当前位置:文档之家› 风电机组结构及选型

风电机组结构及选型

风电机组结构及选型
风电机组结构及选型

第一节风电机组结构

1.外部条件

根据最大抗风能力和工作环境的恶劣程度,按强度变化的程度对风电机组进行分级。根据IEC61400设计标准,共分为4级。

一类风场I:参考风速为50m/s,年平均风速为10m/s,50年一遇极限风速为70m/s,一年一遇极限风速为52.5m/s;

二类风场II:参考风速为42.5m/s,年平均风速为8.5m/s,50年一遇极限风速为59.5m/s,一年一遇极限风速为44.6m/s;

三类风场III:参考风速为37.5m/s,年平均风速为7.5m/s,50年一遇极限风速为52.5m/s,一年一遇极限风速为39.4m/s;

四类风场IV:低于三类风场风速,属低风速区,鲜有商业风电场开发。

对电网的要求:电压波动为额定值±10%,频率波动为额定值±5%。2.机械结构

2.1总体描述

整机是建立在钢结构底座上,该结构应具有很大的强韧度,底部由坚固底法兰组成,风电机组所有的主要部件都连接于其上。

发电机固定位置与机舱轴线偏离,以使得风电机组在满载运行时,整机质心与塔架和基础中心相一致。

偏航机构直接安装在机舱底部,机舱通过偏航轴承与偏航机构连接,并安装在塔架上,整个机舱底部对叶轮转子到塔架造成的动力负载和疲劳负荷有很强的吸收作用。

机舱座上覆盖有机舱罩,材料是玻璃钢,具有轻质高强的特点,有效地密封,以防止外界侵蚀,如雨、潮湿、盐雾、风砂等。产品生产采用多种工艺,包括:滚涂、轻质RTM、真空灌注等,机舱罩主体部分设置PVC泡沫夹层,以增加强度。内层设置消音海绵,以降

低主机噪声。

机舱上安装有散热器,用于齿轮箱和发电机的冷却;同时,在机舱内还安装有加热器,使得风电机组在冬季寒冷的环境下,机舱内保持在10℃以上的温度。

2.2载荷情况

- 启动:从任一静止位置或空转状态到发电过渡期间,对风电机组产生的载荷。

- 发电:风电机组处于运行状态,有电负荷。

- 正常关机:从发电工况到静止或空转状态的正常过渡期间,对风电机组产生的载荷。- 紧急关机:突发事件(如故障、电网波动等),引起的停机。

- 停机:停机后的风电机组叶轮处于静止状态,采用极端风况对其进行设计。

- 运输/安装/维护:整体装配结构便于运输,安装、维护易于实施。

2.3叶片

叶片根部是一个法兰,与回转轴承连接,实现变桨过程。叶尖配有防雷电系统。

2.4变桨轴承/机构

目前,国际上常见的有两种类型,一种是液压驱动联杆机构,推动轴承,实现变桨;一种是电机经减速驱动轴承,实现变桨;由于高

压油的传递需要通过静止部件向旋转部件(轮毂)传递,难以很好地实现,易发生漏油;电信号的传递较易实现,兆瓦级风电机组多采用电机驱动变桨。

出于安全考虑,配置蓄电池,防止电网突然掉电或电信号突然中断,使得风电机组能够安全平稳地顺桨实现制动。

变桨机构组成:轴承,驱动装置(电机+减速器),蓄电池,逆变器,变桨速度16°/秒左右。

2.5轮毂

轮毂为球铁件,直接安装在主轴上,叶根法兰有腰形空,用于在特定的风场调整叶片初始安装角。

2.6主轴/主轴承座/轴承

主轴的作用在于将转子叶片上的旋转力矩传到齿轮箱上,主轴与齿轮箱的连接大多采用胀紧式联轴器,这样可保证主轴与齿轮箱同心,在运行中免于维护。主轴上坚固的三点悬挂支撑,能够很好地吸收弯矩,降低齿轮箱输入轴的径向负载。

也有些风电机组采用双轴承的结构设计,目的在于减少由于风作用于叶片而引起的轴向推力,以及消除风电机组运行时齿轮箱低速轴侧的俯仰力矩,改善齿轮箱运行环境,避免近年来,世界范围出现的齿轮箱行星轮系轴断裂问题。两个主轴承选用双列向心推力滚子轴承,还可以吸收大部分的来自风轮的轴向推力,进而,降低齿轮箱输入轴的轴向负载。

2.7齿轮箱

600kW以下风电机组多为平行轴结构,大于600kW的风电机组基本是采用行星轮结构或行星轮加平行轴结构。

齿轮箱体采用球铁铸造而成,齿轮箱的负荷及压力通过齿轮箱两侧的支撑传到塔架和基础,该支撑为强力橡胶结构,可以降低风电机组的噪音和震动。

在齿轮箱后部的高速轴上安装有刹车盘,其连接方式是采用胀紧式联轴器;液压制动器通过螺栓紧固在齿轮箱体上;

齿轮箱高速轴通过柔性连接与发电机轴连接。

2.8发电机系统

发电机通过四个橡胶减震器与机舱底盘连接,这种结构对于降低发电机噪音有很强的消减作用;柔性联轴器连接齿轮箱高速轴和发电机轴。

风电机组要求发电机在负荷相对较低的情况下,仍保持有较高的效率,因为风电机组运行的绝大多数时间都发生在较低风速下。

发电机系统组成:发电机、循环变流器、水循环装置(电机、水泵、水箱等)或空冷装置。

2.9偏航系统

偏航系统要求简单而坚固,机舱的偏航是由电动偏航齿轮自动执行的,它是根据风向仪提供的风向信号,由控制系统控制,通过驱、传动机构,实现风电机组叶轮与风向保持一致,最大效率地吸收风能。

