当前位置:文档之家› 水电站设计保证率

水电站设计保证率

水电站设计保证率
水电站设计保证率

水电站设计保证率

design probability of hydroelectric power station

水电站正常发电的保证程度。常用正常发电的总时段与计算总时段相比的百分率表示。时段长短可根据不同情况选用年、月、旬、日等。水电站设计保证率的确定,与水电站所在电力系统的负荷特性、系统中水电容量比重的大小、水电站的规模及其在电力系统中的作用,以及在水电站降低出力时,保证系统用电可能采取的补救措施等诸多因素有关。通常水电站设计保证率的选择范围为75%~98%。设计水电站时,合理选择设计保证率十分重要。从理论上说,可以通过动能经济计算的途径来选定。但实际上,由于水电站设计保证率涉及许多方面,初步设计时很难掌握足够的符合实际的电力用户经济特性及其他资料,进行技术经济论证,因此一般是参照有关设计规程规范的规定,经过分析后选定。通常对大型水电站和水电装机容量在系统中所占比重较大者,应取较高的设计保证率。对中小型水电站和水电装机容量在系统中占比重较小者,可以选择较低的设计保证率。

水电站装机容量- 正文

水电站全部水轮发电机组额定容量(即发电机铭牌出力)之和,度量单位为千瓦(kW)。它是表示水电站建设规模和电力生产能力的主要指标之一。

组成水电站装机容量大致可分成必需容量和重复容量两大部分。必需容量(也称有效容量)又可分为工作容量和备用容量(包括事故备用、负载备用和检修备用等)。水电站根据在系统中所起作用的不同,具有上述全部容量或仅具有部分容量。

工作容量直接承担电力负荷的发电容量称工作容量。在电力系统中担负尖峰负荷的水电站,其工作容量可比保证出力大若干倍。

备用容量为确保电力系统正常安全运行,考虑不可预测的瞬时增加负荷、事故停机和计划检修等因素而装置在水电站上的容量。按用途不同分为三类。①负荷备用容量:为担负一天内电力系统瞬时的负荷波动和计划外负荷增长所需要的发电容量,它可起保持电力系统周波正常的功能,通常称为调频容量。②事故备用容量:电力系统中部分机组因事故而被迫停机或输电系统发生故障时,为保证正常供电在水电站上设置的发电容量。水电站机组起动和停机灵活方便,最适宜于担任电力系统的事故备用容量。③检修备用容量:电力系统中部分机组进行检修时,为保证正常供电在水电站上设置的发电容量。只有在负荷降低时间内不能将全部机组检修完毕时,才需设置检修备用容量。

重复容量在调节性能较差的水电站,为了节省电力系统中火电站的燃料消耗,多发季节性电能而增设的装机容量。

选择的原则和方法正确合理地选择水电站装机容量,必须按下述步骤进行。

①根据水文资料,进行水能计算,确定水电站的各项水能参数(保证出力、年发电量等);②确定水电站的合理供电范围、设计负荷水平和所在电力系统的负荷特性与参数;③了解电力系统内各种电站的组成、特性和发展计划,明确设计水

电站在系统中的地位和作用;④通过电力电量平衡和动能经济计算,分别确定水电站可担负的工作容量和备用容量数额,以及是否设置重复容量;⑤结合水电站枢纽布置、机组制造和供应条件,确定水电站装机容量和机组台数的若干可行方案,进行技术经济比较,优选最合理的方案。

20世纪60年代以来,随着电力系统的扩大,随着各种类型水、火电站的投入和河流梯级开发的实现,水电站装机容量选择所涉及的因素越趋复杂,如何正确选定已不是孤立和单一的问题。中国已开始应用系统工程理论和以计算机为手段,优化选择水电站的装机容量。

70年代以来,国外对一些早期建成的水电站进行了扩建,并开展了相应的设计研究工作。如美国大古力水电站,初建于20世纪30年代,1941年第一台机组发电。原定装机容量为197.4万kW,以后由于美国西部大电网的形成和哥伦比亚河上游梯级水库的建成,对该电站进行了几次扩建,增建了第三厂房和抽水蓄能发电厂,已扩大装机容量至648万kW。1980年以来,中国也开始对一些早期建设的水电站进行扩建设计和研究。在设计大中型水电站时,若预计其径流情况和供电系统情况在将来有较大变化时,应在枢纽布置中考虑预留扩建余地,为扩大装机容量创造条件。

动压轴承形成动压油膜的必要条件

1.相对运动的两表面必须形成一个收敛楔形

2.被油膜分开的两表面必须有一定的相对滑动速度,其运动方向必须使润滑油从大口进,小口流出

3.润滑油必须有一定的粘度,供油要充分

V、η越大,油膜承载能力越高

日本开发采用世界首台立式大型灯泡式水轮发电机组

发布时间:2002-03-22

最近,日本东北电力公司与富士电机公司合作共同开发采用垂直式结构布置型式的大容量灯泡式水轮发电机组,最大功率13.5MW,有效水头15.54m,最大流量100m3/s,装在阿贺野川水系原有的上野尻水电站上游的新建第二上野尻水电站,现已完成安装,正在调试运行。

1 为什么采用立式?

灯泡式属贯流式水轮机中之一种,主要用于低水头大流量水电站。与螺浆式水轮机中的立轴转浆式比,它具有效率高、占地面积小等优点。为了确保大坝下面以及下游一带的建设场地,通常选用机组轴系为水平布置的横轴型。该电站之所以采用立式,有以下两个方面原因:①建站场地条件限制,即河流保护、道路周围条件等很难确保建站面积;②原有大坝等建筑物的限制,引水路和放水路等线路受限制。为了解决这些问题,决定采用建站方面自由

度较大的立轴灯泡式,以便削减土木建筑费用,提高经济性。

2 结构特点及优点

在基本结构方面,立轴式与横轴式相同,只有以下几点区别:①横轴式通常采用2个(上

和下)支臂的固定导叶来承受水推力,而立轴式则采用具有4个支臂的下机架来支撑水推力,

水轮机和发电机自重等负载。②立轴式的推力轴承和导轴承布置在发电机转子的下面,属于

2轴承伞型结构。③立轴式的水轮机转轮是向下拆卸的立轴式、灯泡式水轮机控制转轮叶片

的接力器与将接力器装设在水轮机转轮内部的横轴式在结构上有很大区别。

机组按立轴配置,壳体便可兼作导水路,从而减少挖掘面积。由于厂房占地面积较小,

也就不受场地条件的限制,立式机组的拆卸和组装置是按部套为单位进行的,便于维护,与

卧式相比,可缩短大修时间。立轴式机组采用新的通风冷却方式,可以省略鼓风机、空气冷

却器、冷水循环泵等辅机装置。

该信息出自中国工程机械商贸网(https://www.doczj.com/doc/936445173.html,)

详细出处参考:https://www.doczj.com/doc/936445173.html,/detail/2002/03/20020322125247.shtml

日本立式灯泡式水轮发电机组投入运行

摘要:立式灯泡式水轮发电机组的运行使水电站进一步提高经济效益成为可能,是对长期存在的灯泡式水轮机和发电机只能作为卧式机组这一固有观念的突破。2002年,这种设备在Kaminojiri第二发电厂被安装并开始商业化运行,其主要特征以及立式灯泡式机组技术的特别之处,将在本文中进行阐述。

虽然水力发电作为一种可再生的环保型能源,一段时间以来在日本已成为主要的发电来源之一。但不容忽视的是,经济上合理、技术上可行的坝址已经被开发利用,因此最近几年中水电事业没有实现预期的发展。与此同时,设备的更新、改进和现有电站的重建已成为当前的科研主题,相关科研成果在很多地方得到应用。

在这一背景下,Tohoku电力公司对阿贺野河上所建的为数众多的大坝实施了一套长期的改造计划。针对下游水的可利用量少于上游,改造计划主要实现了平衡电厂装机容量的目的,以确保更有效地利用丰富的水资源。

1.Kaminojiri第二发电厂

Kaminojiri第二发电厂在Kaminojiri电站原有坝址基础上扩建而成。原电厂的最大过水流量低于阿贺野河上、下游新建的其它水电厂约100 m3/s,不均衡的过水流量使整个河流在该处产生了一个瓶颈,以致于影响到河系上电厂的整体运行。因此,对已有的Kaminojiri水坝实施改造对于有效利用该河的水资源有着十分重大的意义。

立式灯泡式水轮发电机组对于该项目而言是最合适的,考虑到水头和流量,采用传统的卧式水轮机较为困难,且成本相对较高,原因有以下几点:

(1)场地的限制,比如:河堤、公路、铁路等等,使发电厂房内没有足够的空间安装传统的卧式机组。

(2)现有大坝投入运行以来,受引水渠和尾水渠的空间限制,难以提供适合于卧式灯泡式机组的直线水流通道。

为解决以上问题且节约成本,Tohoku电力公司和Voith Fuji水力发电集团共同研制出立式灯泡式机组,实现了观念的创新。该机组的首次应用是在Kaminojiri第二发电厂,于2002年6月投入商业运行。

