当前位置:文档之家› 第7章_图像重建(2)

第7章_图像重建(2)

数字图像处理学第7章图像重建

(第二讲)

7.7 重建图像的显示

?图像重建的目的是对目标进行测量和观察,因此,重建图像中大量信息的直观显示是图像重建的任务之一。人只能观察某些物体的表面特性。早期,常用的三维实体显示装置是用时间序列描述第三维信息,即用二维显示方法显示三维附加信息。采用这种方法的主要问题是单个切片的总信息不能在一幅图像中显示,而是需要一个图像的序列。这种显示方法的直观性是很差的。

7.7.1 重建图像的显示

?如果一幅图像是的矩阵,每一个像素包含种可能的灰度,图像的总比特数为:

=

T2

M

N

要求图像显示的数目为:

T

=

L2

?如果,,则,。这样一来,每幅图像像素包含的最大信息为:

160=N 10=M 327680=T 10010?L M

Log H M ==22所以,具有1024级灰度的图像

每像素可包含10比特的信息量。

?由于像素之间的相关性,实际的信息量将比这一最大信息量小得多。我们可以用计算每一像素的水平直方图的方法估计在一幅图像中的一阶熵,即:

i

i i P P H M

221log ∑=-=

?此外,我们还要考虑到分辨率N和每像素比特数之间并不是线性关系,然而,某些心理视觉资料表明对于相同的图像质量,M与N之间的关系必须加以修正。同时,在重建图像的显示方法中必须考虑人的视觉系统对灰度范围和精确度的限制。

?尽管定量描述有些困难,但实验表明,在最好的观察条件下,人类仅能分辨几十种灰度、几千种不同的颜色和几秒的弧度,而大多数情况下视觉条件都难于达到最佳条件,因此,人眼能分辨的灰度级和颜色都是有限的。

7.7.2 单色显示

?实际应用中阴极射线管(CRT )及液晶等

平板显示器是典型的输出设备。在图像显示中的线性、量化、开窗口和增强(如平滑、锐化、高通滤波)处理是提高显示质量的必要技术。

?线性处理是首先考虑的预处理技术。给定一幅数字重建图像,数据和显示器灰度间具有非线性特性,为了获得数据与灰度之间的线性关系,必须考虑视觉条件和人的视觉系统。

?把人的视觉系统特性也考虑在内的话,数字图像与实际感觉的灰度也是非线性的。这就说明如果没有校正步骤在两种观察条件下都不可能得到最佳图像质量。

?在CRT的观察条件下,一给定点的发光强度与电压的关系可近似为:I

U

kN

U=

发光强度与图像数N成指数关系:

γ)

(kN

I=

如果图像用负幂数来表示,则图像可用表示'

N 1

'-=γN

N 于是,在发光强度和图像之间就可以得到一个线性关系:.)()'(1N k kN kN I γ

γγγ===-对于一个给定的CRT 的值很容易测得。

γ

7.7.3 重建对象的显示

?重建信息三维矩阵的显示本身就是一个复杂的问题。其中最基本的方法是显示密度信息和表面信息。在大多数应用中,由重建算法所得到的密度信息可以直接在收集了投影数据的几何薄片上显示。第三维信息可以用一组二维图像简单描述显示出来。

1.真实感显示

近年来,计算机图形学的发展极大的促进了图像三维重建技术的发展。图像三维重建技术与计算机图形学的结合使得重建的三维图像极具真实感。真实感显示的关键技术是浓淡层次和光照模型的运用。

三维重建中的光照模型主要有二个主要成分,重建物体的表面特性与照明特性。表面特性又包括物体的表面反射特性和透明特性。

反射特性确定照射到物体表面的光有多少被反射,当物体表面对不同波长的光具有不同的反射系数时,就会出现不同的颜色。

透明性确定有多少光线从物体中透射过去,对于透明物体,其颜色由透射光决定。

照明特性在浓淡处理中与物体表面特性有同等的重要性。如果照明光源是来自各个方向的均匀光,该种光源称之为漫反射光。如果光源是点光源,物体表面会出现高光效应。除此之外,在照明效果中还会出现光线被遮挡的阴影效应。

