测值过程线见图2-6,不同时段测值分布曲线见图2-21、图2-22,特征值统计见表2-4。

作各坝段测点同水位、同气温测值分布图(图2-21),两次测值相隔一年,在库水位和前期气温基本相同的情况下,2000年2月20日各坝段的测值比一年前大,说明坝基垂直位移有明显的时效影响。坝基重直位移主要受自重等的影响,其沿各坝段的分布

规律也呈河床段大、边坡坝段小的分布规律,与坝高变化基本一致。

从坝基垂直位移过程线图可以看到,测值变化不够平滑,测量精度较差。测值过程线与水位、气温关系不明显,但过程线总体呈上升趋势,说明坝基垂直位移随时间仍有增大趋势,时效位移依然存在。

对坝基各测点实测垂直位移的统计:最大位移出现在1999年7月25日的14#坝段,最大位移为7.32mm;最小位移出现在2000年10月26日的1#坝段,最小位移为-5.49mm;最大变幅发生在1#坝段,为7.44mm;各测点变幅为3.23~7.44mm。

在1#、7#、14#、22#坝段布置正、倒垂线组,对坝体挠度进行观测,共计布置测点15个。

坝体挠度从1998年9月30日开始观测,各垂线测点坝体位移过程线见图2-7、图2-8,各测点位移特征值统计见表2-5、表2-6。

从测值过程线可以看到,坝体垂线值规律性较差。经现场检查,7#坝段倒垂垂线贴壁,造成测值失真,其它坝段是否也有此种情况,有待进一步查实。而1#坝段由于各种原因造成测值较少,新增的倒垂又刚投入运行,测值不连续,从而无法进行深入分析。因此,坝体垂线位移特征值(见表-5、表2-6)有待考证。

1#、22#坝段垂线组作为坝顶视准线、高程975.00m观测廊道引张线的基准点,其测值的好坏直接关系到视准线和引张线测值转换成绝对位移时的准确性。因垂线测值的不可靠,使得本次分析无法将水平位移转换成绝对位移进行分析,仅将外部变形控制网测量结果进行初步分析后,作出了以上两个观测项目4次观测的绝对位移分布图。外部变形控制网坝顶各控制点的Y向绝对位移值见表2-7,由控制网测量结果初步分析的1#、22#坝段位移,通过视准线(上、下游方向)、引张线换算出坝顶各测点Y向绝对水平位移分布见图2-12和图2-16。

2.3坝体变形三维有限元计算

为配合本次观测资料的分析,对7#、14#坝段分别进行了三维有线元计算,主要目的是通过三维有限元模型对大坝的水平、垂直位移进行计算,求出坝体变形和水位的关系,再结合实测变形资料进行回归计算,得到坝体变形混合模型。采用ALGOR FEAS软件,对全坝段建立三维线性有限元模型,模拟实际情况进行计算分析。

计算基本假定:

2.3.1混凝土及基岩为各向同性弹性体;

2.3.2基岩自重变形已经完成;

2.3.3坝体与基础岩体固结完好,不存在坝体与基岩之间的滑动;

2.3.4坝基上、下游岩石为透水体,不承担水荷载。

有限元计算模型包括大坝坝体,上、下游长度各取2~3倍坝高,基岩浓度取1.5~2倍坝高。实际选取的7#坝段有限元计算模型上游起于桩号0-300.00mm,下游止于桩号0+350.00m,基底高程为749.00m,沿坝轴线方向取一个坝段,长19m,模型如图2-29所示;14#坝段有限元计算模型上游起于桩号0-200.00m,下游止于桩号0+320.00m,基底高程为726.00m,沿坝轴线方向取一个坝段,长24m,模型如图2-30所示。

模型边界条件:基岩底部、上下游而面约束;坝体混凝土及基岩两侧约束X方向(沿坝轴线方向)位移。

计算工况及荷载组合:本次计算共分6种工况,分别采用980.00m、970.00m、9660.00m、960.00m、952.00m、948.00m六种水位进行计算。计算荷载组合各工况均为坝体自重、水压力、泥沙压力及扬压力荷载。水压力及泥沙压力大小随深度线性变化,渗透压力加在坝体底部,在计算扬压力时考虑到上游防渗帷幕和主排水的作用,对扬压力进行折减,折减系数0.25,折减位置在桩号下0+004.00m。

计算得坝体各部位变形值见表2-8。

2.4统计模型分析

对变形测值序列进行回归分析的主要目的是:了解变形可恢复部分的主要影响因素,认识坝体及基础在其影响下的变形性态,在一定条件下与计算进行比较相互验证;确定有无时效变化,如果有的话,对其发展情况,如速率、变化幅度等作出估计,对其产生的原因进行解释,并结合有关测点及其它变形量的情况对是否存在异常情况作出判断;对观测精度作出大致估计,以确定数据的实际应用价值。

任意一变形监测量的的回归方程组成如下:

δ=δ(H)+δ(T)+δ(t)

即变形量由水位、温度、时效三个分量组成,本次回归分析对各分量采用如下因子:

水位分量δ(H):在水压作用下,大坝任一测点产生水平位移δ(H)由三部分组成(静水压力作用在坝体上产生的内力使坝体变形而引起的位移;在地基面上产生的内力使地基变形而引起的位移;库水重作用使地基面转动所引起的位移),理论分析可知,水压引起的位移分量可用水位的1~4次方表示,本次采用h的1~4次方作为回归因子(其

中,h=h′/100,h′为测时当天的平均水位)。

温度分量δ(T):是由于坝体混凝土和基岩温度变化引起的位移。在进行回归分析时,可以选择坝体或基岩内埋设的温度计的测值作为因子,也可选择坝址处气温作为因子,但因坝内温度计埋设较多,且分布的部位不同,很难用某一支温度计反映坝内温度总体变化,而要用所有温度计测值作为因子,则计算工作量太大,故本次分析采用坝址气温作为温度回归因子。根据本工程实际情况,采用了两类温度分量因子(见2.1.2节)。

时效分量δ(t):大坝变形产生时效分量的原因复杂,它综合反映坝体混凝土和基岩的徐变、塑性变形以及基岩地质构造的压缩变形,同时还包括坝体裂缝引起的不可逆变形以及自生体积变形。一般正常运行的大坝,时效位移的变化规律为初期变化急剧,后期渐趋稳定。根据时效变形规律,采用t、ln(l+t)、e-kt这三项函数作为时效因子(其中:t=t′/30,t′同前;k取0.01)。

2.4.1坝顶视准线

坝顶视准线21个测点全部观测数据统计回归方程见表2-11,回归结果分量统计见表2-17,回归复相关系数为0.7845~0.9602,其中大部分在0.8~0.9之间;测值回归标准差在0.336~2.358mm之间。

(1)全部测点均选入了水位因子,表现出随水位升高位移量增大变化规律,且从水位分量变幅所占比例可以看出,水位分量变幅比温度分量变幅稍大,水位变化是坝顶水平位移的主要影响因素。

(2)全部测点均选入了温度分量,表现出温度升高,坝顶水平位移减小,其分量变幅略小于水位分量,说明温度是次于水位的又一主要影响因素。

(3)部分测点选入了时效因子,测点表现出了位移的趋势性变化。变幅在1.11~6.63mm之间。绝大部分测点未选入时效因子,主要是因为时效分量在坝顶水平位移中所占比重很小,而水库运行初期,影响坝顶水平位移测值的因素较多,使得时效位移分量表现不明显。

2.4.2高程975.00m观测廊道引张线

高程975.00m观测廊道引张线21个测点全部观测数据统计回归方程见表2-12,回归结果分量统计见表2-18,回归复相关系数为0.6675~0.9776,其中,仅21#坝段为0.6675,其余均在0.9以上;测值回归标准差在0.185~0.832mm之间,绝大部分在0.6mm 以下,除21#坝段外,其余坝段测值回归效果较好,说明该项目的测量精度也较高。