偏航时间的长短,是由计算机控制的,一旦风向仪出现故障,自动偏航操作将中止,仅可以从控制柜或机舱顶部控制盒上人工方式操

作偏航。

内齿型回转支承结构,所有部件都置于内部,不会受雨水、砂尘影响,服务和维护均可非常容易地进行,而不会受天气的影响。

偏航的控制:在风速低于3或3.5m/s下,自动偏航不会工作,风电机组将不会偏航到与风向一致。只有风速大于该值后,风电机组才自动扑捉风向,这样,可以避免不必要的偏航和电能消耗。

现代风电机组多采用阻尼型偏航系统,偏航刹车系统已经很少使用了。

2.10机械制动/液压系统(高速轴)

制动系统为故障安全系统,要求动态液压保证风电机组制动为静态,当风电机组的控制器发送停机命令或供电系统掉落,制动器液压站会立即卸压,使风电机组停机。

变桨变速型风电机组的制动系统包括叶片变桨制动和高速轴机械制动,叶片变桨制动是通过改变叶片功角,减少叶片升力,以达到降低叶片转速直至停机;高速轴机械制动是通过刹车片与刹车盘间磨擦力,实现停机。在正常停机状态,先启动叶片变桨制动,减速至一定转速或时间后,机械制动动作,停机。紧急停机状态下,叶片变桨制动和高速轴机械制动同时动作,确保风电机组在短时间内停机。

制动盘通过胀紧式联轴器与齿轮箱高速轴连接,制动器安装在齿轮箱的箱体或机舱底座上。

制动系统的刹车片一般带有温度传感器和磨损自动保护,分别提供刹车过热和刹车片磨损保护。

2.11 机舱底盘

机舱底盘用于支承塔架上所有的设备和附属部件,因而,要求有足够的强度和刚度。

风电机组底座是钢板焊接结构件或大型铸铁件,机舱壳体是采用玻璃钢制成,也有采用铁皮铆接形式。

2.12齿轮箱/发电机冷却系统

为保证齿轮箱和发电机在正常的工作范围内工作,防止发生过热,需要循环冷却装置。

- 发电机水冷却系统:自发电机壳体水套,经水泵强制循环,通过蓄水箱后,返回发电机壳体水套。

冷却水:防冻液与蒸流水按一定比例混合,调整冰点应满足当地最低气温的要求。

- 齿轮箱油冷却系统:齿轮箱油自箱体底部油嘴,经油泵强制循环,通过过滤器、热交器冷却后,返回齿轮箱。

- 保护系统:齿轮箱油系统中,在过滤器上设有压力继电器,如果齿轮箱齿轮或轴承损坏,则产生的金属铁削会在油循环过程中,堵塞过滤器,当压力超过设定值时,压力继电器动作,油便从旁路直接返回油箱,同时,电控系统报警,提醒运行人员停机检查。

2.13塔架

塔架是用钢板焊接成锥筒形,通过螺栓和法兰连接塔筒的各部分。

塔架是支撑机舱的结构部件,承受来自风电机组各部件的所有载

荷,不仅要有一定的高度,使风电机组处于较为理想的位置上运转,而且还应有足够的强度和刚度,以保证在极端风况下,不会使风电机组倾倒。

3.控制系统基本技术要求

3.1控制系统的功能

控制系统利用DSP微处理机,在正常运行状态下,主要通过对运行过程中模拟量和开关量的采集、传输、分析,来控制风电机组的转速和功率;

如发生故障能或其它异常情况能自动地检测并分析确定原因,自动调整排除故障或进入保护状态。

3.2控制系统的任务

控制系统主要任务就是能自动控制风电机组依照其特性运行,故障的自动检测并根据情况采取相应的措施。

根据风电机组的结构载荷状态、风况、变桨变速风电机组的特点及其它外部条件,将风电机组的运行情况主要分为以下几类:待机状态、发电状态、大风停机方式、故障停机方式、人工停机方式和紧急停机方式。

- 待机状态:

- 风轮自由转动,没有发电(风速为0-3m/s),刹车释放;

- 发电状态:

发电状态Ⅰ:起动后,到额定风速前,刹车释放;

发电状态Ⅱ:额定风速到切出风速(风速12-25 m/s),

刹车释放;

- 故障停机方式

故障停机方式划分为:可自启动故障和不可自启动故障。停机方式为正常刹车程序:即先叶片顺桨,当发电机转速降至设定值后,起动机械刹车。

- 人工停机方式

这一方式下的刹车为正常刹车,即先叶片顺桨,当发电机转速降至设定值后起动机械刹车。这一停机方式不能自启动,需要人工启动。

- 紧急停机方式

紧急停机方式适应于安全保护系统,安全保护系统包括:电网掉电、发电机超速、转子过速、机舱过振动、紧急按钮动作等。这种状态下风电机组叶片顺桨和机械刹车同时动作,这种状态需要人工进行恢复。

第二节风电场机组的选型问题

1.概述

风力发电机组是风电场的主要生产设备。对于一个风电场来说,风电机组选择的正确与否直接影响到风电场的经济效益,其重要性不言而喻。在经过选址、测风、风电场项目确定之后,首要的问题就是风电机组的选型。而风电机组的选型,一般要从风电机组的装机场地、安全等级、技术性能、经济效益等方面考虑问题。

由于风电场的情况千变万化,风电机组的选型要根据具体情况,不能一概而论,本文根据过去的工作经验,就一些考虑和分析问题的方法加以讨论,以供解决具体问题时参考。

2.风电机组的技术及性能

2.1定桨距失速型风电机组

风力资源的特征可以用风速频率来描述,即每一个特定风速在全年出现的时间的概率分布。以风速为横轴,概率为纵轴,可划出分布曲线。分布曲线服从威布尔分布,见图1。

我国曾经大量使用的风力发电机组都是定桨距型的,叶片装上以后不能动,额定风速较高。这种风机的发电特性见图1。

定桨距风机的优缺点如下:

优点:1. 机械结构简单,易于制造;