发电厂位置和厂房平面布置见图1,发电厂房的横断面图见图2,Kaminojiri第二发电厂水轮机和发电机的详细参数见表1。

立式灯泡式机组的研制和成功应用获得了日本电力科学技术发展协会授予的欧姆技术奖,以示对这一先进技术成就的奖励。

2.技术及经济优势

立式灯泡式机组与传统卧式灯泡式机组相比具有以下几点优势(二者的配置见图3)

(1)水轮机和发电机均立式布置,占用厂房空间小了,因此立式机组能在更小的空间内安装使用。

(2)因为引水渠、锥管及尾水渠可设计成任意角度而不妨碍确定水轮机、发电机的核心位置,因此不会受已有场地条件的限制。

(3)从引水渠的进口到进水口之间的上游渠道长度缩短,因此进水流道的水头损失将减少,水头将增大。

(4)通过布置于引水渠进水口上方的门式起重机,水轮机和发电机的主要部件全部能够被吊起和放下,使装配和拆除更加容易,因此安装时间、检修周期会大大缩短。

从以上几点优势来看,Kaminojiri第二发电厂经济上更合理是显而易见的(与传统卧式灯泡式机组相比),见表2。

3.先进技术

3.1 立式灯泡式机组的特有技术

立式灯泡式机组投入Kaminojiri电厂运行时,有数项先进技术被采用于水轮机、发电机和土建工程,下文对这些技术做详细的阐述。

(1)灯泡式支撑体系

采用立式灯泡式机组时,水对水轮机的推力和水轮机、发电机的自重均作用于灯泡式底座上(相当于卧式灯泡式水轮机的固定导叶),这就意味着底座要承受大约相当于作用在卧式机组的双倍荷载。

底座的变形会使安装在其下游方向的导流叶片产生侧方间隙,另一方面,水流中灯泡底座的阴影区域会影响涡水轮机的性能。

考虑以上因素,通过对应力、应变等进行静态分析计算,并对固有频率、振动特性等进行动态分析计算后,制作了一个包括立式灯泡式机组的旋转部件、固定部件在内的整体模型,将四撑杆的底座应用于样机中。

为便于理解,图4给出了有限元法模型。

(2)吸入旋涡

如图2所示,立式灯泡式机组直接使用引水渠进水口的水,当上游水位下降、进水口水深变浅时,将形成吸入旋涡,严重时会持续不断地混入空气,因此在灯泡体内产生相当大的振动。

为了观察吸入旋涡的一般特性,首先做了一个基本的水力模型试验,然后通过更大比例尺的水工结构实体模型,做了一个流量、水深动态变化情况下的更具体的模型试验。营造自然运行条件,目的是为了深入研究水轮机吸入旋涡的具体特征。根据这些试验结果,在进水口的顶部配备了吸入旋涡防护整流钢板。

3.2 免维护技术

取消了辅助设备,无油润滑部件和以下提到的用于立式灯泡式机组的许多其它技术设备实现了免维护运行,从而减少了维护成本。

(1)发电机的通风冷却技术

在灯泡式机组中,发电机安装在灯泡体内水流通道内,因此同其它类型的发电机相比在维修和检查时非常困难。另一方面,发电机淹没在河水中对其自身的冷却有利,因此为了取消辅助设备,各种各样的风冷系统被研制并运用。

Kaminojiri第二电厂也不例外,在使用了下述的技术之后,取消了用于通风冷却的辅助设备。

A.定子直接散热:这是用于冷却定子铁芯的办法。定子架为单壳体,定子铁芯直接附在壳上,铁芯产生的热量直接释放到流动的河水中。

B.散热片冷却装置:用于定子绕组的转子和线圈端散热,以铜为材料的散热片附着在灯泡体鼻部内侧,使产生的热量通过散热片直接释放于流动的河水中。

C.自身通风:通过定子架外壳直接冷却定子铁芯和定子绕组。通过散热片释放的只是定子绕组中的转子和线圈端产生的热量,同时会使所需冷却风量减少为一般冷却装置的一半左右。因此,在转子磁轭架上安装风扇实现自行通风后,使散热片冷却结构减少通风损耗成为可能。

(2)发电机轴承技术

发电机轴承位于伞形装置内部,冷却推力轴承采用一种新方式,即:借助于灯泡式底座。底座为单层板式结构,夹层内充填润滑油,在推力环的自抽作用下油在板内循环,然后将热量直接释放到流动的河水中,见图5。

(3)水轮机无油润滑技术

水轮机的导向轴承采用酚醛树脂水润滑轴承,不再使用润滑油冷却循环系统。另外,无油润滑轮毂应用于可调叶片的转轮,不再使用轮毂润滑油和转轮轮毂增压系统。

水轮机的无油润滑技术有利于减少维护,同时避免了油流入河水中。

4.现场安装

不同于卧式灯泡式水轮机,立式灯泡式机组的现场安装不涉及任何复杂的操作,比如:将各种各样的配件通过很小的升降口吊起到水流通道内,然后调整水平并安装到指定位置。立式灯泡式机组从下面的水轮机到上面的发电机,安装时仅需要进水口顶部的起重机的一个简单提升操作即可解决,从而缩短了安装时间。现场安装的各个场景均可拍成照片。

5.实测和分析数据的比较

立式灯泡式机组是一种打破常规的新研制出来的水轮发电机组,因此与其相关的在无水状态下的应力、应变、振动等数据,均通过加载和卸载试验获得,目的是验证分析结果的合理性,并最终获取最优设计参数。

比较特别的是,固有频率在干、湿两种环境下分别测出,数据完全证实了当初的分析,如何减少不同振荡模式下的固有频率也彻底搞清楚了。

6.结论

自从水力发电机组长足发展以来,在实践中被应用的全新机型实属罕见。不管怎样,这里阐述的立式灯泡式原理给人们展示了一个对灯泡式机组、电气设备和土木结构的全新思索,以此为基础,将引起技术革新和经济发展。作者希望这篇文章能为其他地方的水电站在未来的建设中提供有益的参考。

若由涡带引起的尾水管中的低频压力脉动频率与引水管固有频率接近,则可能引起引水管强

烈振动;如果压力脉动频率和水轮机的转频接近,则可能引起功率摆动

负荷率是描述:平均负荷(电量)与最大负荷的比率的物理量。

水轮机的选型设计

水轮机选型是水电站设计中的一项重要任务。水轮机的型式与参数的选择是否合理,

对于水电站的动能经济指标及运行稳定性、可靠性都有重要的影响。

水轮机选型过程中,一般是根据水电站的开发方式、动能参数、水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。

一、水轮机选型的内容、要求和所需资料

1.水轮机选择的内容

⑴确定单机容量及机组台数。

⑵确定机型和装置形式。

⑶确定水轮机的功率、转轮直径、同步转速、吸出高度及安装高程、轴向水推力、飞逸转速等参数。对于冲击式水轮机,还包括确定射流直径与喷嘴数等。

⑷绘制水轮机的运转综合特性曲线。

⑸估算水轮机的外形尺寸、重量和价格。

⑹根据选定的水轮机型式与参数、结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。

2.水轮机选择的基本要求

水轮机选择必须充分考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。在几个可能的方案中详细地进行以下几方面的比较,从中选择出技术经济综合指标最优的方案。

⑴保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。

⑵根据水电站水头的变化及电站的运行方式,选择合适的水轮机型式及参数,使电站运行中平均效率尽可能高。

⑶水轮机的性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损、抗空蚀性能。

⑷机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。

⑸机组制造供货应落实,提出的技术要求应符合制造厂的设计、试验与制造水平。

⑹机组的最大部件和最重部件要考虑运输方式与运输的可行性。

3.水轮机选型所需的原始技术资料

水轮机的型式及参数的选择是否合理、是否与电站建成后的实际情况相吻合,在很大程度上取决于对原始资料的调查、汇集和校核。根据初步设计的深度和广度的要求,通常应具备下述的基本技术资料。

⑴枢纽资料:包括河流的水能总体规划、流域的水文地质、水能开发方式、水库的调节性能、水利枢纽布置、电站类型及厂房条件、上下游综合利用的要求、工程的施工方式和规划等情况。还应包括经过严格分析与核准的水能基本参数,诸如电站的最大水头、最小水头、

加权平均水头、设计水头,各种特征流量、、,典型年(设计水平年、丰水年、枯水年)的水头、流量过程线。此外还应有电站的总装机容量、保证出力以及水电站下游水位流量关系曲线。

⑵电力系统资料:包括电力系统负荷组成、设计水平年负荷图、典型日负荷图、远景负荷;设计电厂在系统中的作用与地位,例如调峰、基荷、调相、事故备用的要求以及与其他电站并列调配运行方式等。