(1)全部测点均选入了水位因子,表现出随水位升高位移量增大的变化规律,且

从水位分量变幅所占比重可以看出,水位变化是高程975.00m廊道产生水平位移的主要影响因素,和坝顶视准线所反映的规律一致。

(2)全部测点均选入了温度分量,其变幅略小于水位分量,说明温度是次于水位的又一主要影响因素。从分量统计表中不难看出,由于坝体结构形式的不同,温度分量呈明显的分段,这主要是因为温度对坝体变形的影响主要取决于坝体结构形式。

(3)大部分测点选入时效因子,测点表现出了位移的趋势性变化。变幅在0.71~6.92mm之间,时效位移大致呈从边坡坝段向河床坝段增加的趋势。

2.4.3坝顶垂直位移

坝顶垂直位移23个测点全部观测数据统计回归方程见表2-13,回归结果分量统计见表2-19,回归复相关系数为0.8849~0.9616,绝大部分均在0.9以上,测值回归标准差在0.492~1.208mm之间。

(1)小部分测点入选了水位因子,且水位分量所占的比重相对温度分量要小,说明水位不是影响坝顶垂直位移最主要的因素,符合坝顶垂直位移变化规律。同时,因大坝完建时间尚短,坝体内温度、时效变形等尚未完全稳定,水库运行也无规律,这些都可能导致水位分量在坝顶垂直位移中反映不很明显。

(2)所有沿点均选入了温度因子,最大温度变形值(下沉)出现在2、3月份,最小值出现在8~10月份,温度分量变幅为3.03~8.77mm。在坝顶垂直位移中,气温是最主要的影响因素,气温高时,坝顶垂直位移减小,气温低时坝顶垂直位移增加符合一般规律。

(3)半数测点入选了时效因子,绝大部分测点表现出以对数或指数形式趋于稳定的下沉变化,变幅在0.55~2.31mm之间。

2.4.4坝基垂直位移

坝基22个测点垂直位移全部观测数据的回归结果及分量统计见表2-14和表2-20,回归复相关系数为0.6210~0.9138,大部分在0.7左右,标准差在0.580~1.145mm之间,说明坝基垂直位移观测数据精度较差,回归方程的效果也较差。

(1)仅半数测点入选了水位因子,大部分测点回归主程中都没引入水位分量,主要是因为坝基垂直位移的影响因素较多,水位荷载不是主要影响因素,同时,测值误差较大,也导致水位分量变化影响不明显。

(2)绝大部分测点入选了温度因子,但温度分量的变幅不大,大部分温度分量变幅均小于1mm。这是因为基础廊道内测点的温度变化是由测点所在平面。以上部位的坝

体及基础年周期温度变化引起的,与上部结构相对,该部位坝体及基础的平均温度变化要小得多。

(3)所有测点均入选了时效分量,全部测点表现出了下沉的趋势性变化,变幅在1.01~5.29mm之间。从表2-20可以看到,时效分量呈河床坝段大,边坡期段小的分布规律,这种分布形式与结构因素(自重、水荷载等)相对应,即自重大者其时效分量也大,表明时效变化主要是坝基受荷载作用后的徐变变化。

2.4.5坝体挠度

坝体垂线X向测值回归方程见表2-15,X向位移回归结果分量统计见表2-21;坝体垂线Y向测值回归方程见表2-16,Y向位移回归结果分量统计见表2-22。

垂线X向测值回归复相关系数为0.5479~0.9576,测值回归标准差在0.599~2.568mm之间;垂线Y向测值回归复相关系数为0.6307~0.9280,测值回归标准差在0.278~3.436之间。在垂线X、Y向所有测值的回归复相关系数中,绝大部分均小于0.8,最低可达0.5479,说明回归方程的效果很差,而所有测点的回归标准差中,绝大部分均大于1mm,且有不少大于2mm,说明测值精度较低,这和测值过程分析结果是一致的。

2.5位移混合模型分析

2.5.1位移混合模型的建立

鉴于统计模型属于经验模型,它存在下列问题:

(1)当观测资料不包括荷载(如水位、温度等)发生的极值或观测资料系列较短时,那么由这些资料建立的数字模型将不能用于安全监控和测值预报。

(2)这些模型主要依靠数学处理,没有较好地联系大坝和地基的结构性态。因此,对大坝的工作性态不能从力学概念上加以本质解释。

(3)由于随机因素的影响,这些模型的外延预报时间较短,精度较低。

针对上述问题,对水压分量采用有限元计算结果拟合出的位移与水位关系方程,其它分量仍用统计模式,然后与实测值进行优化拟合,得到位移混合模型。有限元计算见2.3节。

与h(其中,h=h′/100,h′为测时根据7#坝段有限元计算结果建立的坝段位移δ

1

当天的平均水位)关系式如下:

坝顶水平位移与水位关系式:

δ1=-1364.51120h4+52792.13846h3-765825.21534h2

+4936828.84757h-11932782.87770

高程975.00m观测廊道水平位移与水位关系式:

δ1=-210.13332h4+8184.92416h3-119469.42655h2

+774521.63617h-1881843.23694

与h(其中,h=h′/100,h′为测时当天根据14#坝段有限元计算结果建立的位移δ

1

的平均水位)关系式如下:

坝顶水平位移与水位关系式:

δ1=-58.30534h4+2332.56281h3-34859.64086h2

+230765.23876h-571168.85094

高程975.00m观测廊道水平位移与水位关系式:

δ1=-91.28586h4+3580.12035h3-52560.95248h2

+342419.66755h-835338.26535

将上述各式作为一个因子与温度、时效因子一起对各项目位移测值进行回归分析,可以得到位移的混合模型。其中,1#~11#、20#~22#坝段用7#坝段有限元计算成果,12#~19#坝段用14#坝段有限元计算成果。分析时段以及温度、时效因子同统计模型,各项目测点的混合模型见表2-23~表2-24。

2.5.2位移混合模型分析

(1)视准线位移混合模型

视准线位移混合模型见表2-23。各测点混合模型复相关系数在0.7410~0.9615之间,大部分在0.8左右,回归标准差在0.368~2.669mm之间。可以看到,视准线位移混合模型的拟合情况较统计模型稍差,在建立位移混合模型时,水位~位移关系式在所有回归因子中显著程度不高,往往要强行才能将其留在方程中。这主要是因为:①拦河坝尚处于蓄水运行的初期阶段,各种其它因素对坝顶水平位移影响较大,而库水位对坝顶水平位移的影响尚反映不出理论上的规律,这从统计模型中各测点引入的水位因子各不相同就有所反映;②分析计算所采用的坝顶水平位移仅为相对于1#、22#坝段的绝对水平位移而使水位对坝顶水平位移的部分影响规律被忽略。

(2)高程975.00mm观测廊道引张线位移混合模型

引张线位移混合模型见表2-24。各测点混合模型复相关系数在0.6550~0.9777之间,除4#、10#、17#、21#坝段4个测点外,其余测点都在0.9以上,回归标准差在0.246~1.413mm之间。与统计模型相比,方程的相关程度和拟合程度基本相当,说明引张线实测水平位移和三维有限元计算结果比较吻合。同时,引张线混合模型较之视准线相关程

度及拟合程度均有明显提高,但同视准线一样,混合模型也存在水位~位移关系式在所有回归因子中显著程度不高的情况,要强行才能将其留在方程中。

2.6大坝变形观测资料分析综述

通过上述对大坝变形观测资料的分析,可以得到大坝变形的以下规律:

2.6.1 大坝变形观测项目中,引张线、坝顶垂直位移观测结果精密较高,反映出大坝变形的规律性较好,视准线次之,其观测资料整理结果基本可以反映大坝的水平相对变位和坝顶垂直变位情况。

