当前位置:文档之家› CATIA飞机设计 P51

CATIA飞机设计 P51

CATIA飞机设计 P51
CATIA飞机设计 P51

声明:本文是翻译他人文章,图片也截于该篇文章,仅供学习之用,如需要,请联系

Mr. Dickson S.W. Sham

CATIA Certified Professional,

Department of Mechanical Engineering,

The Hong Kong Polytechnic University

Tel : (852) 2766 4507

Email : mmdsham@https://www.doczj.com/doc/9c6605827.html,.hk

翻译难免有不准确的地方,欢迎批评指正,谢谢!

第一节

---创建三个拉伸曲面,分别相对X、Y、Z平面进行偏移

---给平面附上参考图片

---为每一个截面创建草图之后,将它们重新放置在相对应的位置

第二节

---创建 3D曲线,之后创建自由曲面

---首先创建机身,之后创建机翼,最后创建尾翼

---将所有的曲面按照一个参考平面作对称,创建一个对称模型

请牢记:这些章节只是用来陈述通过CATIA进行设计的方法,而不单是CATIA那些命令。

CATIA中鼠标的一些操作不多说了

打开CATIA,一个空的product被创建,可以把它关掉

开始->形状->创成式外形设计

将启用混合图形集点掉,点击OK

于是我们就在创成式外形设计环境下创建了一个空的Part

插入几何图形集

点击“插入”->“几何图形集”

用“reference” (参考平面)作为图形集的名字

点击OK

创建一个草图

点击“草图”,选择“yz”平面作为参考

作一个垂直的直线,长度 120mm ,位置为距离坐标原点100mm (在点击第二个点之前,看一下“草图工具”中的L值)

点击退出草图

创建一个拉伸曲面

选择刚刚绘制的草图作为轮廓,“yz”平面作为方向

点击reverse direction“翻转方向”

用鼠标拖动“limit1”(绿色箭头),拖到显示为285mm

点击OK

点击“应用材料”

(对刚刚的“拉伸曲面”赋予材料)

点击刚刚做的拉伸曲面

点击OK结束

为了能看到赋予材料的效果,选择“渲染方式”为“带材料作色”

用图像替换材料纹理

双击树状控件“B&W Tiling”(将树状控件里的“拉伸曲面”上的“+”号点开,双击“B&W Tiling”)

点击“渲染”

点击“结构”

在“类型”下拉条中选择“图像”

点击右侧的“…..”图标

选择“p51-right.gpj 右视图”打开

图像导进来后,选择“立方体映射”

同时把“U V”方向上“重复”都点掉(单选框中黄色)点击完成

创建另一个草图

以“zx”平面为参考做草图

作一条垂直线(线的一端捕捉到X轴)

点击“标注”图标,选择线修改长度为25.4mm

点击退出

调整参考图片的大小和位置

点击“快速查看”中“右视”视角

再次双击树状图中的“B&W Tiling”

选择“渲染”

调整“缩放”和“定位”中的“UV”值,直到“1-2”(图中红圈中)的距离和“草图2”的高度值相同

保持大小不变,调整UV位置,使飞机图像的尖端和坐标原点重合

点击OK

删除草图2

选定“草图2”

右键“删除”

点击“OK”完成

调整曲面的大小使之与图像的大小一致

双击树状控件中的“拉伸曲面”

拖拽“限制1”使曲面的接触到图像的中飞机的尾部最后

(如果无法对齐,点击“微调按钮”,每次增量为1mm,此时可以“右击”“限制1”的“尺寸”文本框,在弹出的菜单项中选择“更改步骤”->“新的值”,输入值的大小0.1mm)

点击OK结束

现在,大小,位置和右视图的图像大小都是正确的

创建草图

单击“草图”图标,选择“yz”平面作为参考

画一条水平线如图所示

(长度为200mm,位置为距离坐标原点100mm处)退出“草图”

创建一个“拉伸曲面”

选择“草图3”作为外形,“yz”平面为参考方向

点击“翻转方向”

保持尺寸不变(应该和拉伸1一样)

点击OK结束

对曲面应用材料

点击“应用材料”图标

点击“拉伸曲面2”

点击“确定”

用图片替换原来的纹理

和上面操作一样

在树状控件中双击“B&W Tiling”

选择“渲染”

选择“结构”

在“类型”右侧的下拉菜单中选择“图像”点击图像名右侧的“……”

选择文件“p51-top.jpg”

点击“打开”

点掉U,V方向的重复

点击“快速查看”中的“俯视图”

调整UV值的大小直到图像中飞机的尾部尖端以及头部尖端与图像的边缘接触保持UV大小不变,调整UV的位置,使飞机对称轴与坐标系原点对其

点击“确定”结束

创建一个“草图”

点击“草图”图标同时选择“zx”平面

创建一条“垂直线”

创建两条水平轴线作为参考,然后将“垂直线”的两个端点(最大最小位置)分别与两条水平轴线接触退出“草图”

创建一个拉伸曲面

点击“拉伸曲面”图标

选择“草图4”作为轮廓,“zx”平面作为方向

点击“翻转方向”

拖拽“限制2”使两个方向上的长度相等

点击“确定”

对曲面应用“纹理材料”(就是B&W Tiling)

点击“应用材料”图标

选择“纹理材料”

点击“拉伸曲面3”

点击“确定”

用图片替代“纹理”(同上)

在树状图上双击“B&W Tiling”

选择“渲染”

选择“结构”

选择右侧的下拉列表框,选择“图像”

点击“…….”图标选择图片

选择“p51-front.jpg”

点击“打开”

(现在,曲面上的图像显示的不正确)

选择“立方体映射”

点掉U,V方向的重复

点击“主视图”图标

调整UV方向上的大小,直到图像上的上下极限分别接触到拉伸曲面的上下边界保持UV方向上大小不变,把图像中心线调整到与坐标原点重合

点击“确定”结束

(现在,所有三个视图都布置好了)