⑶水轮机设备产品技术资料:包括国内外水轮机型谱、产品规范及其特性;同类水电站的水轮机参数与运行的经验、存在问题等。

⑷运输及安装条件:应了解通向水电站的水陆交通情况,例如公路、水路及港口的运载能力(吨位及尺寸);设备现场装配条件,大型专用加工设备在现场临时建造的可能性及经济性;大型部件整件出厂与分块运输现场装配的比价等。

除上述资料外,对于水电站的水质应有详细的资料,包括水质的化学成分、含气量、泥沙量等。

二、水轮机选型的基本方法

目前世界上各国在设计水电站中选择水轮机的方法不尽相同,主要方法可以概括为下面几种。

⒈应用统计资料选择水轮机

这种方法以已建水电站的统计资料为基础,通过汇集、统计国内外已建水电站的水轮机的基本参数,在把它们按水轮机型式、应用水头、单机容量等参数进行分析归类。在此基础上,用数理统计法作出水轮机的比转速、单位参数与应用水头的关系曲线= 、=、= 以及电站空化系数与比转速的关系曲线等,或者用数值逼近法得出关于这些参数的经验公式。当确定了水电站的水头与装机容量等基本参数后,可根据统计曲线或经验公式确定水轮机的型式与基本参数。按照选定的水轮机参数向水轮机生产厂提出制造任务书,由制造厂生产出符合用户要求的水轮机。这种方法在国外被广泛采用。

⒉按水轮机系列型谱选择水轮机

在一些国家,对水轮机设备进行了系列化、通用化和标准化,制定了水轮机型谱,为每一水头段配置了一种或两种水轮机转轮,并通过模型试验获得了各型号水轮机的基本参数与模型综合特性曲线。这样,设计者就可以根据水轮机型谱与模型综合特性曲线选择水轮机的型号与参数。我国与原苏联都曾颁布过水轮机型谱。水轮机型谱为水轮机的选型设计提供了便利,可使选型工作简化与标准化。但要注意不可局限于已制定的水轮机型谱,当型谱中的转轮性能不能满足设计电站的要求时,要通过认真分析,研究新的水轮机方案,并与生产厂家协商,设计、制造出符合要求的水轮机。同时,要不断发展、完善、更新水轮机的型谱。

3.用套用法选择水轮机

这种方法是直接套用与拟建电站的基本参数(水头、容量)相近的已建电站的水轮机型号与参数。这种方法多用于小型水电站的设计,它可以使设计工作大为简化。但要注意必须合理套用,要对拟建电站与已建电站的参数进行详细的分析与比较,还要考虑不同年代水轮机的设计与制造水平的差异,90年代设计的电站若直接套用60年代电站的水轮机,往往会使水轮机的参数偏低。因此,必要时对已建电站的水轮机参数做适当修正后再套用。

我国过去应用较多的方法是按照水轮机型谱选择水轮机。但随着水电开发的进展,旧的水轮机型谱已不能满足目前水电站设计的需要,设计者常采用不同的选型方法相互结合、相互验证,以保证水轮机选型的科学性与合理性。

三、机组台数选择

对于一个确定了总装机容量的水电站,机组台数的多少将直接影响到电厂的动能经济指标与运行的灵活性、可靠性,还影响到电厂建设的投资等。因此,确定机组台数时,必须考虑以下有关因素,经过充分的技术经济论证。

⒈机组台数对工程建设费用的影响

机组台数的多少直接影响单机容量的大小,单机容量不同时,机组的单位千瓦造价不同,一般,小机组的单位千瓦造价高于大机组。一方面,小机组的单位千瓦金属消耗高于大机组,另一方面,单位重量的加工费也较大。除主要机电设备外,机组台数的增加,要求增加配套设备的台数,主副厂房的平面尺寸也需增加,因此,在同样的装机容量条件下,水电站的土建工程与动力厂房的成本也随机组台数的增加而增加。

⒉机组台数对电站运行效率的影响

当采用不同的机组台数时,电站的平均效率是不同的。较大单机容量的机组,其单机效率较高,这对于预计经常满负荷运行的水电站获得的效益较显著。但是,对于变动负荷的水电站,若采用过少的机组台数,虽单机效率高,但在部分负荷时由于负荷不便在机组间调节,因而不能避开低效率区,这会使电站的平均效率降低。电站的最佳装机台数,要通过电厂的经济运行分析来确定。

此外,机组类型不同时,台数对电站运行效率的影响不同。对于固定叶片式水轮机,尤其是轴流定桨式水轮机,其效率曲线比较陡峭,当出力变化时,效率变化剧烈。若机组台数多一些,则可通过调整开机台数而避开低负荷运行,从而使电站的运行效率明显提高。但是,对于转桨式水轮机或多喷嘴的水斗式水轮机,由于可以通过改变叶片角度或增减使用喷嘴的数目而使水轮机保持高效率运行,因此,装有这些机组的水电站,机组台数对电站运行效率的影响较小。

⒊机组台数对电厂运行维护的影响

机组台数较多时,其优点是运行方式灵活,发生事故时对电站及所在系统的影响较小,检修也容易安排。但台数较多时,运行人员增加,运行用的材料,消耗品增加,因而运行费用较高。同时,较多的设备与较频繁的开停机会使整个电站的事故发生率上升。

⒋机组台数对设备制造、运输与安装的影响

机组台数增加时,水轮机和发电机的单机容量减小,则机组的尺寸小,制造、运输及现场安装都较容易。反之,台数减小则机组尺寸增大,机组的制造、运输、安装的难度也相应加大。因此,最大单机容量的选择要考虑制造厂家的加工水平及设备的运输、安装条件。此外,从发电机转子的机械强度方面考虑,发电机转子的直径必须限制在转子最大线速度的允许值之内,机组的最大容量有时也会因此受到限制。

⒌机组台数对电力系统的影响

对于占电力系统比重较大的水电厂及大型机组,发生事故时对电力系统的影响较大,考虑到电力系统中备用容量的设置及电力系统的安全性,在确定台数时,单机容量不应大于系统的备用容量,即使在容量较小的电网中,单机容量也不宜超过系统容量的1/3。

⒍机组台数对电厂主接线的影响

由于水电厂水轮发电机组常采用扩大单元主结线方式(超大型机组除外),故机组台数多采用偶数。同时为了运行方式的机动灵活及保证机组检修时的厂用电可靠,除了特殊情况和农村小电站外,一般都装两台以上机组。

对于装置大型机组的水电厂,由于主变压器的最大容量受到限制,常采用单元接线方式,因此机组台数的选择不必受偶数的限制。

以上与机组台数有关的诸因素,许多是既相互联系又相互矛盾的,在选择时应针对主要因素,进行综合技术经济比较,选择出合理的机组台数。

四、水轮机型式的选择

虽然各类水轮机有明确的适用水头范围,但由于它们的适用范围存在着交叉水头段,因此,必须根据水电站的具体条件对可供选择的水轮机进行分析比较,才能选择出最合适的机型。

水轮机的类型及适用范围

水轮机型式

适用水头范围

(m)比转速范围(m?kw)

能量转换方式水流方

结构型

反击式贯流式

灯泡式

轴伸式

<20600~1000轴流式

定桨式

转桨式

3~80200~850斜流式40~80150~350混流式30~70050~300

冲击式射流式水斗式300~170010~35 (单喷嘴)

不同类型的水轮机具有不同的适用范围与特点,各类水轮机的特点可概括如下

⒉混流式水轮机

⑴比转速范围广,适用水头范围广,可适用30-700m。

⑵结构简单,价格低。

⑶装有尾水管,可减少转轮出口水流损失。

⒊轴流式水轮机

⑴较高,具有较大的过流能力,适用于30-80m水头范围。

⑵转轮可以分解,加工运输方便。

⑶轴流转桨式水轮机可在协联方式下运行,在水头、负荷变化时可实现高效率运行。

⑷在水头、负荷变化较小,或装机台数较多的电站,可以通过调整运行机组台数使水轮机在高效区运行。轴流定桨式水轮机结构简单、可靠性好,尤其在担负基荷的低水头电站较适用。

