当前位置:文档之家› 纳米氧化锌的功能性质综述与前景展望

纳米氧化锌的功能性质综述与前景展望

纳米氧化锌的功能性质综述与前景展望
纳米氧化锌的功能性质综述与前景展望

纳米氧化锌的功能性质综述与前景展望

摘要:纳米氧化锌是当前应用前景较为广泛的高功能无机材料。由于其颗粒尺寸的细微化,比表面积急剧增加,表面分子排布、电子结构和晶体结构都发生变化,具有表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等。从而使纳米氧化锌具有一系列优异的物理、化学、表面和界面性质,在磁、光、电、催化等方面具有一般氧化锌所无法比拟的特殊性能和用途。不但可以处理废水中有机污染物,还可以作为抗菌剂添加到其他物质中,而且随着纳米氧化锌应用范围的不断开拓,其必定会给人们的生活带来众多好处。本文对氧化锌的性质和用途进行了综述,并对纳米氧化锌的应用前景进行了展望。

一纳米氧化锌的特性

1 表面效应

纳米粒子粒径减小后,其表面原子数与总原子数之比会逐渐变大,从而导致纳米粒子性质发生改变,粒子的粒径越小,表面的原子数就会越多,使表面原子活泼,可以与其他原子合并,活泼性强,于是产生了“表面效应”。

2 小尺寸效应

当纳米粒子的粒径达到某一值时,纳米粒子的光、电、热、力学、磁等性质有着鲜明的变化,称为小尺寸效应。

3 宏观量子隧道效应

当势垒高度高于微观粒子的总能量时,粒子就可以穿越这个势垒,这种能力称为隧道效应。纳米粒子穿越势垒后,其磁化强度会改变,因此称为宏观的量子隧道效应。

4 体积效应

体积效应是当物质的体积减小时,一种是那些与物质本身有关的性质变了;另一种是物质本身的特性会变动。

5 介电限域效应

介电限域效应是纳米粒子在非均匀介质间的介电增强所产生的一种情况。其对光吸收,光化学等作用很大,而且对纳米粒子的光吸收带边的红移产生作用。

二纳米氧化锌的应用

1 制备抗菌除臭、消毒,抗紫外线产品

纳米氧化锌在阳光下,尤其是紫外线照射下,在水和空气(氧气)中能自行分解数自由移动的带负电的电子(e-),同时留下带正电的空穴(h+)。这种空穴可以激活空气中的氧变为活性氧,有极强的化学活性,能与大多数有机物发生氧化反应(包括细菌内有机物)。从而把大多数细菌和病毒杀死。纳米氧化锌的定量杀菌实验表明,在5min内纳米氧化锌的浓度为1%时,金黄色葡萄球菌的杀菌率

为98.86%,大肠杆菌的杀菌率为99.93%金属氧化物粉末对光线的遮蔽能力,在粉末粒径为光波长的1/2时最大,在整个紫外光区(200--400nm)氧化锌对光的吸收能力比氧化钛强。

纳米氧化锌吸收紫外线能力强,对长波紫外线(UVA)(波长320--400nm)和中波紫外线(UVB)(波长280--320nm)均有屏蔽作用。

纳米氧化锌无毒、无味,对皮肤无刺激性,不分解,不变质,热稳定性好,本身为白色可简单加以着色,价格便宜。氧化锌是皮肤的外用药,对皮肤有收敛、效应、防腐、防皱和保护等功能,可以用于化妆品的防晒剂,以防紫外线的伤害并能抗菌除臭;可以用于生产防腐、抗菌、抗紫外线的纤维,如日本帝人公司生产的采用纳米氧化锌和二氧化钛的混合消臭剂,能吸收臭味,净化空气,可用于制造长期卧床病人和医院消臭绷带、尿布、睡衣、窗帘及厕所用纺织品等;日本仓螺公司将氧化锌粉末掺入异形截面的聚酯纤维,除具有屏蔽紫外线的功能外,还有抗菌、消毒、除臭的奇异功能,除用于制造手术服、护士服,外还可制造内衣、外装、鞋、帽、袜、浴巾、帐篷、日光伞、夏日装、农用工作服、运动服等。加油纳米氧化锌的陶瓷制品具有抗菌除臭和分解有机物的自洁作用,经处理后的产品可制作浴缸、地板、墙砖等。添加纳米氧化锌紫外线屏蔽涂层的玻璃可抗紫外线、耐磨、抗菌和除臭,可用作汽车玻璃和建筑用玻璃。在石膏中掺入纳米氧化锌及金属过氧化物粒子后,可制得色彩鲜艳|不易褪色的石膏产品,具有优异的抗菌性能,适用于建筑材料和装饰材料。将一定量的超细ZnO.Ca(OH)2.AgNO3等物质加入25%的磷酸盐溶液中,经混合、干燥、粉碎等再制成涂层涂与电话、电脑等,有很好的抗菌性能。