隐藏“草图1”,“草图3”,“草图4”

设置“几何图形属性”为不可选定

右击树形控件中的“reference”几何图形集(就是一开始插入的“几何图形集”)选择“属性”

点掉“可拾取”单选框

(现在在“reference”图形集中的元素都是不可选定的)

插入几何图形集

选择“插入”->“几何图形集”

点击“确定”

创建参考平面

点击“平面”图标

选择“yz”平面

点击“右视图”图标,把鼠标移到“偏移”上,拖拽“箭头”到图像的“截面B处”

点击“确定”

重复上面的步骤,分别做出图像上的“截面D,G,H,I”

(和上面介绍的一样,如果“拖拽的增量”为1mm,可以“右击文本框”,选择“更改步骤”,选择“新值”输入数值为0.1mm,单击进行微调)

创建参考平面(沿着飞机展向)

点击“平面”图标

选择“zx”平面

点击“俯视图”图标,同上面一样,把鼠标放到偏移上进行拖动,拖到截面所在位置点击“确定”,共三个平面,操作相同

由于飞机机翼截面在右侧机翼(沿着飞机飞行方向),所以作如下操作双击“平面6”

单击“翻转方向re verse direction”图标

点击OK确认

对“平面7”和“平面8”作同样的操作

(我们将要做右半边的模型,所以把三个平面方向翻转)

创建一个3D样条线(空间曲线)

选择“开始/形状/Freestyle”(进入自由曲面设计截面)

右击“罗盘”上的“红点”,弹出菜单栏,选择“将优先平面方向锁定为与屏幕平行”

点击“右视图”图标

点击“3D曲线”

基于图片,画一条有“4个控制点”的“3D”

点击“确定”

点击“俯视图”

点击“3D”曲线图标

基于图片,画一条有四个控制点的曲线点击“确定”结束

在“截面D”上做“草图”(截面D是图像上的“截面D”)

选择“开始/形状/创成式外形设计”,进入创成式外形设计界面

点击“草图”图标,选择“zx”平面作为参考

在截面D绘制一条垂直轴线,通过它的“十字中心”

绘制两条“水平线”,分别通过截面D的最高和最低点

绘制一条“样条线”(三个控制点),用连接线分别将“样条线”的两个端点与之前那两条“水平线”连接

重新定位“截面D”的“草图”

右击“草图5”

选择“草图5对象”

点击“更改草图基准..”(就是更改草图支持面)

选择“平面2”(作为“截面D”的基准面)

“类型”选择“已定位”

点击“确定”来确认

双击“草图5”对其进行编辑

在“草图5”中将“3D曲线1”“3D曲线2”“3D曲线3”选定

点击“使三维元素相交”,于是就获得了“三个交点”

选定草图中所有的“曲线”和“轴线”

点击“平移”图标

点掉“复制方式”

选择“截面的画“星星”的点”,将其平移到上面所做的“交点”处(该步骤主要是为了定位截面)同时,给“外形”(平移的)添加“三个约束”使这个外形接触到“上面所做的三个交点”

点击“退出草图”结束

自己设计制作模型飞机的体会

尽管学飞以来一直在飞成品机(ARF),但是,我自己要设计制作一架模型飞机的愿望一直在心里涌动。几经周折后,我成功地将自己亲手设计制造的一架航模送上了蓝天。我的愿望得到了厚重的实现,那种喜悦满足的心情是难以用语言来表达的。 下面我就讲讲我的设计制作过程,希望能对想动手做航模的朋友有所帮助。不对之处,还望大家共同交流提高。 按照现成的图纸制作一架模型飞机,不是一件太难的事。但是,如果根据您的需要自己设计制作一架飞机,恐怕就具有一定的挑战性了。当您要下手设计制作时,会遇到很多需要解决的问题。如:为什么要选用这个翼型、翼展和翼弦是怎么确定的、机身长度应该是多少、尾翼的面积需要多大、各部件的位置应该放在哪里等等。好在现在的由有关书籍较多,只要认真学习归纳,就能找到答案。根据我所学的知识,我是这样设计制造我的“菜鸟1号”的。 第一步,整体设计。 1。确定翼型。我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。因为我做的是练习机,那就选用经典的平凸翼型克拉克Y了。因伟哥有一定飞行基础,速度可以快一些,所以我选的厚度是12%的翼型。 实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。 矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度

枭龙战机catia建模教程

沈阳航空航天大学 CATIA课程设计说明书 枭龙战机建模 院系 专业 班号 学号 姓名 指导教师 沈阳航空航天大学

沈阳航空航天大学 课程设计任务书 课程名称:CA TIA课程设计 院(系):专业: 课程设计题目:枭龙战机建模 课程设计时间:2012年10月16日至2012年11月9日课程设计的内容及要求: (一)基本要求 1、查找枭龙的相关资料; 2、应用CA TIA建立一个该飞机的三维模型; 3、按照学院课程设计相关规定编写设计说明书。(二)课设内容 1、查阅该飞机的相关资料; 2、查阅参考资料,熟悉CA TIA软件相关应用模块; 3、依照资料建立三维模型; 4、编写设计说明书; 5、参加答辩。

(三)评语 (四)成绩 指导教师: 负责教师: 学生签名:

课程设计介于实验课和毕业设计之间,起着承上启下的作用,其目的在于培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体练和考察过程。本次课程设计历时三周,要求运用CA TIA绘制枭龙飞机模型,并进行合理的装配,完成零件图与装配图。在绘制飞机时,我主要运用样条线、3D曲线、拉伸、填充、多截面曲面、扫掠、相交投影等命令。在装配零件时,我主要通过平移,相合约束、接触约束、偏移约束等约束条件,将其组装成飞机模型,最终完成本次课设。 关键词:CA TIA 曲面设计装配