㈡交界水头区水轮机型式的选择

⑴贯流式与轴流式的比较

1)1)1)贯流式的水流条件好,同样过流面积时,贯流式水流通过容易,单位流量大,无蜗壳和肘形尾水管,流道水力损失小,运行效率比轴流式高。

2)2)2)贯流式水轮机可布置在坝体或闸墩内,可以不要专门的厂房,土建工程量小

且适于狭窄的地形条件。

3)3)3)对潮汐电站,贯流式水轮机的适应性强,能满足正反向发电、正反向抽水和正反向泄水的需要。

4)4)4)贯流式水轮机为了满足安装高程的要求,需从引水室入口至尾水管全部开挖到相应的深度。而轴流式只需对尾水管部分进行深开挖,因此,贯流式机组开挖量大。

5)5)5)灯泡贯流式水轮发电机组全部处于水下,要求有严密的封闭结构及良好的通风防潮措施,维护、检修较困难。

⑵轴流式与混流式的比较

1)1)1)轴流转桨式水轮机适用于水头与负荷变化较大的电站,能在较宽广的工况范围内稳定、高效率运行,平均效率高于混流式水轮机。

2)2)2)在相同的水头下,轴流式的高于混流式,有利于减少机组的尺寸。

3)3)3)轴流式水轮机的空化系数大,约为同水头段混流式水轮机的2倍,为保证空化性能需增加厂房的水下开挖量。

4)4)4)当尾水管较长时,轴流式水轮机比混流式水轮机易产生紧急关机时的抬机现象。

5)5)5)轴流式水轮机的轴向水推力系数约为混流式的2~4倍,推力轴承载荷大。另外,轴流转桨式水轮机的转轮及受油器等部件结构复杂、造价高。

发电机标准同步转速(对应于f=50Hz)

磁极

3456789101214

对数

同步

1000750600500428.6375333.3300250214.3转速

磁极

16182022242628303234

对数

同步

187.5166.7150136.4125115.4107.110093.888.2转速

磁极

36384042444648505254

对数

同步

83.3797571.468.265.262.56057.755.5转速

坝内水电站

优点是:①遇到河谷狭窄、洪水流量大、地面厂房布置有困难时,可以解决好大坝泄洪和厂房布置的矛盾。②它同地下水电站相比,一般工程量较小。③这种具有大孔洞的混凝土坝对基础不均匀沉陷有较好的适应性。④由于大孔洞混凝土坝前后腿可分别浇筑,这样可以不设纵缝,且散热面宽,有利于混凝土降温。

缺点是坝内水电站的结构较为复杂,施工时有厂坝干扰问题。但现已摸索出一些经验,对这些问题的解决已大有改进。其他还有坝内大孔洞尺寸与坝高的关系有一定的约束性,选择单

机容量和考虑大坝后腿厚度、尾水管尺寸等均受限制。在运行条件上,坝内式厂房不如开敞式地面厂房,但也不比地下式厂房和封闭式地面厂房差。

中国已建成一定数量的坝内水电站,如江西上犹江、湖南凤滩、广东枫树坝、海南岛牛路岭等水电站。其中凤滩坝内孔洞和装机容量最大,该坝高112.5米,坝内孔洞长255.8米,宽20.5米,高40.1米,装有4台10万千瓦机组。

水电站课程设计报告

1.课程设计目的 水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。为今后从事水电站厂房设计打下基础。 2.课程设计题目描述和要求 2.1工程基本概况 本电站是一座引水式径流开发的水电站。 拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。 本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。钢管露天敷设,支墩采用混凝土支墩。支承包角120度,电站厂房采用地面式厂房。 2.2设计条件及数据 1.厂区地形和地质条件: 水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。 2.水电站尾水位: 厂址一般水位12.0米。 厂址调查洪水痕迹水位18.42米。 3.对外交通: 厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。4.地震烈度: 本地区地震烈度为六度,故设计时不考虑地震影响。

5×50MW水电站的设计说明

1.绪论 1.1课题的背景和发展情况 1.1.1背景 电力工业是能源工业、基础工业,在国家建设和国民经济发展中占据十分重要的地位,正常运行,发出来的电能顺利输送到电网的非常重要的环节。因此,电厂设备和元器件选择和保护设计方案的确定,对于电厂的安全稳定运行有重要的意义。对发电厂电气部分及元件保护设计进行科学的设计很有必要[2]。 1.1.2发电厂在国外的发展情况 当前国际上全球围的电力体制逐步打破垄断、非管制化,引入竞争机制,形成有限电力市场己成为必然趋势。最大限度的在电力系统中引入竞争,己被大多数国家所接受。在这种情势下,电力系统优化设计以及火电厂电气部分设计己成为许多国家的一项主要研究课题。整个电力工业可以划分为发电、输电、配电和供电四大领域。发电部分属于理论兼实践研究领域。对整个电力系统起着至关重要的作用,火电厂电气部分设计是关系到整个电力系统运行可靠性的最关键一步。对于火电机组运行优化,从国外的发展趋势看,其优化计算机模块程序的应用起到了真正指导运行,降低能耗的目的。美国、德国等先进国家在机组运行优化管理方面的工作己有近十年的经验。例如,德国斯蒂亚克电力公司的机组运行优化管理系统,通过系统优化及控制,可对各个薄弱环节及整个过程经济性的影响做出评价。目前我国电力市场的改革趋向是“厂网分开,竞价上网”,即将电网经营企业拥有的发电厂与电网分开,建立规的、具有独立法人地位的发电实体,市场也只对发电侧开放。发电的电力市场的主体是各独立发电企业与电网经营企业,电网经营企业负责组织各发电公司的竞争,政府负责对电力市场进行监督管理。与英国、澳大利亚等目的电力市场不同,中国电力市场继续保持着输、配一体的模式,保留供电营业区,每个供电营业区只有一个指定的供电向终端用户供电。同时,根据“省为实体”的方针,我国的电力市场以省级电力市场为主,各省电力公司是其省电力市场竞争的组织者。电力工业经过长期的改革和发展,目前从技术、人员、观念等方面对于火力发电厂电气设计创造了有利的条件。但是,技术方面并为达到差强人意的要求[3]。 1.2设计任务 1.2.1设计目的 (1)培养学生综合运用所学理论和技能解决实际问题的能力; (2)学习专业工程设计的方法,进行设计技能、设计方法的初步训练,进行科学研究方法的初步训练,发挥学生的创造性,培养学生的思维能力和分析能力。 1.2.2技术指标 某南方山区建设一座装机容量为5×50 MW的水电站,附近30 km处某国防厂及邻

水电站设计方案.doc

坝后式水电站毕业设计 5.1 设计内容 5.1.1 基本内容 5.1.1.1 枢纽布置 (1) 依据水能规划设计成果和规范确定工程等级及主要建筑物的级别; (2) 依据给定的地形、地质、水文及施工方面的资料,论证坝轴线位置,进行坝型选择; (3) 论证厂房型式及位置; (4) 进行水库枢纽建筑物的布置(各主要建筑物的相对位置及形式,划分坝段),并绘制枢纽布置图。 5.1.1.2 水轮发电机组选择 (1) 选择机组台数、单机容量及水轮机型号; (2) 确定水轮机的尺寸(包括水轮机标称直径D1、转速n、吸出高度Hs、安装高程Za); (3) 选择蜗壳型式、包角、进口尺寸,并绘制蜗売单线图; (4) 选择尾水管的型伏及尺寸; (5) 选择相应发电机型号、尺寸,调速器及油压装置。 5.1.1.3厂区枢纽及电站厂房的布置设计 (1) 根据地形、地质条件、水文等资料,进行分析比较确定厂房枢纽布置方案; (2) 核据水轮发甴机的资料,选择相应的辅助设备,进行主厂房的各层布置设计; (3) 确定主厂房尺寸; (4) 副厂房的布置设计; (5) 绘制主厂房横剖面图、发电机层平面图、水轮机层和蜗壳层平面图各?张。 5.1.0 选作内容 5.1.2.1 引水系统设计 (1) 进水口设计。确定进水口高程、型式及轮廓尺寸; (2) 压力管道的布置设计。确定压力管道的直径;确定压力管道的布置方式和各段尺寸;

5.2 基本资料 本水电站在MD江的下游,位于木兰集村下游2km处。坝址以上流域控制面积30200km2。 本工程是一个发电为主,兼顾防洪、灌溉、航运及养鱼等综合利用的水利枢纽。电站投入运行后将承担黑龙江东部电网的峰荷,以缓解系统内缺乏水电进行调峰能力差的局面。 本工程所在地点交通比较方便,建筑材料比较丰富,是建设本工程的有利条件。电站地理位置图见图5-1。

水电站电气部分设计说明

题目:水电站电气部分设计

容摘要 电力的发展对一个国家的发展至关重要,现今300MW及其以上的大型机组已广泛采用,为了顺应其发展,也为了有效的满足可靠性、灵活性、及经济性的要求,本设计采用了目前我国应用最广泛的发电机—变压器组单元接线,主接线型式为双母线接线,在我国已具有较多的运行经验。设备的选择更多地考虑了新型设备的选择,让新技术更好的服务于我国的电力企业。并采用适宜的设备配置及可靠的保护配置,具有较好的实用性,能满足供电可靠性的要求。 关键词:电气主接线;水电站;短路电流;