2 用于催化剂和光催化剂

气体通过纳米材料的扩散速度为通过其他材料的上千倍,因此,纳米颗粒是极好的催化剂。纳米氧化锌由于尺寸小、比表面积大、表面的键态与颗粒内部不同、表面原子配位不全等,导致表面活性位置增多,形成了凹凸不平的原子台阶,加大了反应接触面。纳米催化活性和选择性远远大于其传统催化剂。

纳米氧化锌是一种很好的光催化剂,在紫外线的照射下,能分解有机物质,能抗菌除臭。

3 制备气体传感器及压电材料

它是利用纳米氧化锌周围气氛中组成气体的改变,其电学性能--电阻发生变化,对气体进行检测和定量测定的。目前已有利用纳米氧化锌的电阻变化制备的气体报警器和湿度计。将纳米氧化锌便于喷涂与质量控制,易于极化和转向,表现出比较理想的电特性和动态特性,适用于瞬态信号的测量。利用纳米氧化锌的压电性能,可制压电音叉、振子表面滤波器等。

4 制备图像记录材料

纳米氧化锌依制备条件可获得光导电性、半导体性和导电性等不同性质。利用这种变异,可用作图像记录材料;还可以利用其光导电性质用于电子摄像;利用半导体性质可做放电击穿记录纸;利用导电性质做电热记录纸等。其优点是无三废公害,画面质量好,可高速记录,能吸附色素进行色彩复印,酸蚀后有亲水性,可用于胶片印刷等

5 用于荧光体和电热器

纳米氧化锌在低压电子射线下,唯一可发射荧光的物质,光色为蓝色和红色。添加了氧化锌、二氧化硅、二氧化锰等的陶瓷粉经烧结而成的具有高介电常数、表面微细平滑的片状体,可用于制造陶瓷电容器。

6 用于隐身技术---雷达波吸收材料

雷达波吸收材料(简称吸波材料)系指能有效地吸收入射雷达波并能使其散射衰减的一种功能材料。纳米氧化锌等金属氧化物由于质量轻、厚度薄、颜色浅、吸波能力强等优点,作为一有发展前途的新型军用雷达波吸附剂,而成为吸附波材料研究的热点之一。

7 用于橡胶工业和涂料工业

纳米氧化锌是制造高速耐磨橡胶制品的原料,如飞机轮胎、高级轿车子午胎线等。与其他纳米材料配合用于建筑内外墙乳液涂料及其他涂料中,使涂层具有屏蔽紫外线、吸收红外线及抗菌防霉作用,同时还有增稠作用,以便颜料分散的稳定性。

三纳米氧化锌的现状

纳米氧化锌应用研究出来在橡胶、化工、涂料、陶瓷、玻璃、电子、医药卫生和食品等传统工业外随着材料纳米化和功能性的深入研究,进一步拓宽了它的应用领域,其中紫外线屏蔽、光催化导电氧化锌等方面的应用研究开展的比较多。但从上述的应用情况来看,对纳米氧化锌的应用基本理论的研究比较少。

根据光敏半导体催化理论和实验发现,半导体催化能力和其能级结构有关,其禁带宽度越小,催化能力越强。但从禁带所处能级及抗光阴极腐蚀性来看,半导体粉末催化活性顺序为TiO2>ZnO>WO3。

纳米光催化主要用于分解有机物、贵金属回收,对废水和空气中有机物、NO等有害物进行催化、氧化、分解来金华和空气,还能使微生物、细菌等分解成CO2和H2O,起到灭菌、除臭、防污、自洁的作用。