第1章引言 (1) 第2章枭龙战机简介 (2) 第3章曲面绘制及装配 (3) 3.1机身曲面 (3) 3.2其他零件 (8) 3.3装配图 (12) 3.4飞机三视图 (15) 第4章总结 (16) 参考文献 (17)

小学生的简易航空模型地制作

简易航空模型的制作 从人类诞生以来,一直都有一个梦,梦想着能像鸟儿一样飞翔。人类为此伤透了脑筋:为什么鸟儿有翅膀就能飞上天空,人类却不能。为此,我们的祖先制作出了种类繁多的风筝、竹晴蜒、孔明灯和木鸟模型。它们在飞机发明的过程中起了重要的作用。经过一代又一代人的努力。人类终于梦想成真了。 1903年,美国莱特兄弟(哥哥威尔伯,弟弟奥维尔)利用汽油发动机制造的“飞行者”号在美国基蒂霍克成功进行了历史上第一次机械动力飞行,12秒钟飞行了36米。此后在第一次世界大战中,飞机的性能得到迅速改善。1927年,美国飞行员林白曾驾驶“圣路易精神号(Spirit of Saint Louis)”成功飞越纽约和巴黎之间的大西洋,连续飞行5809公里,飞行时间为33小时50分钟。 但是,我国在航空同工业发达的国家相比,还有不少差距。开展航空模型小制作活动,可以使学生了解我国航空发展的历史和现状,激发学生从小立志献身于祖国的航空事业,为四化建设作出贡献。 航空模型的制作需要运用许多的科学知识,通过模型的制作,可以启发学生运用所学知识勇于实践,培养动手能力和创造能力。 初级橡筋动力模型飞机 初级橡筋动力模型飞机是一个比较典型的传统普及项目。通过制作、放飞初级橡筋动力模型飞机,可以对带有动力的自由飞项目有一个初步了解,为进一步学习制作复杂的模型飞机打下一个扎实的基础,是在初级模型滑翔机的基础上学习的延伸。下面让我们来做一架初级橡筋动力模型飞机. 第一节飞机的制作 一、材料工具: 一套初级橡筋动力模型飞机材料。砂纸板、壁纸刀、尖嘴钳、铅笔、尺子、透明胶带、双面胶带、模型快干胶(白乳胶、502胶水均可)。 二、制作过程: 1、制作机翼: 将吹塑纸按图示尺寸裁出左右机翼

手把手教你CATIA绘制模型飞机

手把手教你CATIA绘制模型飞机 说起CATIA的名字,对于很多模友来讲可能有些陌生。但如果提起法国达索公司,所有爱好飞机的人一定会觉得如雷贯耳。达索公司不仅因为其“幻影”系列战斗机和“隼”系列公务机在航空业界叱咤风云,其开发的CATIA工业设计软件更是成为目前风靡世界飞机设计软件领域的绝对老大。从波音新一代737(A01)到洛克希德马丁的F-35,以及中国国产的歼10、枭龙,都是在其平台上完成的图纸绘制工作。与传统CAD软件相比,其具有参数化设计功能,设计人员的每一步操作都会被记录下来。当对设计产品的某一个尺寸进行改动时,可以直接通过修改设计过程中的参数而得到。不需要再将所有步骤推倒重来。与其他三维设计软件相比,CATIA绝对领先的曲面设计功能,在一个熟练的设计人员手里,能够绘制出任何“你能想象得到”的曲面外形。不同于3DMAX等美术软件的曲面功能,CATIA能够绘制出完全解析的外形曲面——也就是说,CATIA 生成的曲面可以经过无数倍的放大,而仍然保持表面的绝对光滑。 CATIA已经成为世界飞机设计领域的通用技术标准,此外在汽车制造、造船及其他机械设计领域也得到了更加广泛的应用。对于航模设计而言,虽然没有真实飞机设计中许多复杂繁琐的要求,可能3DMAX就能基本满足一般用户的需要。但是,CATIA能够大大节省绘图的时间,特别是在模型细节修改调整中显著降低劳动量。因此,学习一下CATIA对于每一个喜欢航模设计的人来说,绝对是大有意义的。 相对于传统学习CATIA的书来说,我们这里更强调实用性,忽略掉一些在航模设计中很难遇到的东西,也不再一条一条学习软件中的每个命令。在绘制模型的每一个步骤中,我们用到哪儿学到哪儿。 由简入繁,我们先从设计一个兼具一点向真机性质的上单翼练习机开始做起。 螽斯A的设计

基于OpenGL的飞机模型运动3D实时仿真显示

本科毕业论文 (科研训练、毕业设计) 题目:基于OpenGL的飞机模型运动 3D实时仿真显示 姓名:李培锋 学院:物理与机电工程学院 系:航空系 专业:航空机械 年级:2009级 学号:3######0 指导教师(校内):## 职称:教授 指导教师(校外):职称: 2013年 5 月15 日

摘要 基于OpenGL的飞机模型运动 3D实时仿真显示 [摘要] 近年来,随着计算机动画技术的高速发展,基于计算机动画技术的实时仿真技术在航天航空、机械设计、游戏开发、地理信息、气象模拟、虚拟现实等领域的应用越来越广泛。 本文以计算机图形学,图像处理技术为基础,运用OpenGL这一软件接口,以Visual C++6.0为集成开发环境,在Windows系统中建立飞机模型运动3D仿真应用程序。通过获取传感器采集的飞机模型的姿态数据,对绳牵引机器人控制的飞机模型在试验中的运动进行实时仿真显示。文中详细介绍了OpenGL构建模型和实现动画仿真显示的原理和过程,以及在编程过程中使用到的双缓冲,Win32多线程和3DS格式模型导入等关键技术。 [关键词] 实时仿真OpenGL三维运动3DS格式模型导入