?光照模型包括局部光照模型和整体光照模型。局部光照模型只考虑光源的漫反射和镜面反射,而整体光照模型要考虑物体间的相互影响,光在物体间的多重吸收,以及反射和透射。

?较为著名的局部光照模型有Torrance 和Sparrow于1967年提出的Torrance –Sparrow 光照模型,

?Bui Tuong Phong于1973年提出的Phong光照模型,

?Cook 和Torrance于1981年提出的Cook –Torrance光照模型等。

?实用的整体光照模型有Whitted光照模型、Hall光照模型、双向光线跟踪和分布式光线跟踪等。

2.简单的光照模型

光线照射到物体表面时,它可以被吸收、反射或透射。被吸收的光能转化为热能,而被反射或透射的光能才能使物体可见并呈现颜色。反射光决定于光的成分、光源的几何性质以及物体表面的方向和表面的性质。

图像三维重建技术

1概述 随着计算机软硬件技术的快速发展,大规模复杂场景的实时绘制已经成为可能,这也加快了虚拟现实技术的发展,又对模型的复杂度和真实感提出了新的要求。虚拟场景是虚拟现实系统的重要组成部分,它的逼真度将直接影响整个虚拟现实系统的沉浸感。客观世界在空间上是三维的,而现有的图像采集装置所获取的图像是二维的。尽管图像中含有某些形式的三维空间信息,但要真正在计算机中使用这些信息进行进一步的应用处理,就必须采用三维重建技术从二维图像中合理地提取并表达这些 三维信息。 三维建模工具虽然日益改进,但构建稍显复杂的三维模型依旧是一件非常耗时费力的工作。而很多要构建的三维模型都存在于现实世界中,因此三维扫描技术和基于图像建模技术就成了人们心目中理想的建模方式;又由于前者一般只能获取景物的几何信息,而后者为生成具有照片级真实感的合成图像提供了一种自然的方式,因此它迅速成为目前计算机图形学领域中的研究热点。 2三维建模技术 三维重建技术能够从二维图像出发构造具有真实感的三维图形,为进一步的场景变化和组合运算奠定基础,从而促进图像和三维图形技术在航天、造船、司法、考古、 工业测量、 电子商务等领域的深入广泛的应用。3基于图像的三维重建技术 基于图像的建模最近几年兴起的一门新技术,它使用直接拍摄到的图像,采用尽量少的交互操作,重建场 景。 它克服了传统的基于几何的建模技术的许多不足,有无比的优越性。传统的三维建模工具虽然日益改进,但构建稍显复杂的三维模型依旧是一件非常耗时费力的工作。考虑到我们要构建的很多三维模型都能在现实世界中找到或加以塑造,因此三维扫描技术和基于图像建模技术就成了人们心目中理想的建模方式;又由于前者一般只能获取景物的几何信息,而后者为生成具有照片级真实感的合成图像提供了一种自然的方式,因此它迅速成为目前计算机图形学领域中的研究热点。 4 基于图像重建几何模型的方法 4.1 基于侧影轮廓线重建几何模型 物体在图像上的侧影轮廓线是理解物体几何形状的 一条重要线索1当以透视投影的方式从多个视角观察某一空间物体时,在每个视角的画面上都会得到一条该物体的侧影轮廓线,这条侧影轮廓线和对应的透视投影中心共同确定了三维空间中一个一般形状的锥体1显然,该物体必将位于这个锥体之内;而所有这些空间锥体的交则构成了一个包含该物体的空间包络1这个空间包络被称为物体的可见外壳,当观察视角足够多时,可见外壳就可以被认为是该物体的一个合理的逼近。鉴于此类算法一般需要大量的多视角图像,因此图像的定标工作就变得非常复杂。 4.2采用立体视觉方法重建几何模型 基于立体视觉重建三维几何是计算机视觉领域中的经典问题,被广泛应用于自动导航装置。近年来,立体视觉 图像三维重建技术 康皓,王明倩,王莹莹 (装甲兵技术学院电子工程系,吉林长春130117) 摘要:基于图像的三维重建属于计算机视觉中的一个重要的研究方向,从提出到现在已有十多年的历史。文章首先对三维重建技术做了详细阐述,并着重从计算机图形学的研究角度对基于图像建模技术进行了综述,介绍了 具有代表性的基于图像建模的方法及其最新研究进展,给出了这些方法的基本原理, 并对这些方法进行分析比较,最后对基于图像建模技术的未来研究给出了一些建议和应解决的问题。关键词:三维建模技术;图像建模技术;计算机图形学;虚拟现实中图分类号:TP271文献标识码:A 文章编号1006-8937(2009)11-0042-02 Three-dimensional image reconstruction technique KANG Hao,WANG Ming-qian,WANG Ying-ying (DepartmentofElectronicEngineering,ArmoredInstituteofTechnology,Changchun,Jilin130117,China) Abstract:Image-based Three-dimensional reconstruction is an important research direction in computer vision ,from now more than ten years'history.This article first describes three-dimensional reconstruction technique in detail and review image-based modeling techniques from the perspective of computer graphics research,introduce a representative of the method of image-based modeling and the latest research progress,give the basic principles of these methods,analysis and compare these methods,finally,give a number of recommendations and problems which should be solved on image-based modeling technology for future research. Keywords:three-dimensional modeling techniques;image modeling techniques;computer graphics;virtual reality 收稿日期:2009-03-19 作者简介:康皓(1978-),女,吉林长春人,硕士研究生,讲师,研 究方向:计算机辅助设计与编程。 TECHNOLOGICAL DEVELOPMENT OF ENTERPRISE 2009年6月Jun.2009 企业技术开发 第28卷