目录 容摘要 .............................................................. I 1 绪论 . (1) 1.1 水电站的发展现状与趋势 (1) 1.2 水电站的研究背景 (1) 1.3 本次论文的主要工作 (2) 2 电气设计的主要容 (3) 2.1 变电所的总体分析及主变选择 (3) 2.2 电气主接线的选择 (4) 2.3 短路电流计算 (4) 2.4 电气设备选择 (10) 2.5 高压配电装置的设计 (19) 3 变电所的总体分析及主变选择 (21) 3.1 变电所的总体情况分析 (21) 3.2 主变压器容量的选择 (21) 3.3 主变压器台数的选择 (21) 3.4 发电机—变压器组保护配置 (22) 4 电气主接线设计 (24) 4.1 引言 (24) 4.2 电气主接线设计的原则和基本要求 (24) 4.3 电气主接线设计说明 (25) 5 短路电流计算 (27) 5.1 短路计算的目的 (27) 5.2 变电所短路短路电流计算 (27) 6 结论 (30) 参考文献 (31)

设计工作总结报告

竭诚为您提供优质文档/双击可除 设计工作总结报告 篇一:年度总结:工程设计员年度工作总结报告 工程设计员年度工作总结报告 尊敬的各位领导、同事们: 大家好! 时间一晃而过,弹指之间,20XX年已接近尾声,一年来,在公司领导和同事的支持和帮助下,我始终坚持团结同志,认真学习,不断提高业务水平。严格要求,注重工作程序,自觉服从组织安排,较好地完成了设计所领导交给自己的各项工作任务,但也存在了诸多不足。现将自己一年来的工作、学习和思想状(:设计工作总结报告)况汇报如下,请批评指正: 一、工作完成情况: 一年来,本人认真履行岗位职责,立足本职,爱岗敬业,和广大同事一起,积极主动地配合设计所领导,团结一致,主要完成了以下几项工作: 1、x至x二级公路施工图设计工作。在参与本项目设计

中我积极向院科室的各位同事学习,学习先进的设计思路和设计理念,通过本项目设计学习使我熟练的掌握了最新的桥梁设计软件,也对桥梁计算有了初步的认识。 2、十天高速公路两当连接线二级公路初步设计工作。本项目为设计所组建和扩大后独立承担的第一条设计任务,面临着设计人员整体技术薄弱,经验少,工期紧,任务重,本人第一次担任设计专业负 责人的情况,在项目初期外业测量中,根据工作分工我积极带领同事搞好控制点复测工作,后期放线与调查中,结合自己以前的经验,与相关专业的同事做好协调,仔细调查清楚每一处拟设构造物处的地形和现场情况,对于大的技术方案和自己拿不准的问题积极向领导和同事请教。在内业设计中,面对组内人员技术和经验不足的情况,我在做好协调,在对新同志传、帮、带的同时也主动承担了全线11座大桥的初步设计工作。在全体组员的共同努力下,如期保质保量的完成了设计任务。 3、兰州进出口收费站改造设计工作。 4、x河大桥工程可行性研究报告编制工作。 5、x水电站专用桥和x坝人行吊桥前期推荐方案和比较方案设计工作。 6、x线x至x至和政二级公路改建工程两阶段初步设计工作。在项目初设外业阶段,我主要负责桥涵调查,搞好调

小型水电站设计2×15MW的水力发电机组

; 小型水电站设计2×15MW的水力发电机组

目录 一选题背景 (3) 原始资料 (3) 设计任务 (3) 二电气主接线设计 (3) 对原始资料的分析计算 (3) 电气主接线设计依据 (4) 主接线设计的一般步骤 (4) 技术经济比较 (4) 发电机电侧电压(主)接线方案 (4) 主接线方案拟定 (4) 三变压器的选择 (7) 3. 1主变压器的选择 (7) 相数的选择 (7) 绕组数量和连接方式的选择 (7) 厂用变压器的选择 (8) 四.短路电流的计算 (9) 电路简化图8: (9) 计算各元件的标么值 (10) 短路电流计算 (11) d1点短路电流计算 (11) d2点短路 (13) 五电气设备选择及校验 (15) 电气设备选择的一般规定 (15) 按正常工作条件选择 (15) 按短路条件校验 (16) 导体、电缆的选择和校验 (16) 断路器和隔离开关的选择和校验 (17) 限流电抗器的选择和校验 (17)

电流、电压互感器的选择和校验 (18) 避雷器的选择和校验 (18) 避雷器的选择 (18) 本水电站接地网的布置 (19) 六.设计体会 (19) 附录 (20) 参考文献 (22)

一选题背景 原始资料 (1)、待设计发电厂为水力发电厂;发电厂一次设计并建成,计划安装2×15MW的水力发电机组,利用小时数4000小时/年; (2)、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回; (3)、电力系统的总装机容量为600MVA、归算后的电抗标幺值为,基准容量Sj=100MVA; (4)、低压负荷:厂用负荷(厂用电率)%; (5)、高压负荷:110kV电压级,出线4回, Ⅲ级负荷,最大输送容量60MW,cosφ=; (6)、环境条件:海拔<1000m;本地区污秽等级2级;地震裂度<7级;最高气温36℃;最低温度-℃;年平均温度18℃;最热月平均地下温度20℃;年平均雷电日T=56日/年;其他条件不限。 设计任务 (1)、根据对原始资料的分析和本变电所的性质及其在电力系统中的地位,拟定本水电站的电气主接线方案。经过技术经济比较,确定推荐方案。 (2)、选择变压器台数、容量及型式。 (3)、进行短路电流计算。 (4)、导体和电气主设备(各电压等级断路器、隔离开关、母线、电流互感器、电压互感器、电抗器(如有必要则选)、避雷器)的选择和校验。 (5)、厂用电接线设计。 (6)、绘制电气主接线图。 二电气主接线设计 对原始资料的分析计算 为使发电厂的变压器主接线的选择准确,我们原始资料对分析计算如下; 根据原始资料中的最大有功及功率因数,算出最大无功,可得出以下数据

水电站实习报告格式doc

水电站实习报告格式 水电站实习报告范文【一】 实习目的 对于我们来说在学习专业课程的时候如果只是局限于书本上的理论知识那是远远不够的,毕竟我们学习就是为了以后能够很好地进行实践,所以在学习的过程中能够看到实物对我们的学习是很有帮助的,也能让我们提前了解以后的工作环境,提前了解一些水电站的运行机组,了解一些控制系统。使我们能更好的将理论与实际联系起来,也能更好地在以后的工作中更快的适应、熟悉工作环境。 另一个方面,我们外出实习,参观了解电站的生产工作,认识水轮机组以及一些设备,可以加深我们对于专业的理解以及学习兴趣,为学科基础课程以及专业课程的学习建立感性认识,并进一步明确专业培养目标和业务要求,为掌握专业知识和具备基本业务能力奠定思想基础。总的来说本次的认识实习的主要目的是来提高我们的能力。为以后的学习和工作打好基础。 实习安排 在我们进行外出认识实习之前,老师们进行了详尽的安排来确保实习工作的顺利进行,同时也确保了我们的人身安全。因此我个人还是很感激老师们能做如此详尽的安排,使我度过了充实的为期一周的认识实习。这样我们的实习安排

入下 周一:宝鸡峡水利枢纽以及魏家堡水电站。 周二:汤峪水电站。 周三:黑河水库。 周四:交口抽渭工程以及田市泵站。 周五:乾县750KV变电站。 虽然来说周五的乾县750KV变电站由于变电站一方的审核没有批下来我们这一天的实习就没有实现,但是在周五的下午老师还是对此做出了补救,我们专业了解了一位刚毕业学长的毕业设计即水电站的模拟教学软件,然后老师还在给我们放了视频,让我们了解了水轮机的内部结构以及工作方式,最后还观看了三峡工程的相关视频。虽然说周五没能去成乾县750KV变电站有一些遗憾,但是我想我们周五下午所了解的东西同样对于我们有很大帮助。因此我还是非常感谢老师对于这方面的安排。 而且在要去实习的前一周的周五,老师们又给我们开了实习动员会,给我们强调了安全问题,让我们在实习场所很好地避开了一些安全隐患。 因此,从最开始的实习动员会,到我们为期一周的实习活动中,老师们做的一系列安排都非常详尽,都照顾到了我们每一位同学。 实习方式

(完整word版)110KV变电站课程设计说明书DOC

成绩 课程设计说明书 题目110/10kV变电所电气部分课程设计 课程名称发电厂电气部分 院(系、部、中心)电力工程学院 专业继电保护 班级 学生姓名 学号 指导教师李伯雄 设计起止时间: 11年 11月 21日至 11年 12 月 2日

目录 一、对待设计变电所在系统中的地位和作用及所供用户的分 析 (1) 二、选择待设计变电所主变的台数、容量、型式 (1) 三、分析确定高、低压侧主接线及配电装置型式 (3) 四、分析确定所用电接线方式 (6) 五、进行互感器配置 (6) 六.短路计算 (9) 七、选择变电所高、低压侧及10kV馈线的断路器、隔离开关 (10) 八、选择10kV硬母线 (13)