2.6.2 坝顶水平位移主要受库水位和气温影响,其中气温影响略小于水位影响。本次资料分析坝顶最大水平位移(相对于1#、22#坝段)为1

3.90mm。

2.6.3 从短期内压水位经历大幅度降低~升高过程时引张线的几次测值看,坝体水平位移处于弹性变形状态。

2.6.4 坝顶垂直位移主要受气温影响,库水位及时效对坝顶垂直位移影响不大。本次资料分析坝顶最大垂直位移为12.02mm。

2.6.5 坝体正倒垂线观测虽然取得了部分观测资料,但由于观测成果的离散性太大,缺测次数较多,不能反映坝体的实际变位情况。另外,由于坝体左、右岸正倒垂线系统观测条件的限制,也不能对坝体绝对水平位移进行换算。为了解大坝的绝对变位变情况,对已完成的大坝外部变形观测资料进行了初步分析,得出几次观测的坝顶部分测点绝对变位(相对于初始值)见表2-7。从该结果可以看出,坝体整体变形不大,最大仅为11.39mm。

鉴于以上原因,请工程建设单位尽快对大坝外部变形控制网的观测成果进行分析。

2.6.6 坝体位移混合模型精度较统计模型稍差,这主要是因为工程投入运行时间短,影响因素较多,同时,部分观测项目测值不稳定也是一个原因,就混合模型整体情况看,基本揭示了大坝变形的影响因素,即水荷载不是坝体变位唯一的主要影响因素。

坝顶各控制点的Y向位移值表

大坝安全监测的内涵及扩展参考文本

大坝安全监测的内涵及扩 展参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大坝安全监测的内涵及扩展参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 众所周知,大坝是一种特殊建筑物,其特殊性主要表 现在如下3个方面:①投资及效益的巨大和失事后造成灾 难的严重性;②结构、边界条件及运行环境的复杂性;③ 设计、施工、运行维护的经验性、不确定性和涉及内容的 广泛性。以上特殊性说明了要准确了解大坝工作性态,只 能通过大坝安全监测来实现,同时也说明了大坝安全监测 的重要性。事实上,大坝安全监测已受到人们的广泛重 视,我国已先后颁布了差阻式仪器标准及监测仪器系列型 谱、《水电站大坝安全检查实施细则》、《混凝大坝安全 监测技术规范》、《水库大坝安全管理条例》、《土石坝 安全监测技术规范》等,同时,国际大坝会议也多次讨论 过大坝安全问题[1]。

大坝安全监测是人们了解大坝运行性态和安全状况的有效手段。随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。为此,笔者从分析影响大坝安全的因素入手,对大坝安全监测的若干问题进行探讨。 1 影响大坝安全的因素 影响大坝安全的因素很多,据国际大坝会议“关于水坝和水库恶化”小组委员会记录的1100座大坝失事实例,从1950年至1975年大坝失事的概率和成因分析中得出大坝失事的频率和成因分别为:30%是由于设计洪水位偏低和泄洪设备失灵引起洪水漫顶而失事;27%是由于地质条件复杂,基础失稳和意外结构事故;20%是由于地下渗漏引起扬压力过高、渗流量增大、渗透坡降过大引起;11%是由于大坝老化、建筑材料变质(开裂、侵蚀和风化)以及施

水库大坝安全管理(最新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 水库大坝安全管理(最新版)

水库大坝安全管理(最新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 在山谷、河道或低洼地区用挡水或泄水等水工建筑物形成的人工水域称为水库,具有调节径流、集中落差和调整上游回水区内水面比降的租用,可用于防洪、城镇供水、灌溉、水利发电、提供或改善航运条件、发展养殖、旅游和改善环境等,对社会经济发展有中重要作用。大坝是水库最常用的挡水建筑物之一,在抵御洪涝、旱灾中发挥着不可替代的作用的。 但是水库承受的水压力和渗透压力数值、幅度不断变化,且长期反复作用,在渗流、溶蚀、冲刷、冻融、风化等有害因素的不断作用下,其材料不断地被损坏。大坝一旦失事,将给下游人民的生命财产带来毁灭性的灾害,因此水库大坝的管理运行不容忽视。 一、水库大坝注册登记 为了全面掌握水库大坝的安全状况,加强对水库大坝的安全管理和监督,水利部发布了《水库大坝安全管理条例》(国务院令第77号)(2018年修订)和《水库大坝注册登记办法》(水政资〔1997〕538

八大危险作业风险分析报告

1.动火作业风险分析 序号风险分析安全措施 1 易燃易爆有害物质①将动火设备、管道内的物料清洗、置换,经分析 合格。 ②储罐动火,清除易燃物,罐内盛满清水或惰性气 体保护。 ③设备内通(氮气、水蒸气)保护。 ④塔内动火,将石棉布浸湿,铺在相邻两层塔盘上 进行隔离。 ⑤进入受限空间动火,必须办理《受限空间作业证》 2 火星窜入其它设备 或易燃物侵入动火 设备切断与动火设备相连通的设备管道并加盲板___块隔断,挂牌,并办理《抽堵盲板作业证》。 3 动火点周围有易燃 物①清除动火点周围易燃物,动火附近的下水井、地漏、地沟、电缆沟等清除易燃后予封闭。 ②电缆沟动火,清除沟内易燃气体、液体,必要时将沟两端隔绝。 4 泄漏电流(感应电) 危害电焊回路线应搭接在焊件上,不得与其它设备搭接,禁止穿越下水道(井)。 5 火星飞溅①高处动火办理《高处作业证》,并采取措施, 防止火花飞溅。 ②注意火星飞溅方向,用水冲淋火星落点。 6 气瓶间距不足或放 置不当①氧气瓶、溶解乙炔气瓶间距不小于5m,二者与动火地点之间均不小于10m。 ②气瓶不准在烈日下曝晒,溶解乙炔气瓶禁止卧放。 7 电、气焊工具有缺陷动火作业前,应检查电、气焊工具,保证安全可靠, 不准带病使用。

8 作业过程中,易燃物 外泄动火过程中,遇有跑料、串料和易燃气体,应立即停止动火。 9 通风不良①室内动火,应将门窗打开,周围设备应遮盖,密 封下水漏斗,清除油污,附近不得有用溶剂等易燃 物质的清洗作业。 ②采用局部强制通风; 10 未定时监测①取样与动火间隔不得超过30min,如超过此间隔 或动火作业中断时间超过30min,必须重新取样分 析。 ②采样点应有代表性,特殊动火的分析样品应 保留至动火结束。 ③动火过程中,中断动火时,现场不得留有余火, 重新动火前应认真检查现场条件是否有变化,如有 变化,不得动火。 11 监护不当①监火人应熟悉现场环境和检查确认安全措施落 实到位,具备相关安全知识和应急技能,与岗位保 持联系,随时掌握工况变化,并坚守现场。 ②监火人随时扑灭飞溅的火花,发现异常立即通知 动火人停止作业,联系有关人员采取措施。 12 应急设施不足或措 施不当①动火现场备有灭火工具(如蒸汽管、水管、灭火器、砂子、铁铣等)。 ②固定泡沫灭火系统进行预启动状态。 13 涉及危险作业组合, 未落实相应安全措 施若涉及下釜、高处、抽堵盲板、管道设备检修作业等危险作业时,应同时办理相关作业许可证。 14 施工条件发生重大 变化若施工条件发生重大变化,应重新办理《*级动火作业证》。 2.进入受限空间作业风险分析 序号风险分析安全措施 1 隔绝不可靠①与该设备连接的物料、蒸汽、氮气管线使用 盲板隔断,并办理《抽堵盲板作业证》。