ABSTRACT [ABSTRACT] In recent years, with the rapid development of the computer animation technology, real-time simulation technology, which is based on the computer animation technology, is being used in many fields such as aerospace, mechanical design, game development, geographic information, weather simulation, virtual reality and so on more and more wildly. This paper is mainly based on computer graphics and image processing technology, using a high performance graphics application programming interface (API): OpenGL and Visual C++ 6.0 as integrated development environment to build model airplane and the external frame in Windows system. The aircraft model entity data is acquired by sensor acquisition to achieve the purpose that simulates the three-dimensional motion attitude changes of the aircraft model controlled by traction rope robot in time. This paper introduces the principles and processes of OpenGL to build model and achieve animation , as well as the key technologies used in the programming process such as double buffering, Win32 multi-threading , 3DS format models import and so on. [Key Word] Real-time simulationOpenGLthree-dimensional motion3DS format models import

CATIA建模规定

1 范围 本文件规定了CATIA三维建模的通用要求。 本文件适用于飞机产品零件、组件和部件的三维设计。 2 术语和定义 本文件采用下列术语和定义。 2.1 三维建模(three dimension design) 应用三维造型软件(如:CATIA、UG等)进行三维零件、组件及部件设计的过程。 2.2 三维数字模型(three dimensional digital model) 是指三维实体在计算机内部的以1:1的比例来几何描述,它记录了实体的点、线、面、体等几何要素及其之间的关系。 2.3 CATIA文件(CATIA document) 用CATIA软件对产品及其零部件进行数字化描述而形成的各类文件,包括后缀名,如:CATPart、CATProduct、CATDrawing、CAtlog、CATMaterial、CATAnalysis等。 2.4 外形数模(lofting/shape digital model) 飞机外形的数字化描述,表达了飞机外形设计所有的信息,作为气动、结构、工装等设计的依据。 2.5 实体(solid/body) 由CAD软件所生成的三维几何体在CATIA V4中为Solid,在CATIA V5中为Body或partbody。 2.6 非实体元素(open body) 非实体元素是指不占有空间的几何元素(也可称为开放性元素),如:点、线、面等。 2.7 零件实体(partbody) 由body和openbody组成的实体。 2.8 参考形体(reference geometry) 指建模中所需参考的其它模型中的几何图形。使用CATIA建模时,参考形体的获得可通过发布和引用来实现,且参考形体是参与模型建立的,当相关选项打开时,特别是在关联设计中,他会在结构树上有一个单独的分支(External Reference)。 2.9 零件特征树 specification/part feature tree 体现零件设计过程及其特征(如:点、线、面、体等)组成的树状表达形式,反映模型特征之间的相互逻辑关系。 零件特征树包含两部分,一部分是几何特征(如:点、线、面、体等),另一部分是知识特征,也就是生成零件时,应用的关系、参数(Relation、Parameter)这是CATIA V5特有的。

航模基础知识及模型教练飞机结构详细讲解

一、什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。 其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100克/平方分米; 活塞式发动机最大工作容积10亳升。 1、什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。 2、什么叫模型飞机 一般称能在空中飞行的模型为模型飞机,叫航空模型。 二、模型飞机的组成 模型飞机一般和载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼———是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。 2、尾翼———包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身———将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架———供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机———它是模型飞机产生飞行动力的装置。模型飞机常用的动装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。 2、机身全长——模型飞机最前端到最末端的直线距离。 3、重心——模型飞机各部分重力的合力作用点称为重心。 4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。 5、翼型——机翼或尾翼的横剖面形状。 6、前缘——翼型的最前端。 7、后缘——翼型的最后端。 8、翼弦——前后缘之间的连线。 9、展弦比——翼展和平均翼弦长度的比值。展弦比大说明机翼狭长。 练习飞行的要素和原则分析 玩模型飞机和玩模型大脚车完全是两种不同的运动,模友们千万别想当然,买来了就上天,否则就只能看着飞机的残骸落泪了。在开展模型飞机运动前,最需要有一套合理、简单的教程来指导你学会为什么这么飞和怎么样飞,让你更快更安全的把爱机送上蓝天。

飞机模型制作

一、设计篇: 现代F3A运动讲求姿态控制精准,动作细腻柔和,飞行速度均匀稳定。其大部分动作基本在一个面内完成,运动轨迹基本由规则的几何图形组成,包括大量的滚转、倒飞、侧飞和垂直飞行动作,努力达到和更好地完成这些飞行动作是设计工作的基本方向。 3A特技机的气动外形是基于FAI比赛需要而设计的,随不同时代技术进步以及飞行动作发展而不断进化。由早期的大翼展(翼展大于机身长度)过渡到现在的长机身(翼展与机身长度基本相同,或机身长度略大于翼展),由较小的机身侧投影面积发展为较大的投影面积等无不体现着这些变化。据此,对各种姿态下飞行稳定和平衡的追求,作为整体思路贯穿在本架飞机的设计之中--长的尾力臂可以使姿态控制更加柔和,适中的主翼根梢比提供了均衡的横侧稳定性,大的尾舵面弥补了长尾臂带来的操纵迟缓,以完成礼帽等直角空中动作,高而窄的机身使飞机有着较大的侧投影面积,尽量以较小的倾角完成侧飞动作 由于此模型为小型F3A特技机,我不希望其飞行速度过快,不然就缺少了一种稳定感。同时为了使之在做俯冲或垂直下降动作时也尽量保持匀速稳定飞行,在设计过程中增大和利用了形状阻力。比如,使用成熟的NACA0014作为主翼翼型以提高相对小雷诺数机翼模型飞行时的稳定性和抗失速性;适当降低了一些翼载荷--约50g/dm2,以求降低整机的惯性力矩,用以弥补使用NACA0014这类翼型造成的直角动作的相对迟缓;尾翼均使用带翼型的NACA0009。垂直尾翼的设计,尝试了2007年克里斯托弗的参赛机型Osmose的特点,加大了方向舵的后缘厚度,以期达到更好的直线性。垂直安定面采用标准翼身融合的设计,增加了其下部靠近机身纵轴的前缘厚度,然后过渡到较薄的翼尖。这样即可增大整架飞机的纵轴上尾部阻力,同时尽量保持各向气动布局均匀,使飞行更加稳定。 大致确定各项基本参数: 1. 外形尺寸:1.2m x 1.2m 2. 重量:1.2kg 3. 翼载荷:约50g/dm2 4. 主翼面积:约26dm2 5. 水平尾翼面积:6.5dm2