一、对待设计变电所在系统中的地位和作用及所供用户的分析 1.1、待设计变电所在系统中的地位和作用 1.1.1 变电所的分类 枢纽变电所、中间变电所、地区变电所、终端变电所 1.1.2 设计的C变电所类型 根据任务书的要求,从图中看,我设计的C变电所属于终端变电所。 1.1.3 在系统中的作用 终端变电所,接近负荷点,经降压后直接向用户供电,不承担功率转送任务。电压为110kV及以下。全所停电时,仅使其所供用户中断供电。 1.2、所供用户的分析 1.2.1 电力用户分类、对供电可靠性及电源要求 (1)I类负荷。I类负荷是指短时(手动切换恢复供电所需的时间)停电也可能影响人身或设备安全,使生产停顿或发电量大量下降的负荷。I类负荷任何时间都不能停电。对接有I类负荷的高、低压厂用母线,应有两个独立电源,即应设置工作电源和备用电源,并应能自动切换;I类负荷通常装有两套或多套设备;I类负荷的电动机必须保证能自启动。 (2)II类负荷。II类负荷指允许短时停电,但较长时间停电有可能损坏设备或影响机组正常运行的负荷。II类负荷仅在必要时可短时(几分钟到几十分钟)停电。对接有II类负荷的厂用母线,应有两个独立电源供电,一般采用手动切换。 I类、II类负荷均要求有两个独立电源供电,即其中一个电源因故停止供电时,不影响另一个电源连续供电。例如,具备下列条件的不同母线段属独立电源:①每段母线接于不同的发电机或变压器;②母线段间无联系,或虽然有联系,但其中一段故障时能自动断开联系,不影响其他段供电。所以,每个I类、II 类负荷均应由两回接于不同母线段的馈线供电。 (3)III类负荷。III类负荷指较长时间(几小时或更长时间)停电也不致直接影响生产,仅造成生产上的不方便的负荷。III类负荷停电不会造成大的影响,必要时可长时间停电。III类负荷对供电可靠性无特殊要求,一般由一个电源供电,即一回馈线供电。 1.2.2 估算C变电所的回路数目 根据上述要求,重要负荷(I类、II类)比例是55%,重要负荷需用双回线,每回10kV馈线输送功率1.5~2MW,经计算,高压侧回路数为2,低压侧回路数为18÷1.5=12。

水电站设计规范清单(部分)

水电站设计技术规范及文件目录清单(部分) 序号标准、规程规范编号标准、规范名称备注 1SDJ12─78水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)(试行) 2SDJ12─78水规[1990]35号水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)(试行)补充规定3DL5025-93水利水电工程可行性研究报告编制规程 4DL5021-93水利水电工程初步设计报告编制规程 5电力部电计1993]567号文“水利水电工程预可行性研究报告编制暂行规定(试行)” 6SL/T179-96小型水电站初步设计报告编制规程 7SL2.1~2.3-98水利水电量和单位 8水建[1997]336号、电办(19 水利水电土建工程施工合同条件1997(年版) 9SDJ278-90水利水电工程设计防火规范 10DL5077-1997水工建筑物荷载设计规范 11SL73-95水利水电工程制图标准 12DL5061-1996水利水电工程劳动安全与工业卫生设计规范 13能源水电(1989)181号水电建设工程防汛管理暂行条例 14GBJ71-84小型水力发电站设计规范 15SL176-1996水利水电工程施工质量评定规程(试行) 16SL168-96小型水电站建设工程验收规程 17电安生(1997)25号水电站大坝安全管理办法 18能源电[1988]37号水电站大坝安全检查施行细则 19水规计[1996]608号水利水电工程项目建议书编制暂行规定 20电水农[1997]221号水电建设工程安全鉴定暂行规定 21电水农[1996]882号水电工程建设监理规定 221997年版水电工程建设监理合同范本 23水建[1996]396号水利工程建设监理规定 24SL20-92水工建筑物测流规范 25SL01-1997水利水电技术标准编写规定 26SDJ249-88水利水电基本建设工程单元工程质量等级评定标准(水工建筑工程)(试行) 27SL38-92水利水电基本建设工程单元工程质量等级评定标准(七)碾压式土石坝和浆砌石坝工程 28GB50199-94水利水电工程结构可靠度设计统一标准 29GB50201-94防洪标准 30GB/T14689-93技术制图图纸幅面和格式 31GBJ108-87地下工程防水技术规范 32GBJ140-90(1997修定版)建筑灭火器配置设计规范 33GB50095-94建筑物防雷设计规范

水电站课程设计

水电站课程设计——水轮机选型设计说明书 学校: 专业: 班级: 姓名: 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

若水电站初步设计——毕业设计说明书 精品

目录 一基本资料 概述 (4) 水文气象资料 (4) 工程地质与水文地质 (7) 设计基本数据 (11) 二坝址、枢纽布置方案及坝型选择 坝轴线的选择 (13) 坝型方案比较 (14) 枢纽总体布置 (15) 三闸孔尺寸比选 过闸设计流量及校核流量 (16) 堰型选择 (16) 门叶选择 (16) 闸孔单孔净宽(b )、闸墩型式和厚度拟 (17) 堰顶高程确定和闸孔孔数、尺寸拟定 (17) 堰顶高程和闸孔孔数、尺寸的结论 (26) 四 WES堰的尺寸拟定 (27) 五水面线的确定 (28) 六坝顶高程确定 (31) 七消能工的设计 消能工计算与分析 (33) 消力池计算 (38) 消力池构造设计 (39) 八公路桥尺寸拟定 布置影响因素 (41) 结构形式及结构图 (42) 十一坝基面稳定及应力计 工程概况 (57) 工程等别和建筑物级别 (57) 所要分析在四种工况 (57) 荷载具体计算 (58) 稳定计算与分析 (68) 应力计算与分析 (70) 十二防渗及地基处理设计 地基开挖 (73)

坝基的固结灌浆 (73) 坝基帷幕灌浆目的和条件 (74) 坝基排水 (75) 断层破碎带和软弱夹层处理 (75) 谢辞 (77) 主要参考文献及规范 (78) 附录 若水电站上坝线枢纽总布置图rs1 若水电站上坝线大坝平面布置图rs2 上坝线大坝上、下游立视图rs3 闸坝消力池段标准断面图rs4 闸坝护坦段标准断面图rs5 公路桥结构图及挡水坝段断面图rs6 消力池段溢流面钢筋平面图rs7 消力池段溢流面钢筋剖面图rs8 中墩钢筋图rs9 消力池段溢流面钢筋平面布置图及中墩钢筋图rs10

水电站初步设计报告专家评审意见

水电站初步设计报告专家评审意见 水电站初步设计报告专家评审意见 受项目业主的委托,**市农业委员会于2009年12月21日在那大召开了《水电站初步设计报告》(以下简称《报告》)评审会,参加评审会的有:**市农业委员会、项目设计单位、项目业主等单位的领导、代表和有关专家共12人。会议成立了专家组(名单附后)。与会人员通过到项目现场查勘并听取了《报告》编制单位湖南省怀化市水利电力勘测设计研究院海南工作室对项目设计的介绍,对《报告》进行了认真的评议。审查意见如下: 一、工程建设的可行性 水电站在**市兰洋镇境内,位于南渡江加喜河下游,站址距原番加乡3公里。该河段属南渡江加喜河下游水能资源的黄金段,水能资源较丰富。实施该工程,能充分利用该河段丰富的水能资源,促进当地农业生产和地方经济发展,项目建设是可行的。 二、水能资源规划复查 2006 年由三亚市水利水电勘测设计院完成的南渡江加喜河下游**段水能开发规划报告中,推荐了南渡江加喜河下游河段 3.9km处,兴建一宗3.20m高的拦河坝,沿河流左岸开挖规模引水渠,规划引水流量为23.00m3/S。弓冰渠将水引至河流出口与南渡江交汇山峦处的发电厂房,发电尾水归入南渡江干流,规划建设项目装机容量为3X320KW 2008年经水能规划复查,该河段水能可满足约2500KW装机要求。近

期开发利用该河段丰富的水能资源,兴建以发电为主的水 电站。 三、水文水能计算 本流域水文、气象、地质、地貌、植被等条仵与福才水文站基本相同,流域面积相近;地理位置同处于黎母山的北面,季风气候相同;原则同意设计方提供的福才水文站26年的径流资材,按面积比拟法,计算电站坝址1963年?1988年实测径流资料,及实测逐日径流年内分配,以及按三个典型年的径流作调节计算方法。 四、工程地质 原则同意报告对拦河坝坝址及厂房区地质条件的评价意见。区域地质相对稳定,坝址水文地质条件较好,不存在向外渗漏问题。坝址工程地质条件较好,河床岩石裸露,两岸复盖层不厚,清除表层可建坝;厂房区表层较厚,且透水性强,清除表面微风化层即可。