水电站大坝运行安全监督管理规定

水电站大坝运行安全监督管理规定 第一章总则 第一条为了加强水电站大坝运行安全监督管理,保障人民生命财产安全,促进经济社会持续健康安全发展,根据《中华人民共和国安全生产法》、《水库大坝安全管理条例》、《电力监管条例》、《生产安全事故报告和调查处理条例》、《电力安全事故应急处置和调查处理条例》等法律法规,制定本规定。 第二条水电站大坝运行安全管理应当坚持安全第一、预防为主、综合治理的方针。 第三条本规定适用于以发电为主、总装机容量5万千瓦及以上的大、中型水电站大坝(以下简称大坝)。 本规定所称大坝,是指包括横跨河床和水库周围垭口的所有永久性挡水建筑物、泄洪建筑物、输水和过船建筑物的挡水结构以及这些建筑物与结构的地基、近坝库岸、边坡和附属设施。 第四条电力企业是大坝运行安全的责任主体,应当遵守国家有关法律法规和标准规范,建立健全大坝运行安全组织体系和应急工作机制,加强大坝运行全过程安全管理,确保大坝运行安全。 第五条国家能源局负责大坝运行安全综合监督管理。 国家能源局派出机构(以下简称派出机构)具体负责本辖区大坝运行安全监督管理。 国家能源局大坝安全监察中心(以下简称大坝中心)负责大坝运行安全技术监督管理服务,为国家能源局及其派出机构开展大坝运行安全监督管理提供技术支持。 第二章运行管理 第六条电力企业应当保证大坝安全监测系统、泄洪消能和防护设施、应急电源等安全设施与大坝主体工程同时设计、同时施工、同时投入运行。 大坝蓄水验收和枢纽工程专项验收前应当分别经过蓄水安全鉴定和竣工安全鉴定。 第七条电力企业应当加强大坝安全检查、运行维护与除险加固等工作,保证大坝主体结构完好,大坝安全设施运行可靠。 第八条电力企业应当加强大坝安全监测与信息化建设工作,及时整理分析监测成果,监控大坝运行安全状态,并且按照要求向大坝中心报送大坝运行安全信息。对坝高100米以上的大坝、库容1亿立方米以上的大坝和病险坝,电力企业应当建立大坝安全在线监控系统,并且接受大坝中心的监督。 第九条电力企业应当对大坝进行日常巡视检查。 每年汛期及汛前、汛后,枯水期、冰冻期,遭遇大洪水、发生有感地震或者极端气象等特殊情况,电力企业应当对大坝进行详细检查。 电力企业应当及时处理发现的大坝缺陷和隐患。 第十条电力企业应当每年年底开展大坝安全年度详查,总结本年度大坝安全管理工作,整编分析大坝监测资料,分析水库、水工建筑物、闸门及启闭机、监测系统和应急电源的运行情况,提出大坝安全年度详查报告并且报送大坝中

大坝安全监测系统解决方案

大坝安全监测系统解决方案(此文档为word格式,下载后您可任意修改编辑!)

目录 第1章概论 (2) 1.1系统概览 (2) 1.2历史回望 (2) 1.3现状分析 (3) 1.4目标阐述 (3) 第2章总体设计 (4) 2.1设计原则及依据 (4) 2.2系统体系结构 (5) 2.3信息流程 (8) 2.4系统组成 (9) 2.5系统功能 (10) 第3章信息采集系统 (11) 3.1需求分析 (11) 3.2技术解决方案 (12) 第4章通信网络系统 (17) 4.1测控单元和监测中心之间的通信 (17) 4.2监测中心和监测分中心之间的网络.......................................................... 错误!未定义书签。第5章软件系统. (22) 5.1建设原则 (22) 5.2技术解决方案 (24)

第1章概论 1.1系统概览 大坝作为特殊的建筑,其安全性质与房屋等建筑物完全不同,大坝安全出现问题,将会引发大坝下游一定范围的人员和财产、环境损失。在加强水利建设的大环境下,提高水工建筑物的安全,特别是提高大坝安全监测水平,保证水库大坝的安全,是关系到国家利益和社会稳定的头等大事。大坝安全监测系统主要由观测传感器、遥测数据采集模块、工业控制网络和自动监测管理软件系统组成,通过计算机的工作,能够实现大坝观测数据自动采集、处理和分析计算,对大坝的性态正常与否作出初步判断和分级报警为监测对象提供早期安全预警报告的自动化系统。建立大坝安全自动监测系统,可以缩短数据采集周期,提高大坝观测的工作效率,减轻劳动强度;并能充分利用水库调蓄能力,使其在防洪和供水两方面发挥最大的效益,同时可提高水库管理水平,及时发现大坝隐患,为水库的安全运行提供有力的保障。 1.2历史回望 大坝安全监测系统在西方发达国家已有30多年的历史。如法国要求对高于20 m的大坝和库容超过1500万m3的水库,均需设置报警系统,并提出垮坝后库水的淹没范围、冲击波到达时间、淹没持续时间和相应的居民疏散计划等。而葡萄牙大坝安全条例(1990)也要求大坝业主提交有关溃坝所引起洪水波传播的研究报告,编制下游预警系统、应急计划和疏散计划。美国的《联邦大坝安全导则》和加拿大的《大坝安全导则》都强调要求采取险情预计、报警系统、撤退计划等应急措施,以便万一发生不测时,将损失减少到最小程度。1976年美国92.96 m高的堤堂坝(Teton)失事前,大坝管理机构根据大坝安全监测系统监测到的事故的发展状况及时通过下游的行政司法当局向可能被淹的群众发出警报,有组织地进行人员疏散,尽管大坝失事后堤堂河和斯内克河下游130km,约780 km2的地区遭洪水肆虐,造成25000人无家可归、损失牲畜约2万头的巨大物质损失,但人员死亡只有11人,初步体现了大坝安全监测系统的重要意义。

水库大坝安全管理措施

水库大坝安全管理措施 为加强水库大坝安全管理,保障人民生命财产和康巴什新区建设的安全,根据《中华人民共和国水法》,制定本管理措施。 本制度适用于乌兰木伦水库和考考什那水库管理。 1、乌兰木伦水库和考考什那水库大坝及其设施受鄂尔多斯市汇通水务有限责任公司保护,任何单位和个人不得侵占、毁坏。 2、禁止在大坝管理和保护范围内进行爆破、打井、采石、采矿、挖沙、取土、修坟等危害大坝安全的活动。 3、非大坝管理人员不得操作大坝的泄洪闸门、输水闸门以及其他设施,大坝管理人员操作时应当遵守有关的规章制度。禁止任何单位和个人干扰大坝的正常管理工作。 4、禁止在大坝的集水区域内乱伐林木、陡坡开荒等导致水库淤积的活动。禁止在库区内围垦和进行采石、取土等危及山体的活动。 5、大坝坝顶确需兼做公路的,须经科学论证和大坝主管部门批准,并采取相应的安全维护措施。 6、禁止在坝体修建码头、渠道、堆放杂物、晾晒粮草。在大坝管理和保护范围内修建码头、鱼塘的,须经大坝主管部门批准,并与坝脚和泄水、输水建筑物保持一定距离,不得影响大坝安全、工程管理和抢险工作。

7、大坝安全管理由经营管理部承担。 8、大坝管理人员必须按照有关技术标准,对大坝进行安全监测和检查;对监测资料应当及时整理分析,随时掌握大坝运行状况。发现异常现象和不安全因素时,应当立即报告主管部门,及时采取措施。 9、维护人员必须保证大坝和闸门启闭设备完好。 10、水库大坝的运行,必须在保证安全的前提下,发挥综合效益。应当根据相应的计划和指令进行水库的调度运用。 11、应当定期进行安全检查、鉴定工作。汛前、汛后,以及暴风、暴雨、特大洪水或者强烈地震发生后,应对大坝的安全进行检查。 12、应当做好防汛抢险物料的准备和气象水情预报,并保证水情传递、报警以及防汛指挥机构之间联系通畅。 13、大坝出现险情征兆时,大坝管理人员应当立即报告大坝主管部门和上级防汛指挥机构,并采取抢救措施;有垮坝危险时,应当采取一切措施向预计的垮坝淹没地区发出警报,做好转移工作。