CT三维重建的指南

CT三维重建指南 1、脊柱重建: 腰椎: 西门子及GE图像均发送至西门子工作站,进入3D选项卡 A、椎体矢状位及冠状位: a. 选择骨窗薄层图像(西门子 1mm 70s;GE 0.625mm BONE),载入3D重建,调整定位线,使椎体冠状位、矢状位定位线与解剖位置一致,并将横断位定位线与两者垂直,将三幅图像模式改为MPR; b. 横断位作为定位相,做矢状位重建,打开定位线选项卡,点击垂直定位线,变换数字顺序,使其从右向左,选择层厚3mm,层间距3mm,方向平行于棘突-椎体轴线,两边范围包全椎体及横突根部(一般为19层),点击确定,保存; c. 矢状位作为定位相,打开曲面重建选项卡,沿各椎体中心弧度画定位相曲线,范围包全,双击结束,选择层厚3mm,层间距3mm,变换数字顺序,使其从前向后,范围前至椎体前缘,后至棘突根部(一般为19层),点击确定,保存。 B、椎间盘重建: a. 选择软组织窗薄层图像(西门子 1mm 30s;GE 0.625mm STND),载入3D重建,调整定位线,使椎体冠状位、矢状位定位线与解剖位置一致,并将横断位定位线与两者垂直,将三幅图像模式改为MPR; b. 矢状位作为定位相,做椎间盘重建,打开定位线选项卡,点击水平定位线,变换数字顺序,使其从上向下,选择层厚3mm,层间距3mm,层数5层,方向沿椎间隙走行方向,做L1/2-L5/S1椎间盘,注意右下角图像放大,逐个保存。 注意:脊柱侧弯患者,椎间盘重建过程中需不断调整冠状位定位相上矢状定位线(红色),使其保持与相应椎间隙垂直。 C、椎体横断位重建: 椎体骨质病变者,如压缩性骨折、骨转移、PVP术后等病人,加做椎体横断位重建,矢状位图像做定位相,沿病变椎体轴向,做横断位重建,注意重建图像放大,保存。 打片: 矢状位及冠状位二维一张:8×5;椎间盘一张:6×5; 若为椎体骨质病变者,椎间盘图像不打,打椎体横断位重建图像,共两张胶片。