2、控制原理简单,易于实施;

3、因为简单,不易出故障。

缺点:1、额定风速高,风轮转换效率低;

2、转速恒定,机电转换效率低;

3、叶片复杂,重量大,制造较难,不宜作大风机。2.2 变桨距型风电机组

变桨距技术主要解决了风能转换效率低的问题。变桨距技术就是将风机叶片做成可变桨距的,以使三个叶片随着风速的变化而同步变距,始终保持最佳角度,提高风轮转换效率。图2比较了变桨距和

定桨距风机的功率曲线。

变桨距风机的优缺点如下:

优点:1.提高了风能转换效率, 更充分利用风能;

2.叶片相对简单,重量轻,利于造大型风机。

缺点:1.调桨机构复杂,控制系统也较复杂;

2.因复杂而使出现故障的可能性增加;

2.3 变速型风电机组

变速恒频技术解决机电转换效率低的问题。变速恒频技术就是将风机的转速做成可变的,并采用双馈式发电机,通过控制使发电机在任何转速下都始终工作在最佳状态,机电转换效率达到最高,输出功

率最大,而频率不变。变速恒频风机的特性曲线见图3。

变桨变速风力发电机是将变桨和变速恒频技术同时应用于风力发电机,使其风能转换效率和机电转换效率都同时得到提高的风力发电机。其特性曲线如图4所示。

变桨变速风力发电机的优缺点如下:

优点:发电效率高,超出定桨距风机10%以上。

缺点:机械、电气、控制部分都比较复杂。

3. 机组选型应考虑的问题

一般情况下,选择设计合理、发电效率高、质量稳定的风电机组,同时结合考虑以下几点:

①根据风况和安全要求,选择使用机型;

②尽量选用较大机型,以减少风电机组的数量,从而减少土地面积的占用;

③近量选择较高塔架,以尽可能的获取风能。但较高塔架的采

用要受到经济性和安全性的制约;

④尽量选用变桨变速机型,以提高风能利用效率。变桨变速机型与失速型机组相比可提高5-10 % 的发电量;

⑤结合考虑风电机组的报价,选择性价比高的(单位千瓦年发电量

/单位千瓦设备价)

⑥高输出电压的风电机组。风电机组的输出电压有400伏、690伏几种,更大型、更先进的机组采用更高的输出电压。高电压输出能够降低线损,电缆造价从而降低风电成本;

⑦特殊情况要求:

环境温度<-20℃,采用低温型风电机组;环境温度>30℃,采用高温型风电机组;

沿海和海岛地区,需注重防腐和绝缘性能;

在冬季有低温和高湿度同时出现的地区如长江流域等,还需注意防止附冰;

北方风沙较大地区,注重防尘。

⑧输和安装条件允许。在大型机组的运输、安装较为困难的地区,应考虑采用较小型的机组。

4.风电机组的安全性要求

风电机组要承受环境和电对它的影响,这些影响主要体现在载荷、使用寿命和正常工作等几个方面。为保证一定的安全性和可靠性水平,在设计中要考虑到环境、电力和土壤参数等因素。

环境条件可进一步划分为风况和其他外部条件。电力的条件则可

参照电网条件。土壤特性关系到风电机组的基础设计。对结构整体而言,风况是最基本的外部因素。其他环境条件对设计特性,诸如控制系统功能、耐久性、腐蚀等有影响。

风电机组等级取决于风速和湍流参数。表3规定了确定风电机组等级的基本参数。

表3 各等级风电机组基本参数

按照国标风力发电机组安全等级的要求,风电机组应设计成能安全承受由其等级决定的风况。风电机组适用的风速,决不允许超过以下参数的限值,以免产生安全隐患。

①轮毂高度年平均风速

②轮毂高度50年一遇10分钟平均最大风速

③轮毂高度风能密度

④风场紊流系数

5.风电机组塔高的确定

5.1 风电机组发电量的变化

风力发电机组的发电性能主要由其功率曲线(Power curve)来表征。这条曲线对应每一个风速数据,有一个发电功率输出。这个风速数据代表的是轮毂高处的风速数据。风电机组塔架高度的变化意味着轮毂高度的变化。以西班牙Gamesa公司G80风电机组为例,其塔架高度可以为67米,也可以为78米或者100米。由于在自然界中的风力存在着切变,越高的地方风力一般越大,平均风速越高。因此,选用塔架高的机组一般可以获得较高的年发电量。具体增加多少,每个风电场资源特点和布机情况不同而有所不同,要经过详细分析和计算才能作出判断。

5.2 风电机组整体造价的变化

毫无疑问,风电机组塔架的高度与塔架的重量和造价相关。这里要指出的是,风电机组的塔架的增高一般是通过在底部增加一节塔体来实现,这节塔体一般要求强度最大,因此直径较大,对于管状塔来说所要求的钢板也厚。这会大大增加塔架的造价,从而增加了机组的整体造价。还以西班牙Gamesa公司G80风电机组为例,其60米塔架重120吨,67米塔架重135吨,78米塔重190吨,100米塔重288 16 吨。按塔架现行造价1.4万元/吨计,三种塔架的造价分别为168

万元,189万元,266万元和403.2万元,可见随着塔高的增加,塔重和造价迅速增加。这将明显地增加机组的整体造价。

机组整体造价的增加带来的好处是增加了年发电量,从而带来了风电场收入的增加。如果增加的收入可以补偿增加的投入并有盈利,增加塔高是合算的,否则是不合算的。

在电价较高的情况下,提高风机塔架增加的发电量所带来的风电收入较为明显,经济效益好,比较合算。

5.3 风电机组安全等级的变化

风电机组塔架的提高通常情况下会提高风电机组的发电量从而提高风电场的经济效益,但提高了风电机组的塔架就提高了轮箍高度,轮箍高度处的风速也发生相应变化,往往会提高,当风速的提高超过了风电机组的安全等级时,风电机组就可能发生危险,这是不允许的。这时应该降低塔架的高度或改用安全等级高的机组。同样又是为了获取大的发电量和好的经济效益,也可以降低风电机组的塔架高度,使风场等级降低以便采用安全等级稍低,但风轮直径大,发电量高的机型。