大坝安全监测仪器简介

大坝安全监测仪器简介 一、大坝安全监测仪器选型的基本原则 二、监测仪器的检验 三、监测仪器及监测系统的验收 四、监测仪器分类 五、两种主要监测仪器的基本原理 六、主要监测仪器简介 七、国内外数据自动化采集设备

一、大坝安全监测仪器选型的基本原则 1、总原则 大坝安全监测系统的监测项目、测点布置及系统的功能、性能应满足《土石坝安全监测技术规范》(SL60-94)、《土石坝安全监测资料整编规程》(SL169-96)和《混凝土坝安全监测技术规范》(DL/T5178-2003)要求,如建立自动化监测系统,还应满足《大坝安全自动化监测系统设备基本技术条件》(SL268-2001)的要求。 2、监测任务、测量范围的界定及仪器技术性能分析 首先,应明确监测仪器的任务,是变形监测,渗流监测,压力应力监测还是环境量监测?一次还是二次? 其次,应根据工程实际情况,预测并确定仪器的量程、范围;根据仪器量程范围、工程对监测精度的要求以及相关规范规定,确定仪器精度等级。 第三,选择仪器型式。仪器型式的选择最重要的是仪器的可靠性,在可靠性的前提下,再考虑仪器的精确度或准确度。 第四,技术经济评价。对不同型式的仪器、不同厂家的同类型仪器,比较其采购、运输、室内检测/校准、现场检验、安装方式、可维护性及维护程序、施工期观测及数据处理、(如建立自动化监测系统)占用系统资源等,进行技术、经济评价,选择合适的性价比。 3、监测设施的布设 首先,划分监测项目。 其次,根据监测项目及监测目的,确定监测设施安装/埋设位置(包括平面坐标、高程及相应层位),仪器、设施、设备工程编号(唯一性),并以表、平面图、断面图等形式逐一标注。 4、监测设施的安装/埋设 根据坝的性质(混凝土坝/土石坝?在建坝/已建坝?混凝土坝『重力坝、拱坝、砌石坝』?土石坝『均质坝、心墙坝<宽心墙坝、窄心墙坝?>、斜墙坝、堆石面板坝、复合坝型』?)设计合适的安装方式及施工工艺。 5、监测仪器选型原则 ①监测仪器应采用可靠性好,并经过长期现场考验的仪器设备;大坝安全监测和管理自动化系统,推荐采用分布式自动化数据采集系统。 ②监测仪器应尽可能实现人工比测。

水库大坝安全管理与应急响应信息系统探究

水库大坝安全管理与应急响应信息系统探究 发表时间:2019-04-26T16:13:14.093Z 来源:《基层建设》2019年第5期作者:王彪 [导读] 摘要:当前,在我国的经济发展中,水利工程的建设对经济发展有着重要的作用,而在水利工程建设中,水库大坝是其中的重点。 河北省岗南水库管理局河北石家庄 050400 摘要:当前,在我国的经济发展中,水利工程的建设对经济发展有着重要的作用,而在水利工程建设中,水库大坝是其中的重点。在目前水库大坝的管理工作中,安全管理以及应急响应信息系统在实际的应用中已经发挥出较好的应用效果,可以利用自动化的检测以及建模等来对水库大坝安全情况进行评估,可以有效的对水库大坝的日常安全管理进行系统化分配,利用信息化技术来有效的对水库大坝安全情况进行管理,帮助水库大坝可以得到有效的安全管理。 关键词:水库大坝;安全管理;应急响应信息系统;信息化技术 1 水库大坝的安全管理与应急响应信息系统 水库大坝的安全管理一直都在水库大坝管理中占据非常重要的位置,安全管理是水库大坝可以顺利运行的关键。水库大坝的安全性长期以来都在我国的水库大坝管理中有着极高的重视程度,也是我国政府对水库大坝管理关注的重点。水库大坝的安全管理内容较为复杂,从水库大坝的工程质量以及结构评估,到运行管理评估以及渗流安全管理等方面均有兼顾,安全管理需要确保水库大坝在运行的过程中,不会出现自身的质量以及结构问题,也会对运行过程中的维护状态等进行合理的管理。 安全管理在水库大坝的管理中,可以对水库大坝的具体情况进行评估,确保水库大坝的整体质量以及结构均处于安全的情况下,保证水库大坝不会出现质量问题。而水库大坝的结构安全评价也可以确保水库大坝不会在静力条件下出现建筑结构问题,对水库大坝的结构变形等情况进行管理,保证水库大坝的安全性。水库大坝的运行管理在安全管理中也占据了重要的地位,运行管理主要对水库大坝的运行、维护等方面进行管理,确保水库大坝在运行的过程中,不会出现设备问题,设备的安全维护也可以顺利进行。水库大坝的安全管理在管理的过程中,是确保水库大坝可以顺利且安全运行的关键,也是保证水库大坝不会出现险情的主要因素。 应急响应信息系统属于一种基于空间信息技术和三维仿真技术等先进技术之上的信息管理系统。应急响应信息系统可以将水库大坝的具体构造进行建立模型,在进行安全管理的过程中,应用风险管理的分析方式,对水库大坝进行统一的安全管理。这种信息系统拥有着信息化、数字化以及智能化的优点,在进行安全管理以及应激处置的过程中,可以实现大范围共享。这有利于水库大坝在安全管理过程中进行决策,避免了以往决策过程中存在的问题,使水库大坝安全管理进行决策时可以更加科学以及高效。应急响应信息系统可以有效地确保水库大坝进行安全管理过程中拥有更好的科学性,利用数据以及信息分析技术以及系统来对应急处置问题进行紧急解决,利用科学化的决策方式来确保水库大坝的安全性。 在目前应急响应信息系统的发展过程中,我国内部只初步建立了部分信息管理系统。目前国内的信息管理系统大多都比较单一,仅为满足部分需求而进行开发,在实际应用的过程中拥有一定的缺陷。国内目前建立的水库大坝信息管理系统有南京水利科学研究院与南京大学共同建立的全国水库大坝信息管理系统,长江水利委员会相关部门建立的长江流域水库情况调查信息收集系统,国家电监会大坝安全监察中心开发的水库调度管理系统等。而在国外的应急响应信息系统发展中,大多数都已经将地理信息以及数据建模技术应用在流域规划、大坝监测以及控水预防等工作中,比如加拿大紧急事务管理局开发的洪水应急遥感信息系统(FESIT),澳大利亚国立大学开发的洪水损失评估系统(ANL-FLOOD),意大利与法国开发的大坝监测数据处理系统以及MIDAS系统,美国的田纳西流域管理局建立的全流域可视化信息系统。 但是总体而言,在目前的水库大坝安全管理应急响应信息系统中,仍然未存在一款成熟的、可以为水库大坝应急响应方面提供应急支持以及决策分析的指挥平台。单独的水库大坝应急响应信息系统的建立较为困难,在安全管理以及应急决策支持中都难以有效地进行。在目前水库大坝应急响应信息系统的总体结构设计中,需要考虑较多方面的内容,才能确保水库大坝在进行安全管理的过程中可以进行统一调度管理,利用信息交流来进行有序的防汛抗旱管理。应急响应信息系统在进行结构设计的过程中,首要建立完善的系统应用组织结构,利用组织结构的方式将水库大坝管理进行层级划分,使水库大坝可以在分级管理的过程中,层层架构,利用层层管理的防护机制进行信息的交流以及反馈,从而使高层可以迅速得到基层的水库大坝安全管理情况,依据水库大坝的具体情况以及信息,从数据模型框架中进行险情分析。这样的方式可以实现多层之间的数据和信息共享,确保险情事件上报以及指令下达可以联动成为一个完善的机制。这样的机制可以较好地确保水库大坝遇到安全管理问题时及时进行科学的决策,使信息以及数据的传递可以得到保证,利用一套完整的体系和联系机制来进行防汛抗旱工作管理。 在应急响应信息系统的系统工作模式构建过程中,需要建立起多种工作模式的系统。这样的应急响应信息系统可以在不同时期切换不同的工作模式来帮助水库大坝进行安全管理工作。应急响应信息系统的工作模式可以分为运行维护模式、应急预警模式、应急处置模式以及灾后恢复模式。这四种不同的模式均可以在不同的情况中进行应用,有效地帮助水库大坝进行安全管理工作。四种工作模式的切换可以迅速帮助管理人员了解到水库大坝的具体情况,在进行安全管理工作的过程中,可以较为有效地利用系统的不同模式进行应急事件的处理以及日常的安全管理工作。除此之外,在进行水库大坝的安全管理中,也需要对水库大坝的安全进行检测,确保水库大坝的建筑物质量以及结构质量在安全的范围内,在出现安全隐患的第一时间进行处理。安全管理与应急响应信息系统也可以建立起大坝运行管理系统,确保水库大坝在进行防洪调度、发电调度等工作时,可以更好的依据规程来进行调度管理工作。安全管理与应急响应信息系统汇总也包含风险评估与管理系统、信息发布以及流域安全管理系统,这些安全管理系统在水库大坝管理的过程中,可以较好地进行信息化与智能化管理,对水库大坝可能遇到的所有关键问题进行及时的处理,确保了调度决策的科学性以及可靠性。 安全管理与应急响应信息系统也需要对系统内容进行持续改进,对系统内的所有信息以及数据进行完善,确保水库大坝的地理数据、传感数据、3D数据、流域数据、模型数据、地图数据等多种数据内容进行完善,扩充信息系统的数据量。也需要对系统构架进行完善,使信息系统内部可以应用更多的技术来确保系统的方便性以及可维护性。对信息系统的功能也需要进行一定的扩展,使其可以更好地满足水库大坝的安全管理工作内容。 2 结语 在水库大坝的安全管理工作中,应用安全管理与应急响应信息系统来进行管理,可以有效地利用信息平台来进行高度集中的信息管理以及紧急事件决策。这样的方式可以有效地解决传统决策带来的部分影响,使水库大坝的安全管理与险情事件决策可以变得更加信息化、