由于大气臭氧层的破坏,到达地球表面的紫外线强度日趋增加,人类由此造成的皮肤病威胁越来越大。因此,紫外线的防护已成为非常重要的研究课题之一。对纳米氧化锌紫外线的研究主要是防辐射的问题。

四目前存在的问题

如何寻找纳米氧化锌与传统领域融合的切入点和突破口,是推动纳米氧化锌应用研究的关键。纳米氧化锌的应用研究同其他纳米材料一样还处于初级阶段,应用基础理论的研究还不断深入,一些应用领域还未开发。

纳米氧化锌作为一种良好的光催化剂,可用于抗菌消毒、屏蔽紫外线等,但目前的研究中还存在一些问题:反应机理的研究缺乏中间体的鉴定;用于公共设施的杀菌技术;新型的半导体复合催化剂的开发;多元复杂组分有机物体系的考察,目前的报道大多为单一组分考察;大型工业化的光催化氧化反应器的设计;光催化剂的寿命、中毒、再生与回收。

对纳米氧化锌的制备技术研究已开展得比较广泛,但对其物理化学性质的研究还不够深入,这也是导致纳米材料应用滞后的主要原因之一。应用过程中还存在一些相关技术问题需要解决,如运输和使用过程中的团聚与分散问题,材料表面改性技术等。

五前景展望

纳米氧化锌有着广阔的前景。应当对于纳米氧化锌或者说绝大部分纳米材料应当通过控制制备条件制造出不同晶型,不同粒径的纳米材料,对比其间性质功能的差异寻找各种晶型尺寸纳米材料最适用的领域和进一步改进其制造工艺寻找不同领域最适合晶型。应当加强纳米材料和其他材料的复合的研究,使其能更好的实现其功能。应当加强不同学科之间的联合。

参考文献

[1] 杨剑,腾风恩.纳米材料综述[J].科技导报,2007(9)

[2] 刘海环,纳米氧化锌的制备及其光催化性能的研究[D].[硕士学位论文]大连;大连交通大学.2009

[3] 肖力光,周建成,马振海.纳米技术及其在建筑材料中的应用[J].吉林建筑工程学院学报.2003

[4] 徐敬明,动物学教程[M]。济南;山东大学出版社,2003

[5] 竺玉书.[J].涂料工业.2004(11);24-27

[6] 李晓娥,祖庸[J].化工进展.2009(4):35-37

[7] 胡春,刘星娟,李爽.[J].环境科学学报2008(1)

[8] 刘雪宁,杨治中.[J].物理化学学报.2000。16(8):746-748

[9] Castillola,silleta,roussyj,et al.Treatment of high organic loaded industrial effluent river [J]Water Science and Technology,2010,6(11):115--118

[10] Michacl R.H,Scot T.M,Choi W.Y,et al.Environment alapplication of semico- nductor photocatalysis[J].Chemistry Reviews,2006,95(3);35-39

[11] Hui M.K.Xi H.K.the investigation on photocatalytic treatment of waste water containing phenol over ZnO[J],Transactions of tianjin University,1996,11(2);2 [12] Prashant V,Kamt L,Dan M,et al .Nanoparticles inadvanced oxidation process [J].Current Opinion in Colloid&Interface Science ,2012,7(6):282-287

[13] Hariharan C.Photocatalytic degradation of organic contaminnants in water by Zno Nanopar-ticles[J]Applied catalysis A;General,2006,45(12)31-35

[14] Mitarai,T akeshi.JP.63288914

[15] El-shall M S,S lack W,Vann W,etalJ Phys chem,2004,98(12) ;3067-3070

[16] 严东生.纳米材料的合成与制备[J].无机材料学报,2005.10(1);1

[17] Yun Chan kang ,Seung Bin Park.J mater sci,2006,31(22);2409-2416

[18] 高长华.纳米氧化锌粉体的制备与改性及其他在内墙涂料上抗菌应用研究[D].[硕士

学位论文].南昌;南昌大学,2007

[19] Bourlinos AB, Stassinopoulos A, Anglos D, et al. Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Small. 2006;2(4):513-516.

[20] Gum JR, Wang AS, Chen CH, et al. Ultrafine titanium dioxide particles in theabsence of photoactivation can induce oxidative damage to haman bronchial epithelial cells. Toxicology. 2005; 213(1 -2):66-73.