6. 综合分析与经济比较

综合考虑单机容量、机组安全、技术性能、采购价格、配套设施、质量记录、售后服务和风电场上网电价水平等因素选择机型。由于上述各种因素有些可以量化,有些则很难完全定量化处理,实际工作中还可能随时发生变化,需要根据具体情况进行综合分析和经济比较后确定机型。

7. 现有风电机组可选机型

目前较为成熟、质量和性能可靠、在国际国内市场上可以采购到的风电机组的容量等级在600KW到2500KW之间,其中600KW、750KW机组国内已有生产销售。这种容量的机组国际上已逐渐停止生产,转而生产更大型的机组。国内外风电机组生产厂家、机型和单机容量见表2。

(注:以上机型的详细信息见附表)附表国内外风电机组机型简表

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

风电机组选型的几个关键问题

本文数据为2009年统计数据,但现在看来仍不失为一篇很好的科普文章,仅供大家参考。 摘要:风电机组选型在风电项目开发过程中至关重要,项目有盈利可能是进行选型的前提。本文回顾了我国风电电价发展历程,给出了收益率、电价与风资源的定量关系;研究了风电机组等级与GL型式认证的相关问题;澄清了一些对可利用率、可靠性的混淆认识;论证了国内风电机组理论功率曲线偏高问题。 1.前言 如今,风电发展已跨越初期示范阶段,进入大规模产业化时代,追求利润最大化成为投资的主要目的。决定风电项目盈利水平的要素包括风资源状况、电网接入状况、上网电价、机组选型和运维水平等。项目核准后,前三项基本已成定局,机组选型的重要性显而易见。据《2009年中国风电机组制造商竞争态势与投资分析研究报告》分析,截止到2008年10月1日,中国境内的风电机组整机生产商已经达到76家目前,其中真正有产品推出的内资与合资企业共10多家,加上几家在中国市场表现积极的外资企业,总数在20左右。而每个厂家还有不同等级、不同轮毂高度、不同容量、不同应用环境的多种机型,如何从中抉择出高安全性、高性价比的机组,成为风电投资必须面对的问题。 2.机组选型的前提 进行机组选型的前提是项目有盈利的可能。众所周知,电价越高风,风资源越好,项目的盈利水平就越高,先来看电价。 1)我国风电电价发展历程 我国风电并网电价的形成大体经历了四个不同的历史阶段: 1)发展初期,机组多由国外资金援助,竞争上网,电价很低,每千瓦时约0.3元; 2)1994年起,电力部全额收购风电上网电量,差价全网均摊,各地由价格主管部门审批,致使风电价格参差不齐,低的与火电相当,高的每千瓦时超过1元; 3)2002年开始,招标电价和审批电价并存,特许权招标项目的招标由国家发改委牵头组织,电价区间趋于稳定; 4)2009年,国家发改委下发《关于完善风力发电上网电价政策的通知》,《通知》按风能资源状况和工程建设条件,将全国分为四类风能资源区,并制定相应的风电标杆上网电价,见表1,今后新建陆上风电项目统一执行。这对风电的投资预期起到很好的引导作用,消除了不确定性,增强了可持续性,有利于竞争格局的稳定,标志着我国风电上网电价机制基本成熟。 表1各风能资源区风电标杆电价

风电机组结构及选型

第一节风电机组结构 1.外部条件 根据最大抗风能力和工作环境的恶劣程度,按强度变化的程度对风电机组进行分级。根据IEC61400设计标准,共分为4级。 一类风场I:参考风速为50m/s,年平均风速为10m/s,50年一遇极限风速为70m/s,一年一遇极限风速为s; 二类风场II:参考风速为s,年平均风速为s,50年一遇极限风速为s,一年一遇极限风速为s; 三类风场III:参考风速为s,年平均风速为s,50年一遇极限风速为s,一年一遇极限风速为s; 四类风场IV:低于三类风场风速,属低风速区,鲜有商业风电场开发。 对电网的要求:电压波动为额定值±10%,频率波动为额定值±5%。2.机械结构 总体描述 整机是建立在钢结构底座上,该结构应具有很大的强韧度,底部由坚固底法兰组成,风电机组所有的主要部件都连接于其上。 发电机固定位置与机舱轴线偏离,以使得风电机组在满载运行时,整机质心与塔架和基础中心相一致。 偏航机构直接安装在机舱底部,机舱通过偏航轴承与偏航机构连

接,并安装在塔架上,整个机舱底部对叶轮转子到塔架造成的动力负载和疲劳负荷有很强的吸收作用。 机舱座上覆盖有机舱罩,材料是玻璃钢,具有轻质高强的特点,有效地密封,以防止外界侵蚀,如雨、潮湿、盐雾、风砂等。产品生产采用多种工艺,包括:滚涂、轻质RTM、真空灌注等,机舱罩主体部分设置PVC泡沫夹层,以增加强度。内层设置消音海绵,以降低主机噪声。 机舱上安装有散热器,用于齿轮箱和发电机的冷却;同时,在机舱内还安装有加热器,使得风电机组在冬季寒冷的环境下,机舱内保持在10℃以上的温度。 载荷情况 - 启动:从任一静止位置或空转状态到发电过渡期间,对风电机组产生的载荷。 - 发电:风电机组处于运行状态,有电负荷。 - 正常关机:从发电工况到静止或空转状态的正常过渡期间,对风电机组产生的载荷。 - 紧急关机:突发事件(如故障、电网波动等),引起的停机。 - 停机:停机后的风电机组叶轮处于静止状态,采用极端风况对其进行设计。 - 运输/安装/维护:整体装配结构便于运输,安装、维护易于实施。 叶片