水库大坝安全智能监测系统

水库大坝安全智能监测系统 1.建设目标 建立对大坝安全监测各项指标的评价标准,并在此基础上对大坝进行综合评价,回答大坝安全与否这一关键问题。其次,实现对各类监测数据自动采集和实时处理,根据监测数据和评价结果对大坝安全状态进行实时预警。将牵涉到大坝安全的各类数据通过构建统一的数据库进行存储,并通过统一的系统进行调用和管理。 基于此,针对水库砌石拱坝这一特定坝型,在大坝安全智能监测系统中,应用前沿分析技术和经典方法相结合对大坝安全进行综合诊断,通过实施先进的监测手段和设备,提升对大坝安全状态的感知能力,并将系统高度集成,采用独立编码开发,通过对最新算法进行编程,实现核心技术的领先目标,建立一套适合本工程的大坝安全监测预警和实时安全评估系统,争创全国领先水平。同时,通过监测设备标准化拟定、底层数据库规范和技术指标构建、预留开放式系统接口等措施,实现本项目的可推广性,为福建省推广应用该类系统提供引领示范。 2.建设任务 建设大坝安全监测系统监测设备 补充完善水库大坝坝前水温、坝体位移、大坝应变等监测设施,实现数据实时采集处理,并能进行实时分析,实时评价水库大坝。实现水库大坝安全监测信息化、智能化的要求。 建立大坝综合评价系统

现有大坝安全监测项缺乏对监测值的评价标准和综合判断。针对砌石拱坝这一特定坝型的大坝完全监测问题,综合拟定坝体监测项的监控指标,对大坝实时运行情况进行动态评估,评价内容包括位移测值、趋势判断、裂缝计开度变化等控制指标,通过对异常项数的统计给出整体大坝安全度评价标准,并可按时、按需输出系统监测报告,建立一套适合本工程的大坝安全综合评价系统。 大坝安全监测信息集成系统建设 基于分布式数据库、时序数据库、空间数据库、数据仓库等数据库领域与构建技术,建立监测数据、业务数据、基础数据、空间数据、标准库、模型库等大数据方案的主题数据库。实现大坝安全数据的存储、快速访问、计算与分析挖掘,最终在此基础数据库层面上,建立一套大坝安全管理规范框架结构和技术标准解决方案,实现多元数据融合应用,切实提高水库数据运行效率。 建设基础支撑系统 建设大坝数据中心库、视频监控与大坝巡检、大坝安全信息化三维模块展示系统以及配套的相应的软硬件配套设施,调度中心、机房及会商视频环境改造等。 水库防雷接地升级改造 对水库、启闭机房、调度大楼防雷接地进行升级改造,包括电源线路电涌保护、信号线路电涌保护、监控线路电涌保护、智能电涌(雷电)防护监测管理系统和等电位接地改造等。

大坝安全管理制度

大坝安全管理制度 1 总则 1.1为规范隆昌县石盘滩水电管理站大坝安全管理,保障人民生命和财产安全,根据国务院《水库大坝安全管理条例》、国家电力监管委员会《水电站大坝运行安全管理规定》等规定,结合石盘滩水电站实际,制定本制度。 1.2本制度仅适用于隆昌县石盘滩水电管理站。 本制度所称大坝,包括隆昌县石盘滩水电管理站所有永久性的挡水建筑物、泄洪建筑物、水库周围垭口的挡水建筑物以及这些建筑物的地基和附属设施。 1.3隆昌县石盘滩水电管理站大坝的建设和管理必须贯彻“安全第一,预防为主”的方针。 1.4隆昌县石盘滩水电管理站大坝的安全管理实行从勘测、设计、施工、运行、维护全过程管理。隆昌县石盘滩水电管理站大坝运行实行安全注册制度和大坝安全定期检查制度。 1.5 电站大坝的安全管理实行行政正职负责制,电站的行政正职全面负责大坝的安全管理工作,是大坝安全第一责任人。 1.6 隆昌县石盘滩水电管理站大坝的安全管理要充分发挥和利用水务系统内部的力量,积极借助水务系统以外的技术力量,共同做好大坝的安全管理工作。 2 安全管理职责 2.1隆昌县石盘滩水电管理站的安全管理职责 2.1.1贯彻执行国家、行业和上级单位的关于大坝安全管理的法律、法规和管理制度; 2.1.2编制水电站大坝安全管理工作年度计划和长远规划,报上级批准实施; 2.1.3按照批准的设计防洪标准和水库调度原则,编制年度水库调度方案和水库防洪调度方案,经审批后实施; 2.1.4编制水电站大坝安全管理的各项规程和管理制度,严格按规程要求进行日常运行、观测、巡查、维护、检修,确保大坝处于良好的工作状态; 2.1.5组织做好大坝日常检查、年度详查、定期检查和特种检查等大坝安全检查,并按规定申报注册; 2.1.6编制水电站大坝险情预测和应急处理预案等,制定年度演练计划,组织进行演练; 2.1.7根据上级批复的加固和改造工程(包括监测系统更新改造),组织实施水电站大坝的补强加固、更新改造和隐患治理,组织实施病坝、险坝的除险加固,确保加固和改造项目按时、按质、按量完成; 2.1.8组织分析异常现象和险情,并积极采取措施进行处理;做好水电站大坝事故抢险和救护工作; 2.1.9实施大坝安全监测工作,做好水电站大坝安全监测仪器的检查、率定、校验、鉴定工作,保证监测仪器能够可靠监测运行期的安全状况; 2.1.10负责对水电站大坝安全监测的资料整理、分析以及勘测、设计、施工、监理、运行等其他有关安全技术资料的收集、分析、整理和归档保存,建立健全大坝安全技术档案及相关数据库; 2.1.11组织协调做好大坝安全运行信息化系统建设和管理工作; 2.1.12负责做好大坝的安全保卫工作,禁止任何单位和个人干扰和破坏水电站大坝的正常安全管理工作; 2.1.13组织做好水电站大坝安全管理人员技术培训和工作考核; 2.1.14按要求上报有关报告(异常)、报表、材料。