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

不同基底下生长氧化锌纳米线

不同基底下生长氧化锌纳米线研究 首先在FTO玻璃基底上用水热法制备氧化锌纳米线,发现在配备种子层的基础上0.7437克硝酸锌和0.35克六次甲基四胺在九十五摄氏度的温度下反应三个小时制得的氧化锌纳米线最好。然后以重金属金为基底用水热法制备氧化锌纳米线,以金为催化剂0.7437克硝酸锌和0.35克六次甲基四胺分别在70摄氏度,80摄氏度,90摄氏度反应七个小时,发现在七十摄氏度的条件下氧化锌纳米线排列最为整齐,结果最好。不同基底相对比发现以FTO为基底制备氧化锌纳米线,氧化锌纳米线排列紧密且长径比较大,但是倾斜严重,适合染料敏化太阳能电池等科技的研究。以重金属金为基底制备氧化锌纳米线,氧化锌纳米线排列宽松,但倾斜较小,长径比较小,个体较大。适合于研究单独一根氧化锌纳米线。 关键词:FTO基底,金基底,不同基底制备氧化锌纳米线的特点 最近人们对于碳纳米管的发现引起了制备其它一维纳米材料的极大兴趣。一维纳米结构氧化物具有独特的光学,电学性能。各种氧化物纳米线的制备和性能研究已成为当今的热点。氧化锌是重要的II – VI族直接带隙宽禁带半导体氧化物,具有较大的禁带宽度(3.2eV),激子结合能(60meV)高,能在室温及更高温度产生近紫外的短波激子发光。其中特别是具有较大长径比的氧化锌纳米线所表现出的奇特光学与电学性能,使其在低压和短波长光电子器件方面具有潜在的应用价值,例如透明导电材料,发光二极管,气敏传感器和荧光器件等。一维氧化锌纳米线是一种性能优异的新型功能材料,应用开发前景十分广阔。其制备方法多种多样,制备技术也日趋完善,它在传统材料、微电子、医药等领域的应用日益广泛和重要,对这些领域将会带来革命性的改变,也会影响到人们的日常生活。可以预见,随着氧化锌纳米线的制备方法、生长机理、结构表征等研究的不断深入,其应用研究将会有一个快速发展的阶段。 1.1纳米材料 1.1.1纳米材料简介 纳米材料是在纳米尺度空间内研究电子、原子和分子的内在运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。它的最终目标是人类能够按照自己的意愿直接操纵单个原子,制造具有特定功能的产品。 1.1.2纳米材料四大效应 体积效应 当纳米粒子尺寸比电子的德布罗意波更小时,内压、磁性、化学活性、热阻、光吸收、催化性及熔点等与普通粒子相比发生了很大的变化,周期性边界条件将被破坏。纳米粒子以下几个方面的应用均基于它的体积效应。例如,利用等离子共振频移随颗粒尺寸变化的性质,