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发电机 8、轴流风机9、机座10、滑环11、偏航轴承12、偏航驱动13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳1.5s/se机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 MY1.5s/se型风电机组主要技术参数如下: (1)机组: 机组额定功率:1500kw

风力发电机的组成部件及其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

风电机组选型

5 风电机组选型、布置及风电场发电量估算 5.1 风电机组选型 5.1.1 单机容量范围及方案的拟定 5.1.1.1 风电机组发电机类型的确定 风电场机型选择应考虑适合风电场场址的风资源条件,有利于提高风电场的发电效益。随着国内外风力发电设备制造技术日趋成熟,针对不同区域风资源条件,各风机设备制造厂家已经开发出不同结构型式、不同控制调节方式的风力发电机组可供选择。按照IEC61400-1标准(风电机组设计要求),风电场机组按50年一遇极大风速可分为I、II、III三个标准等级,每个等级按15m/s风速区间的湍流强度可分为A、B、C三个标准等级,为特殊风况和外部条件设计的为S级。因此,根据怀宁风电场场址的地形、交通运输情况、风资源条件和风况特征,结合国内外商品化风电机组的制造水平、技术成熟程度以及风电机组本地化率的要求,进行风电场机组型式选择。 风力发电机组选型应考虑的几种因素 (1) 风电机组应满足一定的安全等级要求 表5.1.1.1-1 IEC61400-1各等级WTGS基本参数 上表中各数据应用于轮毂高度,其中V ref为10min平均参考风速,A 表示较高湍流特性,B表示中等湍流特性,C表示较低湍流特性,Iref为湍流强度15m/s时的特性。在轮毂高度处,15m/s风速区间的湍流强度值不大于0.12,极大风速为28.2m/s。根据国际电工协会IEC61400-1(2005)标准判定本风电场工程70~90m轮毂高度适宜选择IECⅢC及以上等级的风力发电机组。

(2) 风轮输出功率控制方式 风轮输出功率控制方式分为失速调节和变桨距调节两种。两种控制方式各有利弊,各自适应不同的运行环境和运行要求。从目前市场情况看,采用变桨距调节方式的风电机组居多。 (3) 风电机组的运行方式 风电机组的运行方式分为变速运行与恒速运行。恒速运行的风力机的好处是控制简单,可靠性好。缺点是由于转速基本恒定,而风速经常变化,因此风力发电机组经常工作在风能利用系数(Cp)较低的点上,风能得不到充分利用。变速运行的风电机组一般采用双馈异步发电机或多极永磁同步发电机。变速运行方式通过控制发电机的转速,能使风力机的叶尖速比接近最佳值,从而最大限度的利用风能,提高风力发电机组的运行效率。 (4) 发电机的类型 目前,市场上主流的变速变桨恒频型风电机组技术分为双馈式和直驱式两大类。双馈式变桨变速恒频技术的主要特点是采用了风轮可变速变桨运行,传动系统采用齿轮箱增速和双馈异步发电机并网,而直驱式变速变桨恒频技术采用了风轮与发电机直接耦合的传动方式,发电机多采用多极同步电机,通过全功率变频装置并网。直驱技术的最大特点是可靠性和效率都进一步得到了提高。 还有一种介于二者之间的半直驱式,由叶轮通过单级增速装置驱动多极同步发电机,是直驱式和传统型风力发电机的混合,但是该类产品还不是很成熟,因此本工程不推荐。 双馈式:交流励磁发电机又被人们称之为双馈发电机。双馈风电机组中,为了让风轮的转速和发电机的转速相匹配,必须在风轮和发电机之间用齿轮箱来联接,这就增加了机组的总成本;而齿轮箱噪音大、故障率高、需要定期维护,并且增加了机械损耗;机组中采用的双向变频器结构和控制复杂;电刷和滑环间也存在机械磨损。目前,世界各国正在针对这些缺点改进机组或研制新型机组,如无刷双馈机组。 永磁直驱风电机组,就是取消了昂贵而又沉重的增速齿轮箱,风轮轴直接和发电机轴直接相连,转子的转速随来流风速的变化而改变,其交流

风电场风电机组选型、布置及风电场发电量估算2

5 风电机组选型、布置及风电场发电量估算

批准:宋臻核定:董德兰审查:吉超盈校核:牛子曦编写:李庆庆

5 机型选择和发电量估算 5.1风力发电机组选型 在风电场的建设中,风力发电机机组的选择受到风电场自然环境、交通运输、吊装等条件等制约。在技术先进、运行可靠的前提下,选择经济上切实可行的风力发电机组。根据风场的风能资源状况和所选的风力发电机组,计算风场的年发电量,选择综合指标最佳的风力发电机组。 5.1.1 建设条件 酒泉地区南部为祁连山脉,北部为北山山系,中部为平坦的戈壁荒滩,形成两山夹一谷的地形,成为东西风的通道,风能资源丰富。场址位于祁连山山脉北麓山前冲洪积戈壁平原上,地势开阔,地形平缓,便于风机安装;风电场东侧距312国道约30km,可通过简易道路运输大型设备。 根据黑厓子北测风塔 2008年7月~2009年6月测风数据计算得到该风电场场址90m高度风功率密度分布图见图5.1(图中颜色由深至浅代表风能指标递减)。由图5.1可见,该风电场场址地势开阔,地形平坦,风能指标基本一致。根据风能资源计算结果,该风电场主风向和主风能方向一致,以E风和W风的风速、风能最大和频次最高。 用WASP9.0软件推算到预装风电机组轮毂高度90m高度年平均风速为7.32m/s,平均风功率密度为380W/m2,威布尔参数A=8.3, k=2.0;50m高度年平均风速为7.04m/s,平均风功率密度为330W/m2,威布尔参数A=7.9, k=2.06。根据《风电场风能资源评估方法》判定该风电场风功率密度等级为3级。 黑厓子西风电场90m高度年有效风速(3.0m/s~25.0m/s)时数为7131h,风速频率主要集中在3.0 m/s~12.0m/s ,3.0m/s以下和25.0m/s以上的无效风速少,无破坏性风速, 年内变化小,全年均可发电。 由玉门镇气象站近30年资料推算70m、80 m、90 m和100m高度标准空气密度条件下50年一遇极大风速分别为48.00m/s、48.90 m/s、49.71 m/s和50.45m/s,小于52.5m/s。50~90m高度15m/s风速段湍流强度介于0.0660~0.0754之间,小于0.1,湍流强度较小。根据国际电工协会IEC61400-1(2005)判定该风电场可选用适合IECⅢ及其