五,图像恢复和重建

五,图像恢复和重建 2007-3-5

5.1 概述和分类 5.2 退化模型和对角化5.3 无约束恢复 5.4 有约束恢复 5.5 交互式恢复 5.6 几何失真校正 5.7 投影重建

概述和分类 图象恢复也称图象复,原图象恢复与图象增强相同之处是,它们都要得到在某种意义上改进的图象,或者说都希望要改进输入图象的视觉质量。图象恢复与图象增强不同之处是,图象增强技术一般要借助人的视觉系统的特性以取得看起来较好的视觉结果,而图象恢复则认为图象是在某种情况下退化或恶化了(图象品质下降了),现在需要根据相应的退化模型和知识重建或恢复原始的图象。换句话说,图象恢复技术是要将图象退化的过程模型化,并据此采取相反的过程以得到原始的图象。由此可见,图象恢复要根据一定的图象退化模型来进行。 在给定模型的条件下,图象恢复技术可分为无约束和有约束的两大类。根据是否需要外来于预,图象恢复技术又可分为自动和交互的两大类。另外根据处理所在域,图象恢复技术还可分为频域和空域两大类。许多图象恢复技术借助频域处理的概念,但越来越多的空域处理技术得到应用。 从广义的角度上来看图象恢复,它还可包括对在图象采集过程中产生的几何失真(畸变)进行校正以及根据对物体的多个投影重建图象的技术。前一种情况里将图象的几何失真看成一种退化,对其校正则看作是一种恢复过程。后一种情况里将图象的投影看作一种退化过程,而将重建图象作为一种恢复手段。

退化模型和对角化 5.2.1 退化模型 H 可有如下4个性质: (1)线性:如果令k1和k2为常数,f1(x,y)和f2(x,y)为2幅输入图象,则: (2)相加性:式(5.2.2)中如果kl=k2=1,则变成: (3)一致性:式(5.2.2)中如果f2(x,y)=0,则变成: 上式指出线性系统对常数与任意输入乘积的响应等于常数与该输入的响应的乘积, (4)位置(空间)不变性:如果对任意f(x,y)以及a和b,有: 线性系统的响应只与在该位置的输入值有关而与位置本身无关。

三维图像重建结课报告

三维图像重建 一、摘要: 物体的三维重建是指对三维物体建立适合计算机表示和处理的数学模型,是在计算机环境下对其进行处理,操作和分析其性质的基础,也是在计算机中建立表达客观世界的虚拟现实的关键技术. 计算机内生成物体三维表示主要有两类方法.一类是适用几何建模软件通过人机交互生成人为控制下的物体三维几何模型,另一类是通过一定的手段获取真实物体的几何形状.本文主要针对第二类方法进行介绍,结合三维重建在医学领域的广泛应用,对三维重建的每一个过程和其中的关键技术进行研究. 二、研究背景及发展现状 随着信息技术的飞速发展,如何在计算机上实时逼真地建立客观世界的虚拟海量信息 ,生成具有重要价值的三维形状信息,运用计算机的高效能数据存储\压缩\计算和传输能力,快速实现对这些三维信息的分析\挖掘\检索和高效利用,已成为国家和科技发展中许多重大应用需求的关键科学问题. 目前三维重建主要包含四类方式: 第一类是根据三维物体的断层扫描所得二维图像提取轮廓,然后根据一定的原则进行两个相邻轮廓的连接和三角化,从而得到物体的表面形状.该方法主要对于物体内部构造进行拓扑结构可视化,比如:医学影像的三维重建. 第二类是使用探针或激光读数仪逐点获取数据,然后进行整体三角化,此类方法测量精确,但速度很慢,难以在较短时间内获取大量数据. 第三类是基于双目视觉的重建方法,深度数据计算精度较低,主要应用于机器人视觉领域. 第四类是应用硬件光学三维扫描仪主动获取物体的点云数据,然后进行重建获取物体的整体表面信息. 目前三维重建的应用领域主要包括以下方面: (1)制造业与逆向工程 应用三维重建技术,可以将创作者完成的设计模型准确变为计算机中的三维实体模型,如果需要也可以在计算机中完成修正操作,最后由计算机根据实体模型数据控制加工设备完成部件加工,此过程省去了传统设计制作过程中若干复杂环节,大大节省开发