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

纳米氧化锌抗菌性能及机制

中国组织工程研究第16卷第3期 2012–01–15出版 Chinese Journal of Tissue Engineering Research January 15, 2012 Vol.16, No.3 ISSN 1673-8225 CN 21-1581/R CODEN: ZLKHAH 527 纳米氧化锌抗菌性能及机制*★◆ 胡占江1,赵忠1,王雪梅2 Antibacterial properties and mechanism of nano-zinc oxide Hu Zhan-jiang1, Zhao Zhong1, Wang Xue-mei2 Abstract BACKGROUND: The zinc oxide has a good biocompatibility, security and long effectiveness, and can be used as a type of antibacterial material of active oxide category. OBJECTIVE: To summarize the antibacterial properties and mechanism of nano-zinc oxide (nano-ZnO). METHODS: A computer-based online search of related papers from December 1995 to February 2011 was performed in Elsevier (Science Direct) and Web of Science databases using the key words of “antibacterial properties of nano-ZnO” in English, and in CNKI and Wanfang databases using the key words of “antibacterial properties of nano-ZnO” in Chinese. Totally 75 literatures were selected. RESULTS AND CONCLUSION: The nano-ZnO has a strong bactericidal property in many fields. It can replace other materials of active oxide category based on its good biocompatibility, security and long effectiveness. The antibacterial properties and mechanism of nano-ZnO were summarized in this study from the sides of modified antibacterial properties and the effects of morphology and structure of nano-ZnO on antibacterial properties. However, more studies are in need to solve how to improve the utilization and antibacterial properties, and to expand the applications of nano-ZnO in antibacterial and other fields. Hu ZJ, Zhao Z, Wang XM. Antibacterial properties and mechanism of nano-zinc oxide. Zhongguo Zuzhi Gongcheng Yanjiu. 2012;16(3):527-530. [https://www.doczj.com/doc/966087960.html, https://www.doczj.com/doc/966087960.html,] 摘要 背景:氧化锌作为一种活性氧化物类抗菌材料,拥有良好的生物相容性、安全性以及长效性。 目的:总结纳米氧化锌的抗菌性能及其抗菌机制。 方法:应用计算机检索1995-12/2011-02 Elsevier (ScienceDirect)及Web of Science期刊引文索引数据库相关文章,检索 词为“antibacterial properties of nano-zinc oxide”,并限定文章语言种类为English。同时计算机检索1995-12/2011-02 CNKI 学术总库及万方数据库相关文章,检索词为“纳米氧化锌抗菌性能”,并限定文章语言种类为中文。共检索到文献75篇。 结果与结论:纳米氧化锌在很多方面的杀菌性能都很强,并且由于其良好的生物相容性、安全性以及长效性,可以取代医学 上其他活性氧化物抗菌材料。文章从纳米氧化锌抗菌性能改性,以及形貌与结构对抗菌性的影响等方面,详细总结了纳米氧 化锌的抗菌性能及其抗菌机制,但是如何提高纳米氧化锌的利用率和杀菌性能,如何使纳米氧化锌应用于更多细菌的抑制或 更广阔的领域,都需要人们的继续努力。 关键词:纳米氧化锌;抗菌材料;抗菌机制;生物材料;综述文献 doi:10.3969/j.issn.1673-8225.2012.03.033 胡占江,赵忠,王雪梅.纳米氧化锌抗菌性能及机制[J].中国组织工程研究,2012,16(3):527-530. [https://www.doczj.com/doc/966087960.html, https://www.doczj.com/doc/966087960.html,] 0 引言 近年来随着资源的过度开发,环境破坏日益严重,由此导致各种致病细菌、真菌和病毒引起的疾病(例如非典,禽流感,猪流感等)严重威胁着人类的健康,因此,各种抗菌材料(也称抗菌剂)成为医学研究的重点。其中无机抗菌材料由于其优良的安全性、耐久性、缓释性和化学稳定性,且使用方便,得到了越来越重要的应用。目前应用比较广泛的无机抗菌材料主要有:银系抗菌材料、金属离子抗菌材料、光催化抗菌材料、活性氧化物类抗菌材料等。活性氧化物类抗菌材料拥有良好的生物相容性、安全性以及长效性,越来越受到青睐。对于活性氧化物抗菌材料的研究,人们最先关注的是以氧 化锌(ZnO)、氧化钙、氧化镁为代表的活性氧化 物,发现它们都具有良好的抗菌性,甚至较低浓 度的氧化物在无光条件下也显示出了优异的抗 菌性能。ZnO是一种宽禁带Ⅱ,Ⅵ族化合物半导 体材料,具有规整的六角形纤锌矿结构,本身为 白色,稳定性好,高温下不变色、不分解、价格 低廉、资源丰富,己成为无机抗菌剂研究的热点 之一。关于ZnO抗菌性能的研究[1],称ZnO的光催 化活性甚至强于二氧化钛,在很多方面,ZnO完 全可以作为二氧化钛的替代材料。二氧化钛在未 进行紫外光照射时是一种生物兼容性很好的材 料,但是经使用UVA进行照射后,又可以显示出 极强的细胞毒性[2-3]。因此,与二氧化钛相比ZnO 更具有实用价值。 1Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu Province, China; 2School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu Province, China Hu Zhan-jiang★, Master, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu Province, China huzj2010@ https://www.doczj.com/doc/966087960.html, Correspondence to: Wang Xue-mei, Lecturer, School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu Province, China w_xuemei@ https://www.doczj.com/doc/966087960.html, Supported by: Natural Science Foundation of Gansu Province, No. 1010RJZA112* Received: 2011-05-13 Accepted: 2011-07-30 1兰州大学物理科 学与技术学院,磁 学与磁性材料教 育部重点实验室, 甘肃省兰州市 730000;2兰州大 学口腔医学院,甘 肃省兰州市 730000 胡占江★,男, 1984年生,河北 省邯郸市人,满 族,2010年邯郸 学院毕业,硕士, 主要从事表面物 理化学的研究。 huzj2010@ https://www.doczj.com/doc/966087960.html, 通讯作者:王雪 梅,讲师,兰州大 学口腔医学院,甘 肃省兰州市 730000 w_xuemei@ https://www.doczj.com/doc/966087960.html, 中图分类号:R318 文献标识码:A 文章编号: 1673-8225 (2012)03-00527-04 收稿日期:2011-05-13 修回日期:2011-07-30 (20110513019/WL·L)