风电场风电机组选型布置及风电场发电量估算

风电场风电机组选型布置及风电场发电量估算集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

5 风电机组选型、布置及风电场发电量估算 批准:宋臻 核定:董德兰 审查:吉超盈 校核:牛子曦 编写:李庆庆

5 机型选择和发电量估算 风力发电机组选型 在风电场的建设中,风力发电机机组的选择受到风电场自然环境、交通运输、吊装等条件等制约。在技术先进、运行可靠的前提下,选择经济上切实可行的风力发电机组。根据风场的风能资源状况和所选的风力发电机组,计算风场的年发电量,选择综合指标最佳的风力发电机组。 建设条件 酒泉地区南部为祁连山脉,北部为北山山系,中部为平坦的戈壁荒滩,形成两山夹一谷的地形,成为东西风的通道,风能资源丰富。场址位于祁连山山脉北麓山前冲洪积戈壁平原上,地势开阔,地形平缓,便于风机安装;风电场东侧距312国道约 30km,可通过简易道路运输大型设备。 根据黑厓子北测风塔 2008年7月~2009年6月测风数据计算得到该风电场场址90m高度风功率密度分布图见图(图中颜色由深至浅代表风能指标递减)。由图可见,该风电场场址地势开阔,地形平坦,风能指标基本一致。根据风能资源计算结果,该风电场主风向和主风能方向一致,以E风和W风的风速、风能最大和频次最高。 用软件推算到预装风电机组轮毂高度90m高度年平均风速为s,平均风功率密度为380W/m2,威布尔参数A=, k=;50m高度年平均风速为s,平均风功率密度为 330W/m2,威布尔参数A=, k=。根据《风电场风能资源评估方法》判定该风电场风功率密度等级为3级。 黑厓子西风电场90m高度年有效风速(s~s)时数为7131h,风速频率主要集中在 m/s~s ,s以下和s以上的无效风速少,无破坏性风速, 年内变化小,全年均可发电。 由玉门镇气象站近30年资料推算70m、80 m、90 m和100m高度标准空气密度条件下50年一遇极大风速分别为s、 m/s、 m/s和s,小于s。50~90m高度15m/s风速段湍流强度介于~之间,小于,湍流强度较小。根据国际电工协会IEC61400-1(2005)判定该风电场可选用适合IECⅢ及其以上安全等级的风机。 图黑厓子西风电场90m高度风功率密度分布图

风电机组的构成

教学过程 一、组织教学 维持教学秩序,检查学生人数. 二、课题导入 首先介绍新能源产业的发展现状及前景,然后介绍本章的主要内容:通过本章学习应了解风力发电机组的基本组成、风力发电机组各部分结构、风力发电机组的装配步骤、调试步骤。 三、新课讲授 风力发电机就安装结构而言,可分为两种类型:一种是水平轴风力发电机,叶片安装在水平轴上;另一种是垂直轴风力发电机,风轮轴是垂直布置的,由叶片带动垂直轴转动,再去带动发电机进行发电。垂直轴风力发电机的增速器、联轴器、发电机、制动器等都是安装在地面上的,整个机组的安装、调试和维修均比水平轴风力发电机要方便一些。但由于一些难以解决的技术问题,垂直轴风力发电机的发展和应用受到了很大的限制。下面主要介绍水平轴风力发电机的结构以及工作过程 1.控制系统的组成及分类 (1)风力发电机的基本组成 小型水平轴风力发电机组主要组成部分有:风轮、发电机、塔架、调向机构、蓄能系统、逆变器等。 1)风轮风轮是风力机从风中吸收能量的部件,其作用是把空气流动的动能转变为风轮旋转的机械能。水平轴风力发电机的风轮是由1~3个叶片组成的。叶片的结构形式多样,材料因风力机型号和功率大小而定,如木心外蒙玻璃钢叶片、玻璃纤维增强塑料树脂叶片等。 2)发电机在风力发电机组中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。小型风力发电机多采用同步或异步交流发电机,发出的交流电通过整流装置转换成直流电。 3)塔架塔架用于支撑发电机和调向机构等。因风速随离地面的高度增加而增加,塔架越高,风轮单位面积捕捉的风能越多,但造价、安装费等也随之加大。 4)调向机构垂直轴风力机可接受任何方向吹来的风,因此不需要调向机构。对于水平轴风力机,为了得到最高的风能利用效率,应用风轮的旋转面经常对准风向,需要对风装置。常用的调向机构主要有尾舵、舵轮、电动对风装置。 5)限速机构当风速高于风力机的设计风速时,为了防止叶片损坏,需要对风轮转速进行控制。 6)贮能装置贮能装置对独立运行的小型风力机是十分重要的。其贮能方式有热能贮能、化学能贮存。 7)逆变器用于将直流电转换为交流电,以满足交流电气设备用电的要求。