操作风险监测分析报告--修订

操作风险监测分析报告 单位名称(公章)签发人: 主要内容: 一.基本情况 (一)操作风险定义 银行办理业务或内部管理出了差错,必须做出补偿或赔偿;法律文书有漏洞,被人钻了空子;内部人员监守自盗,外部人员欺诈得手;电子系统硬件软件发生故障,网络遭到黑客侵袭;通信、电力中断;地震、水灾、火灾、恐怖袭击;等等,所有这些,都会给商业银行带来损失。这一类的银行风险,被统称为操作风险。 (二)操作风险管理组织架构,权限和责任 组织架构:各银监局,各政策性银行、国有商业银行、股份制商业银行,邮政储蓄银行 权限:中国银行业监督管理委员会(以下简称银监会)依法对商业银行的操作风险管理实施监督检查,评价商业银行操作风险管理的有效性。 责任:商业银行董事会应将操作风险作为商业银行面对的一项主要风险,并承担监控操作风险管理有效性的最终责任。主要包括: (1)制定与本行战略目标相一致且适用于全行的操作风险管理战略和总体政策;

(2)通过审批及检查高级管理层有关操作风险的职责、权限及报告制度,确保全行的操作风险管理决策体系的有效性,并尽可能地确保将本行从事的各项业务面临的操作风险控制在可以承受的范围内; (3)定期审阅高级管理层提交的操作风险报告,充分了解本行操作风险管理的总体情况、高级管理层处理重大操作风险事件的有效性以及监控和评价日常操作风险管理的有效性; (4)确保高级管理层采取必要的措施有效地识别、评估、监测和控制/缓释操作风险; (5)确保本行操作风险管理体系接受内审部门的有效审查与监督; (6)制定适当的奖惩制度,在全行范围有效地推动操作风险管理体系地建设。 (三)操作风险管理政策,方法,和程序 根据董事会制定的操作风险管理战略及总体政策,负责制定、定期审查和监督执行操作风险管理的政策、程序和具体的操作规程,并定期向董事会提交操作风险总体情况的报告; (1)全面掌握本行操作风险管理的总体状况,特别是各项重大的操作风险事件或项目; (2)明确界定各部门的操作风险管理职责以及操作风险报告的路径、频率、内容,督促各部门切实履行操作风险管理职责,以确保操作风险管理体系的正常运行;

水库大坝安全管理条例

水库大坝安全管理条例 现发布《水库大坝安全管理条例》,自发布之日起施行。 第一章总则 第一条为加强水库大坝安全管理,保障人民生命财产和社会主义建设的安全,根据《中华人民共和国水法》,制定本条例。 第二条本条例适用于中华人民共和国境内坝高15米以上或者库容100万立方米以上的水库大坝(以下简称大坝)。大坝包括永久性档水建筑物以及与其配合运用的泄洪、输水和过船建筑物等。 坝高15米以下、10米以上或者库容100万立方米以下、10万立方米以上,对重要城镇、交通干线、重要军事设施、工矿区安全有潜在危险的大坝,其安全管理参照本条例执行。 第三条国务院水行政主管部门会同国务院有关主管部门对全国的大坝安全实施监督。县级以上地方人民政府水行政主管部门会同有关主管部门对本行政区域内的大坝安全实施监督。 各级水利、能源、建设、交通、农业等有关部门,是其所管辖的大坝的主管部门。 第四条各级人民政府及其大坝主管部门对其所管辖的大坝的安全实行行政领导负责制。 第五条大坝的建设和管理应当贯彻安全第一的方针。 第六条任何单位和个人都有保护大坝安全的义务。 第二章大坝建设 第七条兴建大坝必须符合由国务院水行政主管部门会同有关大坝主管部门制定的大坝安全技术标准。 第八条兴建大坝必须进行工程设计。大坝的工程设计必须由具有相应资格证书的单位承担。大坝的工程设计应当包括工程观测、通信、动力、照明、交通、消防等管理设施的设计。 第九条大坝施工必须由具有相应资格证书的单位承担。大坝施工单位必须按照施工承包合同规定的设计文件、图纸要求和有关技术标准进行施工,建设单位和设计单位应当派驻代表,对施工质量进行监督检查。质量不符合设计要求的,必须返工或者采取补救措施。

大坝安全监测

论述大坝安全监测分析与数值模拟在水工结 构中的应用及新进展 一、大坝安全监测分析 1.大坝监测的内容 大坝安全监测的范围应根据坝址、枢纽布置、坝高、库容、投资以及失事后果等确定,根据具体情况由坝体、坝基、坝肩,推广到库区及梯级水库大坝;监测的时间应从设计时开始至运行管理;监测的内容包括坝体结构、地质状况、辅助机电设备及消洪泄能建筑物等。 1.1大坝安全监测的分类 1.1.1 仪器监测 仪器监测是选择有代表性的部位或断面,按需要使用或安装、埋设仪器设备,对某些物理量进行系统的观测,取得反映建筑物性状变化的实测数据。仪器监测的项目主要有“变形监测”、“渗流监测”、“应力、应变及温度监测”和“环境量监测”。随着监测范围的扩展,诸如水力学监测、地震监测、动力监测等一些新兴监测项目不断涌现。 1.1.2 巡视检查 监测技术人员通过目视或借助一些专用设备(如在某些部位安装摄像头,辅设人工巡视专用栈道等)对建筑物现场包括坝体、坡脚、坝肩、廊道、排水设施、机电设备、船闸、航道、高陡边坡等部位进行查看、比较、分析,进而发现建筑物在施工、挡水、运行中可能危及工程安全的异常现象。它弥补了监测仪器仅埋设在指定部位的不足。而且能直观

地发现某些监测仪器不易监测到的非正常现象.提供有关建筑物安全等一些重要信息,是监测系统的组成部分。巡视检查和仪器监测是不可分割的。巡视检查也要尽可能利用当今的先进仪器和技术对大坝特别是隐患进行检查,以早发现早处理。如土石坝的洞穴、暗缝、软弱夹层等很难通过简单的人工检查发现,因此,必须借用高密度电阻率法、中间梯度法、瞬态面波法等进行检查.从而完成对其定位及严重程度的判定。因此,在大坝监测中多数采用两种监测手段结合起来的方法。 1.2大坝安全监测的目的和意义 1.2.1掌握大坝的工作状态。 指导工程的运行管理通过大坝的安全监测及时获取大坝安全的第 一手资料.掌握大坝工作状态,实现对大坝的在线、实时安全监控。在发生异常现象时,分析产生的原因和危险程度,预测大坝的安全趋势。及时采取措施,把事故消灭在萌芽状态中,保证工程安全。 1.2.2 验证坝工设计理论和选用参数的合理性 到目前为止。因实际情况复杂多变,水工建筑的设计尚不能完全与实际情况相吻合,作用在建筑物上的荷载除水压力和自重力,都难以精确计算。因此在水工设计中不得不采用一些经验系数和简化公式进行计算。通过大坝安全监测认识监测物量变化规律,检验坝工基本理论的正确性、设计方法和计算参数的合理性。验证施工措施、材料性能、工程质量的效果。