遥控飞机模型的制作

遥控飞机模型的制作 从人类诞生以来,一直都有一个梦,梦想着能像鸟儿一样飞翔。人类为此伤透了脑筋:为什么鸟儿有翅膀就能飞上天空,人类却不能。为此,我们的祖先制作出了种类繁多的风筝、竹晴蜒、孔明灯和木鸟模型。它们在飞机发明的过程中起了重要的作用。经过一代又一代人的努力。人类终于梦想成真了。 1903年,美国莱特兄弟(哥哥威尔伯,弟弟奥维尔)利用汽油发动机制造的“飞行者”号在美国基蒂霍克成功进行了历史上第一次机械动力飞行,12秒钟飞行了36米。此后在第一次世界大战中,飞机的性能得到迅速改善。1927年,美国飞行员林白曾驾驶“圣路易精神号(Spirit of Saint Louis)”成功飞越纽约和巴黎之间的大西洋,连续飞行5809公里,飞行时间为33小时50分钟。 但是,我国在航空同工业发达的国家相比,还有不少差距。开展航空模型小制作活动,可以使学生了解我国航空发展的历史和现状,激发学生从小立志献身于祖国的航空事业,为四化建设作出贡献。 航空模型的制作需要运用许多的科学知识,通过模型的制作,可以启发学生运用所学知识勇于实践,培养动手能力和创造能力。 初级橡筋动力模型飞机 初级橡筋动力模型飞机是一个比较典型的传统普及项目。通过制作、放飞初级橡筋动力模型飞机,可以对带有动力的自由飞项目有一个初步了解,为进一步学习制作复杂的模型飞机打下一个扎实的基础,是在初级模型滑翔机的基础上学习的延伸。下面让我们来做一架初级橡筋动力模型飞机. 第一节飞机的制作 一、材料工具: 一套初级橡筋动力模型飞机材料。砂纸板、壁纸刀、尖嘴钳、铅笔、尺子、透明胶带、双面胶带、模型快干胶(白乳胶、502胶水均可)。 二、制作过程: 1、制作机翼: 将吹塑纸按图示尺寸裁出左右机翼

手把手教你CATIA绘制模型飞机(4)

下面进入机翼外段结构的绘制过程。 为了避免绘图结构的混乱,在绘制外翼结构之前同样需要新生成一个几何图形集。选择菜单“插入>有序的几何图形集”。在弹出窗口中将名称修改为“外段结构”,父对象设置为PartXX(如Part1)。 接下来需要从之前绘制的图形中借一些来用用。按住Ctrl键分别选中之前在“零部件几何体”下面绘制的“内翼外侧平面”、“外翼基准翼型”、和为绘制内外翼上反关系而创建的极值点。(064) 单击右键选择复制,再在特征树上的“外段结构”上单击右键,选择“特殊粘贴”,在弹出的窗口中选择“作为使用链接的结果”,单击确定。用这个方法复制的特征,只相当于一个“链接”。表示链接特征的图标其左下方会有一个箭头。为了后面好描述,我们可以通过属性窗口将链接的那个点命名为“上反基准点”。 对于链接特征而言,如果其引用的特征,比如用来生成“外翼基准翼型”的旋转特征角度发生变化的时候,链接特征也会自动改变。再具体一点来说,就是如果飞机试飞后我们发现上反角不够时,只要修改一下与定义上反角有关的特征属性后,链接特征及以它为基准的所有特征都会发生变化。以上说法或许有些抽象,当整个机翼绘制完成后,我们可以通过实际操作来详细理解一下它的意思。 由于下面进行的绘图操作与之前生成的几何图形集没有关系,为了绘图清晰,点击工具条上的“仅当前几何体”按钮,隐藏“零部件几何体”和“内翼结构”里面的特征。(065) 接下来开始绘制用于将外翼段各零件进行定位的参考平面图。以“平行通过点”方法,生成YZ平面通过“上反基准点”的平行平面,将这个平面命名为“参考面A”,并以其为基准开始做草图。 点击“构造/标准元素”按钮,将绘图状态设置为“构造元素”。投影“上反基准点”,然后通过该点作一条水平直线。再将绘图状态转为“标准元素”,通过投影点绘制一条任意角度的直线,这条直线和水平构造线之间生成一个“角度约束”。 双击角度约束,在“值”后面的文字框中单击右键,选择“编辑公式”。在“您希望将

基于ADAMS的玩具飞机的机构运动仿真..