风场湍流强度的计算及其对风电机组选型

风场湍流强度的计算及其对风电机组选型的 影响 王承凯 (龙源电力集团公司) 摘要:本文从IEC61400-1风电机组安全等级标准引出了风场湍流强度这一重要参数,在分析了湍流强度的含义及其产生的原因后,针对湍流强度计算中常见的几个误区进行了分析说明,并给出了湍流强度计算时测风塔的选择原则,最后给出了有效湍流强度超标的几种处理方式。本文对于充分认识湍流强度、正确计算风场湍流强度和风电机组选型具有一定的指导意义。 关键词 风场 湍流强度 风电机组 选型 1 关于IEC61400-1 IEC61400风力发电机组系列标准由IEC(国际电工委员会)制定,内容涵盖风力发电机组的各个方面,如设计标准、安全要求、运行性能测试、载荷测试、噪声测量、电能质量、叶片测试、防雷击保护、机型认证以及远程监控系统等。其中IEC61400-1是关于风力发电机组的安全要求,由IEC第88技术委员会-风力发电机组工作组制定,是风力发电机组最基本的标准之一,其适用于扫风面积不小于40平方米的风力机。该标准具体规定了风力发电机组的设计、制造、安装、维护以及在特定环境条件下运行的安全要求,涉及到风力发电机组的各子系统,如控制和保护机构、内部电气机构、机械系统、叶轮系统、支承机构以及电气联接设备等,目的在于避免风力发电机组在寿命期内的意外损坏。 IEC61400-1目前的最新版本是2005年8月发布的第三版,其中第一版1994年发布,第二版1999年发布。现在市场上流行的大多数风力发电机组是依据IEC61400-1第二版或者第三版设计的。 2 风力发电机组的等级标准 为保证风力发电机组的安全性和长期稳定可靠运行,风力发电机组的设计需要考虑运行环境条件和电力环境的影响,这些影响主要体现在载荷、适用寿命和正常工作等几个方面。各类环境条件分为正常外部条件和极端外部条件,其中正常外部条件涉及的是长期疲劳载荷和运行状态。极端外部条件出现机会很少,但它是潜在的临界外部设计条件。风电机组载荷设计需要同时考虑这些外部条件和风力机运行模式。 为了最大限度地利用特定风场的风能资源,同时保证风力发电机组的安全可靠运行,IEC61400-1对风力发电机组进行了安全分级。 风况是风力发电机组承受的最基本的外部载荷条件,因此风电机组安全等级分类的主要参数是风况。轮毂高度处的年平均风速、湍流强度以及极端风况是IEC61400-1进行风机分类的三个主要参数,其中极端风况主要包括极端风速、极端风切变以及风速、风向的迅速变化等,而风机轮毂高度处50年一遇3秒钟极大风速或者10分钟最大风速是风机极端载荷设计的最重要参数。 湍流是一个复杂的过程,难以用简单明确的方程来表示或者预测。一般情况下,研究湍流的统计特性显得更为重要。 湍流强度(turbulence intensity,简写为TI)是指10分钟内风速随机变化幅度大小,是10分钟平均风速的标准偏差与同期平均风速的比率,是风电机组运行中承受的正常疲劳载荷,是IEC61400-1风机安全等级分级的重要参数之一。 湍流产生的原因主要有两个,一个是当气流流动时,气流会受到地面粗糙度的摩擦或者阻滞作

系列风电机组事故分析及防范措施(六)——风电场运维与安全隐患

业主在风电机组选型时,通常考察的是最优机组性能价格比,即以最低的价格购买到性能、质量最好的风电机组。首先以发电成本最小为指标,充分考虑发电机组的投资经济性。其次,还有产品的质量认证,制造商业绩,风能资源因素,如:额定风速、极限风速、切出风速以及特殊环境要求等。但对机组的使用和维修方便与否,是否便于远程管理,远期维修维护成本及机组安全性高低等却考虑较少,或没有考虑。然而,这些因素也是体现机组综合性能和判断机组优劣的重要方面。 风电机组综合性能及行业问题 一、相关人员缺乏对风电机组特性的深入认识和了解 我国“三北地区”风电场限电问题相当严重,风电机组及部件生产大都处于产能过剩状态,行业内出现了低价竞争的恶性循环,还出现了重权势不重技术,重关系轻质量等不正常现象,导致机组及部件的生产和服务质量难以保证。 在我国风电发展初期,不少风电从业人员是初次涉入风电,缺乏对风电机组综合性能的辨识能力,不能全面、深入地认识和了解风电产品。采购时,普遍对机组安全、机组使用、运维便捷性等方面考察较少。更有甚者,已安装机组的主控系统本已具备数据上传、完善的权限管理和远程故障判断等功能,可以远程定位机组故障和排查安全隐患,使用方便。但是,由于对其所引进技术缺乏深入研究,主控的这些功能没有得到设备厂家和业主的广泛运用,反而被貌似配置更高、采用国外品牌硬件的主控改造掉,而这些主控的软件普遍还不够完善。风电企业对机组的管理仍然沿用以往的方式进行设备管理:每个风电场必须固定地配备规定数量的维修人员;只有到现场登机,才能对机组实施安全检查和机组故障判断等。 我国的风电技术大都是从国外引进,从无到有。部分风电企业因缺乏对所引进技术的深入研究,没能掌握引进机组的整体设计思路及关键技术,导致了机组事故频发;由于机组配套随意造成了整机性能差;因缺乏适应风电场管理经验以及风电思维方式,导致了研发和现场服务模式严重偏离正常的风电发展方向;有的厂家在技术引进时,因决策者缺乏对机组综合性能的判断能力,在引进技术时就存在某些不足或缺陷。 就我国风电市场情况而言,机组购买商往往是大的电力公司,这些企业里的很多风电决策者及员工从事火电或水电多年,如不及时学习,转变观念,时常会带有很深的其他行业理念来理解和处理风电问题。例如,在机组选型时,对长叶片机组有着特殊的偏好;在考核机组性能时,过度强调功率曲线;在机组采购时,对机组更多的是考虑设备购买价格以及机组的年利用小时数;在机组投入运行之后,不顾设备安全提高机组利用小时数,如:调高额定功率参数、提高最大切出风速等。而对机组的年利用小时数与机组寿命、大部件损坏的关系,以及机组的维护和使用便捷性、远期维护成本、安全性以及是否可通过远程对机组进行故障诊断、检查和管理,这些潜在关键点缺乏了解和考察。在机组选型、部件质量、吊装、维护、机组改造和风电场管理等环节上埋下的隐患,经过多年运行之后,如今都集中体现在机组的运行状况、大部件损坏和重大事故的发生上。 二、劣质产品充斥市场 风电企业采购机组及部件时,在招标之前,通常所有部件的供应商均需经过设备厂家质管、技术、采购等部门的审核,方能成为合格供方,再通过竞标取得销售权。由于产能过剩,这些合理的工作流程有时变成了一道道关卡,低价中标又使质量优异的风电产品难以进入市场。 由于产能过剩,在取得订单时,有时设备厂商不得不满足业主招标文件中一些不合理的要求和条件,在实际的合同签订中,有的合同规定则成为了单方面约束条款。在机组配套时,有的机组部件必须要按业主或电网公司所指定的配套厂家进行采购。而这种指定有时依靠的是