图像复原——逆滤波复原与维纳滤波复原方法及比较

鲁东大学信息与电气工程学院学年第-----1----学期 《》课程论文 课程号: 任课教师成绩 逆滤波复原与维纳滤波复原方法及比较 摘要 图像复原,即利用退化过程的先验知识,去恢复已被退化图像的本来面目。对遥感图像资料进行大气影响的校正、几何校正以及对由于设备原因造成的扫描线漏失、错位等的改正,将降质图像重建成接近于或完全无退化的原始理想图像的过程。图像在形成,记录,处理和传输的过程中,因为成像系统,记录设备,传输介质和处理方法的不完备导致图像质量的下降,也就是常说的图像退化。图像复原是对发生退化的图像进行补偿,某种意义上对图像进行改进,改善输入图像的质量。我的这篇论文主要介绍逆滤波图像复原,维纳滤波图像复原等方法,以及对他们之间进行比较。 关键词:图像复原、逆滤波复原、维纳滤波复原 一.图像复原的意义 复原是图像处理的一个重要内容,它的主要目的是改善给定的图像质量并尽可能恢复原图像。图像在形成、传输和记录过程中,受各种因素的影响,图像的质量都会有所下降,典型表现有图像模糊、失真、有噪声等。这一质量下降的过程称为图像的退化。图像复原的目的就是尽可能恢复退化图像本来面目。 二.维纳滤波的介绍 图像复原是图像处理中的一个重要问题。对于改善图像质量具有重要的意义。已在实际应用中被证明是有效的重要的图像复原技术有很多,而维纳滤波法提供了一种在有噪声情况下导出反卷积传递函数的最优方法,它是频率域最常用的一种恢复方法。目前的B超声图像所展示的器官和组织的范围很小,而且图像的分辨率较低,同时伪像也较多,这样在根据B超图像进行病情诊断时,常常出现由于B超图像模糊不清而错误诊断病情的情况,造成严重的后果。因此,利用图像处理技术,对所获得的

图像复原

MATLAB在图像复原中的应用研究 摘要:图像复原是图象处理的一个重要课题。图像复原也称图象恢复,是图象处理中的一大类技术。它的主要目的是改善给定的图像质量。当给定了一幅退化了的或者受到噪声污染了的图像后,利用退化现象的某种先验知识来重建或恢复原有图像是复原处理的基本过程。可能的退化有光学系统中的衍射,传感器非线性畸变,光学系统的像差,摄影胶片的非线性,大气湍流的扰动效应,图像运动造成的模糊及几何畸变等等。噪声干扰可以由电子成像系统传感器、信号传输过程或者胶片颗粒性造成。各种退化图像的复原都可归结为一种过程,具体地说就是把退化模型化,并且采用相反的过程进行处理,以便恢复出原图像。文章介绍了图象退化的原因,几种常用的图像滤波复原技术,以及用MATLAB实现图像复原的方法。 关键词:退化模型;噪声干扰;图像滤波;图像复原 1.图像复原的概念 1.1图像复原的定义 图像复原也称图象恢复,是图象处理中的一大类技术。所谓图像复原,是指去除或减轻在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像。成像过程的每一个环节(透镜,感光片,数字化等等)都会引起退化。在进行图像复原时,既可以用连续数学,也可以用离散数学进行处理。其次,处理既可在空间域,也可在频域进行。 1.2 图象恢复与图象增强的异同 相同点:改进输入图像的视觉质量。 不同点:图象增强目的是取得较好的视觉结果(不考虑退化原因);图象恢复根据相应的退化模型和知识重建或恢复原始的图像(考虑退化 原因)。 1.3图象退化的原因 图象退化指由场景得到的图像没能完全地反映场景的真实内容,产生了失真等问题。其原因是多方面的。如: 透镜象差/色差 聚焦不准(失焦,限制了图像锐度) 模糊(限制频谱宽度) 噪声(是一个统计过程) 抖动(机械、电子) 1.4图象退化举例 如图1所示是两个图象退化的例子。 图1 退化图像与原始图像 2.退化模型

CT图像三维重建(附源码)

程序流图: MATLAB 源码: clc; clear all; close all; % load mri %载入mri 数据,是matlab 自带库 % ph = squeeze(D); %压缩载入的数据D ,并赋值给ph ph = phantom3d(128); prompt={'Enter the Piece num(1 to 128):'}; %提示信息“输入1到27的片的数字” name='Input number'; %弹出框名称 defaultanswer={'1'}; %默认数字 numInput=inputdlg(prompt,name,1,defaultanswer) %弹出框,并得到用户的输入信息 P= squeeze(ph(:,:,str2num(cell2mat(numInput))));%将用户的输入信息转换成数字,并从ph 中得到相应的片信息P imshow(P) %展示图片P D = 250; %将D 赋值为250,是从扇束顶点到旋转中心的像素距离。 生成128的图片信息 输入图片数字选择 对图片信息进行预处理,并进行展示 用函数fanbeam 进行映射,得到扇束的数据,并展示 用函数ifanbeam 根据扇 束投影数据重建图像,并 展示 计算重建图像和原图的性噪比,并进行输出 结束