基于ADAMS的玩具飞机的机构运动仿真 摘要:本文首先对目前市场上涉及到的机械玩具进行了一个简要的概括,然后选取一款玩具飞机的模型分析了它的运动规律,并进行测绘利用SolidWorks建立了其总体结构;对玩具飞机的关键部件—发条机构进行了简要介绍,在运动学分析的基础上,运用虚拟样机仿真软件Adams对玩具飞机进行了仿真。结果表明:玩具飞机的运动是稳定的,基本和实际运动状态一致。 关键词:玩具飞机;ADAMS;运动学分析 Dynamic simulation of toy aircraft based on ADAMS Abstract: Firstly,mechanical toys on the market at present involved in a brief summary,and then choose a toy airplane model to analyze the movement rules of it,and mapping of SolidWorks was utilized to establish the overall structure; the key part of the toy plane clockwork mechanism are introduced,on the basis of kinematics analysis last,the application of virtual prototype simulation software Adams simulation of the toy plane. The results show that: the toy plane movement is stable,consistent with the basic and the actual state of motion. Key words:toy aircraft;ADAMS;kinematics analysis 1 引言 中国是世界上最大的玩具制造国和出口国,全球70%的玩具是在我国境内制造的。在琳琅满目的玩具之中,靠发条驱动的纯机械玩具吸引着许多小孩子的眼球这类玩具用塑料做成,价格低廉,体积较小,节能环保,大多模拟某一种动物的动作这类机械玩具在设计方面采用了大量的机械机构,如连杆机构,齿轮机构,凸轮机构,不完全齿轮机构,槽轮机构等,很多玩具的设计思想十分巧妙"对这些商品玩具进行测绘、建模、装配并做仿真,这对玩具的研发和设计,都具有重要的参考价值[2]。 然而,对机械玩具进行仿真的相关研究在国内期刊上很少见到"中科院自动化研究所的张志刚等从仿生学的角度出发,按照一系列步骤,编制了机器鱼的设计与仿真软件,实现了由生物特征到机器鱼实现的过渡,方便了机器鱼的设计[1]。在对玩具市场进行一番调研后发现,一款玩具飞机设计非常巧妙,也很有代表性,这里主要以它为例来阐述玩具的运动机理和y运动学仿真中的一些关键技术。 2 玩具飞机的运动原理及仿真方案 玩具飞机的虚拟仿真研究过程中,零件之间存在着各种相对关系,为得到理想的结 果,首先需要对玩具进行拆卸,然后分析出其零件间的连接关系,测绘出其零件的尺寸, 完成装配,为仿真准备好模型数据。玩具飞机的整体图如下:

手把手教你CATIA绘制模型飞机(5)完结版

CA TIA的优点除了我们之前谈到的参数化设计外,强大的曲面设计功能使其能够适应包括航空航天在内的各种工业产品建模要求。通过下面机身的外形设计过程,可以从中感受到CATIA在曲面建模方面的独特魅力。 下面,开始机身部分的建模工作。首先需要进行的工作是把CAD下的俯视图和侧视图导入,作为机身建模的参考。 通过菜单“文件>打开”找到之前在CAD下面完成的三面图。按下鼠标拖动矩形选框,选择飞机的侧视图。选中后,线条会以高亮度显示。单击右键选择复制。(105) 利用“窗口”菜单回到建模中的CATIA文件。参照之前绘制机翼时的步骤,以Part 为父对象创建几何图形集,将其命名为机身。选择“ZX平面”并点击草图工具进入草图绘制模式。选择菜单“编辑>粘贴”或直接按Ctrl+V将飞机的侧视图粘贴过来。这时如果找不到粘贴结果,可以工具栏上的“适合全部”(106)图标。 按下鼠标左键,利用矩形选择框选择粘贴过来的侧视图后,在图上任意一点按下左键可以对其位置进行拖动。参考现有机翼的位置将其拖动到位。这个步骤只用来作为下面建模时候的参考,因此不用追求位置的绝对准确。(107)按照同样的方法,以“XY平面”为基准绘制草图,将飞机的俯视图也复制过来。

再次以“XY平面”为基准绘制草图,参照刚才复制过来的俯视图完成准确的机身俯视草图绘制。尺寸的设置可以参考108。在绘制机身俯视草图的过程中,需要使用样条线工具。图108中的粗线均为样条线,细线为直线。设置样条线与直线之间平滑过渡的方法可以参考前面翼尖的绘制过程。 接下来参考从AUTOCAD复制过来的侧视图,以ZX平面为基准绘制草图,将其作为飞机的侧视图。在侧视图的绘制过程中,注意要将上一步俯视图中飞机最前端一点和最后端一点分别通过投影工具投影到当前草图中。通过与投影下来的这两个点设置相合约束,使飞机侧视图上的前后限与俯视图相同。此外,为了保证飞机相对光顺的曲面外形,在测试图的绘制过程中需要注意一下与机翼衔接部分的过渡。通过相交工具获得机翼上下表面与当前草图的交线(图中黄线),并将其作为侧视图外形轮廓线的一个组成部分。(109) 下面开始绘制飞机的每一个截面外形。利用绘制完成的俯视图和侧视图作为参考,按照生成参考平面(平行通过点方式或偏移平面方式)>做草图的方法完成飞机的每一个剖面

一款制作简单的纸飞机模型

款制作简单的纸飞机模型 手掷模型飞机是制作较简单的无动力模型飞机,它靠人用手向前上方掷出。在模型掷出后的一段时间里,模型在空气中较快移动产生了升力使模型向空中飞去。当遇到向上的气流时,它会飞得更远一些。 小制作准备 手掷模型飞机套材、快干胶、笔、锉、刀、铅丝 科技小制作过程

相关知识 ●纸飞机 纸飞机是一种用纸做成的玩具飞机。它可能是航空类折纸手工中的最常见形式,航空类折纸手工属于折纸手工的一个分支。 由于它是最容易掌握的一种折纸类型,所以深受初学者乃至高手的喜爱。最简单的纸飞机折叠方法只需要六步就可以完成。现在,“纸飞机”这个词也包括那些用纸板做成的飞机。 用纸制作玩具被认为起源于2000年前的中国,那时放风筝是一种流行的娱乐项目,虽然这些可以被看做是现代纸飞机起源的证据,但是没有人能提供准确的证据指出这项发明到底起源于哪里。随着时间的推移,纸飞机速度、浮力和外形的设计已经有了较大的改进。 已经有很多人宣称自己做出了世界上最好的纸飞机。模型DC—03(DC--03纸飞机模型)就是其中之一。Dc--03拥有巨大的滑翔翼,和一个可能在所有纸飞机里独一无二的尾翼。可惜的是没有一个国际性的纸飞机联盟或者协会对这是否是世界最好的飞机进行官方认定。 对于DC--03模型的尾翼,吉尼斯世界纪录保持者肯·布莱克布恩不同意在纸飞机的尾部加尾翼的做法。他在自己的网站解释纸飞机的空气动力学时提到尾翼是不必要的。他以实际的B--2幽灵飞翼轰炸机