大中型水电站设计报告范本

大中型水电站设计报告范本

水利水电工程初步设计阶段大中型水电站设计报告范本 施工组织设计 水利水电勘测设计标准化信息网 年月

水电站初步设计阶段大中型水电站设计报告 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月

目录 施工组织设计……………………………………………………() 施工条件………………………………………………………() 施工导流………………………………………………………() 料场的选择与开采……………………………………………() 主体工程施工…………………………………………………() 施工交通………………………………………………………() 施工工厂设施…………………………………………………() 施工总布置……………………………………………………() 施工总进度………………………………………………………() 主要技术供应……………………………………………………() 附图……………………………………………………………()

施工组织设计 施工条件 地理位置及对外交通 水电站坝址位于江(河) 游,在省县境内,上距 县城。县城位于江的岸,由该县城至乡的县级公路经坝址岸通过,路况较差【好】。 目前由县城至铁路的火车站,已有公路相通,里程为,本工程开工前须进行扩建,才能满足工程建设的要求。 江(河)为常年通航河流,上行至港,航道里程,可通行 机船,下行至港,常年可通行船泊。历年通过坝址的年平均货运量为万。上游县和县为木材产区,每年通过坝址的木材流放量为万。因此,本工程施工期间,有通航、过木要求。 综上所述,本工程的对外交通条件,尚属方便。 自然条件 地形 坝址位于峡谷出口处,呈河床。河床宽度~,主流靠左岸,常年枯水位,相应水面宽度约,最大水深,河槽砂砾石覆盖层厚度一般~,最厚;右岸河床为岩石礁滩,礁滩宽度~,滩面高程一般为~,枯水期露出水面。 右岸坡较缓,约°~°,山顶高程;左岸坡较陡,山体雄厚,岸坡°~°,山顶高程。坝址处两岸岸坡等高线较顺直,有利于缆式起重机的布置。 坝址上游为狭谷,无施工场地可供利用,下游以内,虽山势较缓,但缺乏布置施工场地的适宜地形,右岸游处和左岸游处各有一冲沟,沟内容积较大,可作为主要堆弃碴场地;下游以下,河床开阔,两岸有大片丘陵台地,高程一般为~,可作为主要施工场地,可利用面积约万2。 地质 坝址岩石为系组岩和岩,岩性为,抗压强度一般为,岩层走向°~°,倾向,倾角°~°,河床无较大断层通过,相对不透水层埋深,上、下游围堰地基没有较大断层通过,堰基处理较简易。 水文 坝址控制流域面积2,多年平均流量3,实测最大流量和最小流量分别为3和3,洪枯流量比为。洪水由形成,暴雨一般出现在~月份,大暴雨多集中在~月份。径流年内分配不均匀,~月份为洪水期,其水量占全年水量的%,最大洪水多出现在~月份;月至次年月份为枯水期,其水量仅占全年水量的 %,尤以月至次年月份为最枯时段。洪水以峰型为主,一次洪水历时约~。有关水文特性见表~表。

水电站蓄水安全鉴定设计自检工作报告

证书等级:乙级SO9001:2008质量体系认证证书编号:A142007305 注册号:05210Q20103R0S 湖北省鹤峰县 咸盈河水电站蓄水安全鉴定 设计自检工作报告 宜昌市水利水电勘察设计院 二〇一三年三月

批准:苗云江 审定:贺江华 审核:韩锋 编写:胡伟杨光莱

目录 1 工程概况 0 1.1 工程基本情况 0 1.2 工程设计及审批过程 (1) 1.2.1 可行性研究和初步设计 (1) 1.2.2技施设计 (2) 1.3 工程任务和规模 (2) 1.3.1 工程建设必要性及开发任务 (2) 1.3.2 工程规模 (2) 2 工程地质 (3) 2.1勘察工作概况 (3) 2.2区域地质及地震 (3) 2.2.1区域地质概况 (3) 2.2.2区域稳定及地震 (3) 2.3水库工程地质条件及评价 (3) 2.3.1 水库地质环境 (3) 2.3.2 水库渗漏分析 (4) 2.3.3 库岸稳定 (5) 2.3.4 水库诱发地震 (7) 2.3.5 水库浸没及矿产压覆 (8) 2.4坝区工程地质条件 (8) 2.4.1地形地貌 (8) 2.4.2地层岩性 (8) 2.4.3地质构造 (9) 2.4.4水文地质条件 (11) 2.4.5物理地质现象 (12) 2.4.6岩石的物理力学性质 (12) 2.5建筑物工程地质条件及评价 (13) 2.5.1大坝工程地质条件评价 (13)

2.5.2发电引水隧洞工程地质评价 (14) 2.5.3厂房工程地质评价 (15) 2.5.4导流涵洞工程地质评价 (15) 2.6天然建筑材料 (16) 2.6.1砂石料 (16) 2.6.2土料 (16) 2.7地质结论与建议 (17) 3 设计洪水与水库调洪复核 (19) 3.1流域自然地理概况 (19) 3.2设计洪水复核 (20) 3.3泄洪设施及泄洪能力复核 (29) 3.4 2013年度汛 (32) 3.4.1 度汛标准 (32) 3.4.2 度汛洪水调节 (32) 3.5防洪自检评价 (32) 4 大坝设计 (33) 4.1大坝总体布置 (33) 4.2坝体结构设计 (33) 4.2.1坝顶高程 (34) 4.2.2坝顶宽度 (34) 4.2.3坝底高程 (34) 4.2.4坝内廊道 (34) 4.2.5坝体分缝 (34) 4.2.6坝体止水和排水系统 (35) 4.2.7大坝混凝土材料及分区 (35) 4.2.8坝体断面设计 (35) 4.2.9坝顶交通桥设计 (36) 4.3计算及自检评价 (37) 4.3.1坝顶高程复核计算 (37)

水电厂设计

目录 一、题目 二、原始资料 三、水电站电气部分研究的背景 四、电气主接线的设计 1)、电气主接线须满足以下要求2)、主接线方案的拟定 3)、方案比较 五、导线的初步选择和变压器的选择 1)、与系统相连45km导线的选择 2)、变压器的选择 六、短路电流计算 七、电气一次设备的选择计算 1)、母线的选择 2)、110kV母线的选择 3)、断路器和隔离开关的选则 八、发电机机端电缆的选择 九、参考文献

一、题目:2×15MW水力发电厂电气一次部分设计 二、原始资料: 1、待设计发电厂类型:水力发电厂; 2、发电厂一次设计并建成,计划安装2×15 MW 的水力发电机组,利用小时数 4000 小时/年。 3、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回; 4、电力系统的总装机容量为 600 MVA、归算后的电抗标幺值为,基准容量Sj=100MVA; 5、发电厂在电力系统中所处的地理位置、供电范围示意图如下所示。 6、低压负荷:厂用负荷(厂用电率) %; 7、高压负荷: 110 kV 电压级,出线 4 回,为 I 级负荷,最大输送容量60 MW, cosφ = ; 8、环境条件:海拔 < 1000m;本地区污秽等级 2 级;地震裂度< 7 级;

最高气温 36°C;最低温度?°C;年平均温度18°C;最热月平均地下温度20°C;年平均雷电日T=56 日/年;其他条件不限。 三、水电站电气部分研究的背景 地方中小型水电站的电气主接线选择,以及一次设备和二次设备的选择等等,应本着具体问题具体分析的原则,根据变电站在电力系统中的地位和作用、负荷性质、出线回路数、设备特点、周围环境及变电站规划容量等条件和具体情况,在满足供电可靠性、功能性、具有一定灵活性、还拥有一定发展裕度的前提下,尽量选择经济、简便实用的电气主接线以及一次设备和二次设备。如终端变电站,我们可根据其进线回路数较少的特点,选择线路变压器组接线,或者是桥型接线;中间变电站,我们可根据其交换系统功率和降压分配功率的双重功能的特点,选择单母线接线、单母线分段、单母线带旁路接线等形式。总之,电力网络的复杂性和多样性决定了我们不能教条地选择电站的电气主接线、一次设备、二次设备等等,要具体问题具体分析,选择具有自己特色的电气主接线和设备。 发电厂电气主接线的论证,电气一次设备及二次设备的选择,厂房、配电装置布置,自动装置选择和控制方式对电厂设计的安全性及经济性起着重要作用。同时对电力系统运行的可靠性,灵活性和经济性起决定性作用。 四、电气主接线的设计 1)、电气主接线须满足以下要求: 1、根据发电厂、变电站在电力系统中的地位、作用和用户性质,保证必要的供电可靠性和电能质量的要求。 2、应力求接线简单、运行灵活和操作简便。 3、保证运行、维护和检修的安全和方便。 4、应尽量降低投资,节省运行费用。 5、满足扩建的要求,实现分期过渡。 2)、主接线方案的拟定 方案一:低压侧母线采用单母线,高压侧采用单母线分段,如图一所示。 方案二:低压侧采用单母线,高压侧采用双母线分段,如图二所示。