dsensor1 = 2; %正实数指定扇束传感器的间距2 F1 = fanbeam(P,D,'FanSensorSpacing',dsensor1); %通过P,D等计算扇束的数据值 dsensor2 = 1; %正实数指定扇束传感器的间距1 F2 = fanbeam(P,D,'FanSensorSpacing',dsensor2); %通过P,D等计算扇束的数据值 dsensor3 = 0.25 %正实数指定扇束传感器的间距0.25 [F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,... 'FanSensorSpacing',dsensor3); %通过P,D等计算扇束的数据值,并得到扇束传感器的位置sensor_pos3和旋转角度fan_rot_angles3 figure, %创建窗口 imagesc(fan_rot_angles3, sensor_pos3, F3) %根据计算出的位置和角度展示F3的图片 colormap(hot); %设置色图为hot colorbar; %显示色栏 xlabel('Fan Rotation Angle (degrees)') %定义x坐标轴 ylabel('Fan Sensor Position (degrees)') %定义y坐标轴 output_size = max(size(P)); %得到P维数的最大值,并赋值给output_size Ifan1 = ifanbeam(F1,D, ... 'FanSensorSpacing',dsensor1,'OutputSize',output_size); %根据扇束投影数据F1及D等数据重建图像 figure, imshow(Ifan1) %创建窗口,并展示图片Ifan1 title('图一'); disp('图一和原图的性噪比为:'); result=psnr1(Ifan1,P); Ifan2 = ifanbeam(F2,D, ... 'FanSensorSpacing',dsensor2,'OutputSize',output_size); %根据扇束投影数据F2及D等数据重建图像 figure, imshow(Ifan2) %创建窗口,并展示图片Ifan2 disp('图二和原图的性噪比为:'); result=psnr1(Ifan2,P); title('图二'); Ifan3 = ifanbeam(F3,D, ... 'FanSensorSpacing',dsensor3,'OutputSize',output_size); %根据扇束投影数据F3及D等数据重建图像 figure, imshow(Ifan3) %创建窗口,并展示图片Ifan3 title('图三'); disp('图三和原图的性噪比为:');

基于MATLAB的图像复原与重建设计说明

前言 (1) 1MATLAB的简介 (1) 1.1MATLAB的概述 (1) 1.2MATLAB的主要功能 (1) 1.3MATLAB在图像处理中的应用 (2) 2图像复原 (2) 2.1 图像复原的基本概念 (2) 2.2 图像退化的数学模型 (2) 2.3 逆滤波复原 (3) 2.4 维纳滤波复原 (4) 2.5 使用Lucy-Richardson算法的迭代非线性复原 (6) 2.6 盲去卷积 (8) 3图像重建 (10) 3.1 图像重建的概述 (10) 3.2 傅里叶反投影重建 (11) 3.3 卷积法重建 (12) 3.4 代数重建方法 (15) 结论 (16) 参考文献 (17) 致 (18)

数字图像处理是将图像信号转换成数字格式,并通过计算机对它们进行处理。图像复原过程往往是对提高图像质量起着重要的作用的数字图像处理方法。图像处理中的一个重要的研究分支是图像重建,其意义在于要检测到获得物体的部结构图像,而不会其造成任何物体上的损伤。在本文中,先对图像复原与图像重建进行概述,然后介绍几种图像复原技术与图像重建方法。通过MATLAB实验程序获得实际处理效果。 关键词:图像复原;图像重建;MATLAB

Abstract Digital image processing is to convert the image signal into a digital format and process them through the computer. Image restoration process is often to improve the image quality, it plays an important role in digital image processing methods. Image reconstruction is an important research branch of image processing, in the sense that the object to be detected to obtain images of internal structures without causing objects any damage. In this article, firstly, it will introduce image restoration and reconstruction principle, and then introduce several image restoration techniques and image reconstruction methods. The finally treatment effect obtained by MATLAB experimental procedures. Key words: image restoration; image reconstruction; MATLAB

相关主题
文本预览
相关文档 最新文档