为例,提到沿着机翼的配重使重心更向前,因此飞机也就更平稳。很多人认为轻的纸飞机比重的纸飞机飞得更远,但是肯·布莱克布恩认为这是不正确的。他打破20年前的纸飞机记录就是基于他的信念:最好的飞机拥有短的机翼和重心位于掷飞机的人掷出飞机的那个点上,同时长机翼和更轻的重量能让纸飞机更远的飞行。但是在掷出阶段不能给予更多的力量。 很多年来,许多人试图突破手掷飞机在空中的最长停留时间这一极限。肯·布莱克布恩保持这一吉尼斯世界纪录长达l3年时问(1983年一l996年)。1998年lo月8日他创造了室内纸飞机飞行记录.他的纸飞机在空中保持了27.6秒。吉尼斯官方和国际新闻网见证并报导了这项记录。肯·布莱克布恩在这次冲击记录的尝试中使用的纸飞机被归属到滑翔(无引擎飞机)类当中。美国著名的纸飞机设计者托尼·弗莱特1985年创下飞行距离世界纪录——l93英尺(58.82米)。到目前为止,依然没有人打破它。这个距离比莱特兄弟首次飞行的距离还要长。

CATIA画机翼

CATIA绘制飞机模型 作者Liyue浏览发布时间13/03/17 利用草图工具绘制翼型 单击“文件—>打开”找到我们从Profili中导入的基本翼型数据文件。这时CATIA 会自动进入工程图绘制模式,并打开指定的DXF文件。按下鼠标左键,拖出选择框选择整个翼型曲线,当全部曲线变成橙色显示时,则表示选择成功。按下键盘“Ctrl + C”快捷键,或者单击菜单“编辑—>复制”以将翼型存入剪贴板(012) 单击窗口,找到我们刚才创立的曲面文件,单击回到曲面造型界面。(013)

用鼠标左键单击左侧特征树下的“ZX平面”将其置于高亮,单击工具栏上草图绘制工具(014) 进入草图绘制模式后,照例先收拾一下工具栏,将其尽可能展开并放置在比较好看的位置上。这里有一个需要注意的地方,找到工具栏上“网络”和“点对齐”图标。其功能分别是显示背景网格和网格节点的捕捉,类似AUTOCAD下的栅格捕捉功能。一般我们用不到它,因此单击使其取消点亮状态。(015)

按下“Ctrl + V”快捷键或者点击菜单栏“编辑—>粘贴”就可以将刚才工程图模块中复制的翼型曲线复制过来。这时曲线会显示成黑色的。(016) 在粘贴的过程中,我们可能会遇到一个问题,按下粘贴键后,并没有看到翼型显示在屏幕中。不用着急,这时很可能需要进行一下屏幕的放大缩小操作。方法是:按紧鼠标中键(滚轮),单击右键(注意不是按住不放),这时上下拖动鼠标即能完成屏幕的方法和缩小操作。顺带在此再讲一下屏幕的旋转操纵,方法是:按紧鼠标中键,然后按紧右键,这时拖动鼠标即是屏幕显示的旋转操纵。需要平移屏幕时,按紧鼠标中键同时拖动鼠标即可。当我们需要回到草图的“法向”也就是从正上(下)方观察草图状态,单击工具栏上“法线视图”图标。(017)

iAircraft飞机仿真模型软件包..

iAircraft飞机仿真模型 iAircraft是一个飞机仿真模型包,该模型被设计针对用于飞机测试实验室的如“铁鸟”仿真机以及基于仿真的飞控、航电集成测试实验室。iAircraft可以通过调整参数来代表一大类的固定翼飞机,如直升机、无人机。iAircraft由一系列Simulink模型组成,可以在Simulink 仿真软件中运行,也可以在ADI的实时仿真计算机系统(rtX, rtX-V, RTS)中运行。iAircraft 是按照这样的架构开发的,即允许在纯仿真模式下进行飞机仿真,同时可以容易的连接真实的飞机LRU来进行飞机硬件在回路测试,集成以及飞控验证活动。下图展示了iAircraft Simulink模型的顶层仿真框图。

1. iAircraft 6自由度运动方程模型 飞机6自由度运动方程模型参考旋转的球形大地,是基于Robert M. Howe 在其名为“Airframe Equations of Motion and Transfer Operators”的论文中所作的工作。飞机6自由度运动方程模型具有以下特点: ●飞机被当作一个刚体进行建模; ●采用运动与动力学方程表示飞机运动; ●包含飞机质量特性,具备飞机的质量、惯性力矩等参数。 飞机6自由度运动方程模型 2. iAircraft气动力学模型 iAircraft气动力学模型包含风速、动力装置的力和力矩、气动力和力矩、地球轴向力、平移方程、旋转方程和四元数方程。这个气动力学模型的逼真度及细节的丰富程度足够支持进行飞机飞控系统的设计以及需要高逼真度的工程飞行仿真机,例如铁鸟仿真机和基于仿真的集成测试实验室。飞机气动力学具有以下特点: ●根据飞行条件以及控制面的偏转, ●空气动力学模型计算气动力和力矩; ●模型采用查找表方式获取飞机的气动系数。