水电站课程设计1

水电站课程设计 一:计算水轮机安装高程 参考教材,立轴混流式水轮机的安装高程Z s 的计算方法如下: 0/2s s Z H b ω=?++ 式中ω?为设计尾水位,取正常高尾水位1581.20m ;0b 为导叶高度,1.5m ; s H 为吸出高度,m 。 其中,10.0()900 s m H H σσ? =- -+? 式中,?为水轮机安装位置的海拔高程,在初始计算时可取为下游平均水位的海拔高程,设计取1580m ; m σ为模型气蚀系数,从该型号水轮机模型综合特性曲线(教材P69)查得m σ=0.20, σ?为气蚀系数的修正值,可在教材P52页图2-26中查得σ?=0.029; H 为水轮机水头,一般取为设计水头,本设计取H=38m 。水头H max 及其对应工况的m σ进行校核计算。 10.0()900 s m H H σσ? =- -+?=10.0-1580900-(0.2+0.029)?38=-0.458 0/2s s Z H b ω=?++=1581.20-0.458+1.5/2=1581.49m 。 二:绘制水轮机、蜗壳、尾水管和发电机图 2.1水轮机的计算

图1.1 转轮布置图 如图所示,可得HL240具体尺寸: 表1.11 转轮参数表 D 1 D 2 D 3 D 4 D 5 D 6 b 0 h 1 h 2 h 3 h 4 1.0 1.078 0.928 0.725 0.483 0.128 0.365 0.054 0.16 0.593 0.283 4.1 4.420 3.805 2.973 1.980 0.525 1.497 0.221 0.656 2.431 1.160 2.2 蜗壳计算 进口断面尺寸计算 (1)进口断面流量的确定 由资料,该水电站初步设计时确定该电站装机17.6×410kW ,电站共设计装4台机组,故每台机组的单机容量为17.6×410kW ÷4=4.4×410kW 。 由水轮机出力公式:9.81N QH QH ωγ===4.4×410kW 式中:Q 为水轮机设计流量(3/m s ); H 为设计水头,m ;由设计资料得H=38.0m 。 所以,4×10//=118.039.81 4.4Q N H ω=?=(9.8138.0)(3/m s )

水电站设计说明书

目录 第一章枢纽基本情况及设计参考资料 一、枢纽情况 二、地质条件 三、电站厂房枢纽布置 四、设计依据及资料 第一章枢纽基本情况及设计参考资料 一、枢纽情况 某水利枢纽位于XX河上游,坝址处河流迂回曲折,就自然地理来说属于丘陵地形,河流两岸山势高出水面60米至80米,.河床水流浅窄、坡陡流急、难通舟。 此水利枢纽,是一座以灌溉为主结合发电、防洪和养鱼等综合性的中型水利枢纽。主体工程由土坝、溢洪道和水电站三部分组成。 二、地质条件 厂址位于隧洞出口低洼的沟谷处,该处为灰岩地带,岩石强度较高,是建站的有利条件,距隧洞出口约150米以外则为泥质和钙质页岩。该页岩因受大地构造影响,形成构造破碎岩。强度较低,拳击可碎,不宜建站。 三、电站厂房枢纽布置 此电站为引水式开发方式,它由引水隧洞,调压室、压力隧洞、主付厂房、主变场、开关站等组成。主洞内径6.0米,调压室后分为二支洞,支洞内径4.2米,每支洞再分岔供二台机组。厂房内共装置四台混流立式机组,出线方向为下游,有公路通过厂区。 四、设计依据及资料 l、水文资料 站址、百年洪水位113.00米。

站址、水位~ 流量关系曲线。 装机容量4×1万千瓦 水轮机型式HL230-LJ-200 蜗壳型式及包角钢蜗壳,包角345 尾水管型式4H 允许吸出高-0.5米转轮带轴重15吨 发电机型式SF10-28/425 转子带轴重60吨转子带轴长 4.9米 最大水头52.9米计算水头42.4米 最小水头32.1米单机最大引用流量28m3/s 3、供电情况和电气主结线 本电站主要用户为距电站8~12公里处的三个机械制造厂。负荷约16000千瓦,剩余的功率用110千伏线路送往50公里处的变电站并入电力系统。根据要求,本电站采用110千伏,35干伏及发电机电压6.3千伏三种电压等级送电。 4、水力机械附属设备 (1)、调速系统(尺寸见附图) 调速器形式DT-l00 油压装置形式YZ-2.5 (2)、蝴蝶阀 蝶阀为卧轴,双接力器油压操作式,活门直径2.6米,尺寸见附图。 (3)、油系统 压力滤油机2台; 离心滤油机l台; 齿轮油泵2台; 滤纸烘箱l台; 透平油桶(容积7.0米) 3只; 绝缘油桶(容积15.0米) 4只。(4)、压缩空气系统 调速器压力油槽充气25Kg/cm 机组制动用气7kg/cm 凤动工具及设备吹扫用气7kg/cm 机组调相压力充气7kg/cm

某水电站设计课程设计 精品

第一章原始资料及设计条件 1.1 概述 1.1.1 工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW,根据水利水电工程等级划分的规定,工程规模为小(1)型,工程等别为Ⅳ等。永久性建筑物闸坝、电站厂房等属4级建筑物,临时建筑物属5级。 1.2 水文气象资料 1.2.1 洪水 各频率洪峰流量详见下表 表1-1 坝址洪峰流量表 1.2.2 水位~流量关系曲线: 表1-2 下坝址水位~流量关系曲线表高程系统:85黄海

表1-3 上坝址水位~流量关系曲线表 高程系统:85黄海 表1-4 厂址水位~流量关系曲线表 高程系统:85黄海 多年平均含沙量:0.0893/m kg ; 多年平均输沙量:22.05万t ;设计淤沙高程:169.0m ;淤沙内摩擦角:10?;淤沙浮容重:0.93/m t 。 1.2.4 气象 多年平均气温:16.6?C ;极端最高气温:39.1?C ;极端最低气温:-8.6?C ;多年平均水温:18.2?C ;历年最高气温:34.1?C ;历年最低气温:2.1?C ;多年平均风速:1.40s m /; 历年最大风速:13.00s m /,风向:NE ;水库吹程:3.0km ;最大积雪厚度:21cm ;基本雪压:0.252/m KN 。 1.3 工程地质与水文地质 1.3.1 工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2) 基岩物理力学指标 上坝址:饱和抗压强度:20~30MPa ;抗剪指标:岩砼/f =0.6~0.65;抗剪断指标:

水电站设计说明书参考

石门子水利枢纽工程厂房设计 1.设计资料 1.1.工程概况 石门子水利枢纽工程位于新疆昌吉州玛纳斯县西南塔西河中游河段上,距乌伊公路45km。本工程以灌溉为主,兼顾发电、防洪、是一个综合利用的中型水利枢纽工程。 塔西河流域总面积2010km2。水库建成后,可以增加灌溉面积,保证棉花种植面积的扩大,为玛纳斯县发展商品棉基地发挥重要作用。此外,枢纽本身的防洪、发电效益也对当地工农业的发展起到积极作用。 本枢纽工程的主要建筑物由碾压混凝土拱坝、粘土心墙副坝、上下游围堰、导流兼引水发电隧洞、发电站厂房、碾压混凝土拱坝、坝身泄水孔等组成,最大坝高110m,装机6.4MW。年发电量为2490万KWh,年利用小时数为3890小时。一期工程计划于1999年底部分蓄水,2000年6月30日建成。 玛纳斯县塔西河一级石门子水电站为塔西河石门子水利枢纽的二期工程,包括引水隧洞进口事故闸门及启闭机、导流洞改建为发电洞,发电洞与导流洞卸接的龙抬头弯段、钢筋砼衬砌段、钢板衬砌段、钢管分岔段、发电站厂房、高压开关站、尾水闸门及启闭机、尾水渠连接段等部分组成。 1.2.水文 塔西河流域位于新疆昌吉州玛纳斯县境内,该河地处天山山脉北支依连哈比尔尕山的北麓东侧,该河流域北望准噶尔盆地,东以干河子呼图壁县为邻,西与玛纳斯河流域相伴。地理位置介于北纬43?31’~44?30’,东经85?50’~86?32’之间,属独立水系,为典型的内陆河流。据石门子水文站观测资料统计,多年平均气温4.1?C ,多年平均降水量430mm,多年平均蒸发量1410.8mm。主要特征水位如下:正常蓄水位为?1389 死水位为?1356 最高洪水位?1391.75 设计洪水位?1389 下游设计洪水位?1317 下游最低尾水位?1316.5

相关主题
文本预览
相关文档 最新文档