大坝安全监测的意义和方法

大坝安全监测的意义与方法 【论文提要】:从分析影响大坝安全的各种因素入手,拓宽了大坝安全监测的概念,即大坝安全监测应在时空上将影响大坝安全的因素考虑在内。提出:(1)大坝安全监测要有明显的针对性;(2)重视对溃坝的分析;(3)大坝安全监测应和设计及大坝安全定检结合起来,以方便资料分析和相互校核;(4)加强对大坝安全监测(包括监测系统),特别是自动化系统的效益评估,要求大坝安全监测系统成为水库运行调度的依据,真正为提高水库效益服务;(5)通过网络技术,实现大坝安全监测的网络化,以方便经验交流,提高监测技术。 【关键字】大坝安全检测意义方法 大坝是一种特殊建筑物,其特殊性主要表现在如下3个方面:①投资及效益的巨大和失事后造成灾难的严重性;②结构、边界条件及运行环境的复杂性;③设计、施工、运行维护的经验性、不确定性和涉及内容的广泛性。以上特殊性说明了要准确了解大坝工作性态,只能

通过大坝安全监测来实现,同时也说明了大坝安全监测的重要性。事实上,大坝安全监测已受到人们的广泛重视,我国已先后颁布了《水电站大坝安全检查实施细则》、《混凝大坝安全监测技术规范》、《水库大坝安全管理条例》、《土石坝安全监测技术规范》等。同时,国际大坝会议也多次讨论过大坝安全问题。 大坝安全监测是人们了解大坝运行性态和安全状况的有效手段。随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。为此,笔者从分析影响大坝安全的因素入手,对大坝安全监测的若干问题进行探讨。 一、影响大坝安全的因素 影响大坝安全的因素很多,由于设计洪水位偏低和泄洪设备失灵引起洪水漫顶而失事;由于地质条件复杂,基础失稳和意外结构事故;由于地下渗漏引起扬压力过高、渗流量增大、渗透坡降过大引起;由于大坝老化、建筑材料变质(开裂、侵蚀和风化)以及施工质量等原因。 大坝失事的原因很多、涉及范围也很广,但大致可以分成3类。第一类是由设计、施工和自然因素引起,

大坝安全评价

大坝安全评价方法综述 摘要:国内外水库安全评价技术与方法主要分为传统的定性准则法和综合评价分析法,综合评价分析法有综合评分法,层次分析法,风险评估分析法和模糊综合评价法等。工程安全等级分为3 级: A 级为安全可靠,能按设计条件安全运行; B 级为基本安全,但有缺陷,可在加强监控的条件下运行; C 级为不安全,存在病险隐患。最后综合各专项安全性级别对大坝分类,专项安全性级别均达到A 级的为一类坝; 专项安全性级别达到A级或B 级的为二类坝; 专项安全性级别有一项以上达到C 级的为三类坝。 关键词:安全评价; 风险分析; 病险水库 前言 我国现有8.7 万余座水库,大多建于20 世纪50~70年代,限于当时的经济社会条件制约,普遍存在防洪标准低、工程质量差等缺陷,加上长期维修养护不够,其中约40%为病险水库。病险水库不仅不能正常发挥效益,而且存在很高的溃坝风险,严重威胁下游公众安全与经济社会的可持续发展,因此对病险水库定期开展水库安全评价工作至关重要。正确的大坝安全评价是充分发挥工程效益、降低工程风险和提高工程除险加固措施针对性的必然要求。 1模糊综合分析法 模糊数学将数学引入具有模糊现象和模糊概念的各个知识领域中,其关键在于寻求适当的数学语言来描述事物的模糊性。基于模糊数学方法的综合评价通过构建评价对象指标集与评价集之间的函数关系,计算各评价指标所属隶属度,建立模糊矩阵,确定各评价指标权重,最后对模糊矩阵与权重进行模糊运算并归一化处理,得到综合评价结果。

1.1 确定目标集和评价集 大坝模糊综合分析的目标集采用《水库大坝安全评价导则》的7 个单项,评价集一般采用五级法,其等级用符号表示为: V 1,V 2,V 3,V 4,V 5,依次代表恶 性异常、重度异常、轻度异常、基本正常、正常。各项因素的评价语为: ( V 1,V 2,V 3,V 4,V 5) = ( v 1,v 2,v 3,v 4,v 5) 。其中: 0 < v i < l 表示对上述等级的隶属。大坝的因素层指标可以分为定量指标和定性指标两类,对于定量指标采用“升半梯形”隶属函数确定指标的隶属度。[1] 1.2 综合评价 根据权向量W 和模糊评价值矩阵R ,采用模糊综合评价的基本公式为: B = W·R 式中,运算符“·”为模糊数学中的模糊算子,当W 表示权向量时,上式代表普通矩阵乘积运算[2]。计算时,从最底层( 因素层) 开始,逐层向上综合,最终得到最顶层的目标集向量。如果目标集不满足归一化条件,需进行归一化处理。最后可根据总体评价值,按最大隶属度原则确定大坝安全的总体结论。 2风险评分法 风险分析既需要考虑水文、地质、材料、荷载的时空变异性,同时也要考虑到其他非传统因素,如人为差错、机械故障、上游水库失事等随机事件可能给大坝安全造成的威胁。美国垦务局( USBR) 推荐使用现场评分( site rating)法来衡量水库大坝的风险,它是在美陆军工程师团Hagen 的启发下形成,按下式计算: ()j i i SR SR =∑ 式中,()i SR 为第i 因素的评分值。[3] 所考虑的风险可分两类: ①潜在险情,包括库容、水头、隐患、洪水和地震等因素。将各因素构成的险情分成低、中、高、极高4 级,各级从低至高相应赋予风险值。工程的SR 值越高,则表明该工程越危险。②大坝病险,包括工程龄期、建筑质量、渗流态势和结构安全等因素; USBR 把风险分析和评价视为改进安全

水库大坝安全管理条例

水库大坝安全管理条例 为了加强水库大坝安全管理,保障人民生命财产和社会主义建设的安全,根据《中华人民共和国水法》,我国于1991年颁布实施了《水库大坝安全管理条例》。 中文名水库大坝安全管理条例发布时间一九九一年三月二十二 颁布时间一九九一年三月二十二 条例介绍 为了加强水库大坝安全管理,保障人民生命财产和社会主义建设的安全,根据《中华人民共和国水法》,我国于1991年颁布实施了《水库大坝安全管理条例》。《水库大坝安全管理条例》共计六章三十四条,包括总则、大坝建设、大坝管理、险坝处理、罚则以及附则。条例限定了大坝安全管理的范围,明确了大坝安全的主管部门及其责任和权限,对大坝的建设、注册、运行、维护等行为进行了指导和规范,建立并完善了水库大坝安全管理体系的规定,构成了对大坝安全的有效法律保障,对依法规范我国的大坝建设管理、保障工程安全起到了积极的作用,有力地促进了我国大坝安全管理水平的提升。 [1] 1.国务院令 (1991年3月22日中华人民共和国国务院令第78号发布。2010年12月29日国务院第138次常务会议修改,2011年1月8日中华人民共和国国务院令第588号公布,自公布之日起施行)。 2.修订信息 (1991年3月22日中华人民共和国国务院令第77号发布,根据2011年1月8日《国务院关于废止和修改部分行政法规的决定》修订) [2] 第一章总则 第一条为加强水库大坝安全管理,保障人民生命财产和社会主义建设的安全,根据《中华人民共和国水法》,制定本条例。 第二条本条例适用于中华人民共和国境内坝高15米以上或者库容100万立方米以上的水库大坝(以下简称大坝)。大坝包括永久性挡水建筑物以及与其配合运用的泄洪、输水和过船建筑物等。 坝高15米以下、10米以上或者库容100万立方米以下、10万立方米以上,对重要城镇、交通干线、重要军事设施、工矿区安全有潜在危险的大坝,其安全管理参照本条例执行。 第三条国务院水行政主管部门会同国务院有关主管部门对全国的大坝安全实施监督。县级以上地方人民政府水行政主管部门会同有关主管部门对本行政区域内的大坝安全实施监督。 各级水利、能源、建设、交通、农业等有关部门,是其所管辖的大坝的主管部门。

相关主题
文本预览
相关文档 最新文档