小型飞机模型制作详解

《小型飞机模型制作详解》 超详版 一.无线遥控设备 众所周知,飞机模型没有无线遥控设备就失去了其真正意义,可以说无线遥控设备就是飞机模型的心脏。下面是无线遥控设备的详解 何谓[比例式遥控器]: 所谓的比例式遥控装置,就是当操纵者以不同的速度或幅度拨动发射机的操纵杆,遥控系统的接收机接收到信号,相应的控制舵机或变速器做相同速度或幅度的运动的遥控装置。换言之,模型的动作完全与发射机操纵杆的动作成比例,这不同于过去的开关式的遥控装置,受动物会随着操纵者的小幅度操纵而做小幅度的动作,基本上模型通过比例式遥控装置真实的反应操纵者的所想所做。这正是[比例式遥控器]的优点。 遥控器的分类:为了操纵不同类别的遥控模型,遥控器也分为许多种类。通常,以它的频道(Channel)数目作为区分方法。像模型车和模型船,多采用2频道遥控装置控制转向系统和油门(节油阀)系统;用于控制模型飞机和直升飞机的遥控器装置,通常采用2-4频道以上,甚至有的还采用10频道的遥控器。另一种区分方法是以使用的特性,也就是根据特有附加功能进行分类。 此外。根据不同的无线电波频率又可以分为(AM)和(FM),前者着重于简单方便,后者着重于稳定可靠。最顶级的遥控装置则采用技术最先进的(PCM-Pulse Code Modulation)脉冲编码调制或称(数码)方式。用于模型飞机及直升飞机波段频率MHz 71 40.710 73 40.730 75 40.750 77 40.770 79 40.790 81 40.810 83 40.830 85 40.850 17 72.130 18 72.150 19 72.170 20 72.190 21 72.210 50 72.790 51 72.810 52 72.830 53 72.850 54 72.870 用于模型车船艇和帆船波段频率MHz 01 26.975 02 26.995 03 27.025 04 27.045 05 27.075 06 27.095 07 27.125 08 27.145 09 27.175 10 27.195 11 27.225 12 27.245 61 40.610 63 40.630 65 40.650 67 40.670 69 40.690 注意使用频率! 众所周知,遥控装置的发射机与接收机之间是通过无线电波沟通的,为了愉快地享受遥控模型的乐趣,对所用的无线电波实行管制是致为重要的,右表所示是为国际及美国政府规定合法的无线电波使用频率。无论您使用怎样高级的遥控装置,或采用各种各样的发讯方式,使用的频率范围是不能变化的。所以,必须注意在同一场合玩遥控模型的朋友不可同时使用相同的频率的遥控装置,否则便会互相干扰使遥控模型失去控制,甚至产生重大事故!! 无线电遥控器的分类和组成要了解无线电遥控就必须首先知道什么是无线电遥控,无线电遥控就是利用电磁波在远距离上,按照人们的意志实现对物体对象的无线操纵和控制,这种无线控制的方式就叫做无线电遥控。无线电遥控遥控技术的诞生,起源于无线电通讯技术,最初的构想是无线电电报技术的建立,真空电子管的发明使得无限电技术的应用和普及很快应用在民用和军用等各个领域。在第一次世界大战时,无线电遥控应用较多的

飞机模型的设计

第一步,整体设计。 1。确定翼型。我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。因为我做的是练习机,那就选用经典的平凸翼型克拉克Y了。因伟哥有一定飞行基础,速度可以快一些,所以我选的厚度是12%的翼型。 实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。 机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。 矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。因为我做的是练习机,就选择制作简单的矩形翼。 翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。一般方法有三种,如图。 因为我做的是练习机,翼载荷小,损失些升力和发动机功率不影响大局,所以,我的翼梢没有作处理。 2。确定机翼的面积。模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。我选择60克/平方分米的翼载荷。40级的练习机一般全重为2.5公斤左右。又因为考虑到方便携带和便于制作,翼展定为1500毫米。那么,整个机翼的面积应该为405000平方毫米。通过计算,得出弦长为270毫米。还有,普通固定翼飞机的展弦比应在5-6之间。通过验算得知,这个弦长在规定的范围之内。 3.确定副翼的面积。机翼的尺寸确定后,就该算出副翼的面积了。副翼面积应占机翼面积的20%左右,其长度应为机翼的30-80%之间。因为是练习机,不需要太灵敏,我选15%。因为我用一个舵机带动左右两个副翼,所以副翼的长度要达到翼展的90%左右。通过计算,该机的副翼面积因为60750平方毫米,那么,一边副翼的面积就是30375平方毫米。 4.确定机翼安装角。以飞机拉力轴线为基准, 机翼的翼弦线与拉力轴线的夹角就是机翼安

模型飞机的基本制作过程

模型飞机的基本制作规则 第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。 实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。 机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。 矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5- 6之间。 3、确定副翼的面积 机翼的尺寸确定后,就该算出副翼的面积了。副翼面积应占机翼面积的20%左右,其长度应为机翼的30-80%之间。 4、确定机翼安装角 以飞机拉力轴线为基准, 机翼的翼弦线与拉力轴线的夹角就是机翼安装角。机翼安装角应在正0 -3度之间。机翼设计安装角的目的,是为了为使飞机在低速下有较高的升力。设计时要不要安装角,主要看飞机的翼型和翼载荷。有的翼型有安装角才能产生升力,如双凸对称翼。但是,大部分不用安装角就能产生升力。翼载荷较大的飞机,为了保证飞机在起飞着陆和慢速度飞行时有较大的升力,需要设计安装角。任何事物都是一分为二的,设计有安装角的飞机,飞行阻力大,会消耗一部分发动机功率。安装角超过6度以上的,更要小心,在慢速爬升和转弯的的情况下,很容易进入失速。

相关主题
文本预览
相关文档 最新文档