风力发电机组基本结构与工作原理

电气工程新技术专题 题目:风力发电机组基本结构与工作原理 及其控制技术 专业:电气工程及其自动化 班级: ********* 姓名: ********* 学号: ********* 指导老师: *********

本周的电气工程新技术专题中,主要讲解了一些关于风力发电机组的基本姐与工作原理方面的知识,使我们对此有了初步的认识,下面我将简单叙述一下我对风力发电机的了解。 风力发电机是将风能转换为机械功的动力机械,又称风车。广义的说,它是一种以太阳微热源,以大气为工作介质的热能利用发电机。风力发电机利用的是自然能源,相对柴油发电要好得多。但若应急来用的话还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 一、风力发电机的基本结构 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。 各主要组成部分功能简述如下: (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子

风电考试选择题

选择题 ★1、风能的大小与风速的成正比。(B) A、平方; B、立方; C、四次方; D、五次方。 ★2、风能是属于的转化形式。(A) A、太阳能; B、潮汐能; C、生物质能; D、其他能源。 ★3、在正常工作条件下,风力发电机组的设计要达到的最大连续输出功率叫。(D) A、平均功率;B、最大功率;C、最小功率;D、额定功率。 ★4、风力发电机开始发电时,轮毂高度处的最低风速叫。(D) A、额定风速; B、平均风速; C、切出风速; D、切入风速。 ★5、在风力发电机组中通常在低速轴端选用联轴器。(A) A、刚性; B、弹性; C、轮胎; D、十字节。 ★6、风能的大小与空气密度。(A) A、成正比; B、成反比; C、平方成正比; D、立方成正比。 ★7、按照年平均定义确定的平均风速叫。(C) A、平均风速; B、瞬时风速; C、年平均风速; D、月平均风速。 ★8、风力发电机达到额定功率输出时规定的风速叫。(B) A、平均风速; B、额定风速; C、最大风速; D、启动风速。 ★9、当风力发电机飞车或火灾无法控制时,应首先。(C) A、回报上级; B、组织抢险; C、撤离现场; D、回报场长。 ★10、风电场设备、消防器材等设施应在时进行检查。(C) A、维护; B、使用; C、交接班; D、巡视。 ★11、风力发电机组开始发电时,轮毂高度处的最低风速叫。(B) A、启动风速; B、切入风速; C、切出风速; D、额定风速。 ★12、给定时间内瞬时风速的平均值叫做该时间段内的。(C) A、瞬时风速; B、月平均风速; C、平均风速; D、切出风速。 ★13、在变桨距风力发电机组中,液压系统主要作用之一是,实现其转速控制、功率控制。(A) A、控制变桨距机构; B、控制机械刹车机构; C、控制风轮转速; D、控制发电机转速。 ★14、风力发电机组规定的工作风速范围一般是。(C) A、0~18m/s; B、0~25m/s; C、3~25m/s; D、6~30m/s。 ★15、风力发电机组的年度例行维护工作应坚持的原则。(B) A、节约为主; B、预防为主,计划检修; C、故障后检修; D、巡视。 ★16、在风力发电机组登塔工作前,并把维护开关置于维护状态,将远控制屏蔽。(C)A、应巡视风电机组; B、应断开电源;C、必须手动停机;D、不可停机。 ★17、风力发电机机舱上工作序断开主开关时,必须在主开关把手上。(A) ★18、检查维护G52风电机液压系统液压回路前,必须开启泄压阀,保证回路内。(D)A、无空气; B、无油;C、有压力;D、无压力。 ★19、SL1500系列风力发电机组运行时报24号故障最可能原因为(A) A、变频器故障 B、发电机故障 C、接线故障 D、光线连接错误 ★20、运行人员登塔检查维护时应不少于(A)人。 A、2人 B、3人 C、4 人 D、5人 ★21、歌美飒风力发电机组生产厂家( D )。

风力发电机组基本结构与工作原理

电气工程新技术专题 题 专班姓学目:风力发电机组基本结构与工作原理及其控制技术 业: 级: 名: 号: 指导老师: 电气工程及其自动化 ******* ** ******* ** ******* ** ******* **

本周的电气工程新技术专题中,主要讲解了一些关于风力发电机组的基本姐与工作原理方面的知识,使我们对此有了初步的认识,下面我将简单叙述一下我对风力发电机的了解。 风力发电机是将风能转换为机械功的动力机械,又称风车。广义的说,它是一种以太阳微热源,以大气为工作介质的热能利用发电机。风力发电机利用的是自然能源,相对柴油发电要好得多。但若应急来用的话还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 一、风力发电机的基本结构风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。 各主要组成部分功能简述如下: (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30% 范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3 个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子 等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 二、风力发电机的工作原理

相关主题
文本预览
相关文档 最新文档