纳米氧化锌综述

纳米氧化锌综述 概述 纳米氧化锌是一种多功能性的新型无机材料,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点[1]。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。 纳米氧化锌的性质 纳米氧化锌是一种半导体催化剂的电子结构,在光照射下,当一个具有一定能量的光子或者具有超过这个半导体带隙能量Eg的光子射入半导体时,一个电子从价带NB激发到导带CB,而留下了一个空穴。激发态的导带电子和价带空穴能够重新结合消除输入的能量和热,电子在材料的表面态被捕捉,价态电子跃迁到导带,价带的孔穴把周围环境中的羟基电子抢夺过来使羟基变成自由基,作为强氧化剂而完成对有机物(或含氯)的降解,将病菌和病毒杀死[2]。 纳米氧化锌的制备 1.纳米氧化锌的液相化学制备技术 除了能够准确控制粒子的化学组成外,液相法与其它化学制备技术相比还具有设备简单、批量大、原料易得、相对来说粒子大小集中、晶相结构及形状容易控制、产物活性好、成本低等特点。液相法可以分为沉淀法、溶胶-凝胶法、微乳液法、水热合成法、溶剂蒸发法等。 1.1化学沉淀法 1.1.1直接沉淀法 直接沉淀法是直接混合制备氧化锌的锌盐与沉淀剂溶液的方法,特点是条件易于控制,操作简单,适于大批量制备粉体材料,其缺点是副产物离子的洗涤较困难,且产物粒径分布较宽,干燥过程中粒子易于团聚。郭志峰等[3]向乙酸锌溶液滴加草酸,同时搅拌,伴有草酸锌沉淀生成。将沉淀物送入烘箱烘干,烘干的草酸锌粉末置洗净坩埚中,在箱式电阻炉中反应,制得氧化锌晶体。 1.1.2 均匀沉淀法 均匀沉淀法是将反应物之一通过化学反应缓慢释放出来并导致沉淀反应发生的技术,因此混合反应物溶液沉淀反应并不立即发生。其特点是避免了直接沉淀法中的局部过浓,从而大大降低沉淀反应的过饱和度。洪若瑜等[4]采用连续微波加热用硫酸锌和尿素制备了粒径为8~30nm的纳米氧化锌。 1.2溶胶-凝胶法 溶胶-凝胶法是以无机盐或金属醇盐为前驱物,经水解缩聚过程逐渐胶化,然后作相应处理得到所需纳米粉体,方法多采用有机溶剂。该方法合成的粉体纯度高,化学成分均匀,颗粒度小且分布范围窄。溶液的pH值、浓度、反应时间及温度均是影响溶胶-凝胶质量的主要因素。 Tianbao Du等[5]采用溶胶-凝胶浸渍涂布技术制备了氧化锌半导体薄膜,他 们以耐热玻璃为模板,在不断搅拌中把模板加入Zn( CH 3C00) 2 /乙醇溶液中,取出

纳米氧化锌的制备实验报告

纳米ZnO2的制备 实验报告 班级:应091-4 组号:第九组 指导老师:翁永根老师 成员:任晓洁 1428 邵凯 1429 孙希静 1432 【实验目的】 1.了解纳米氧化锌的基本性质及主要应用 2.通过本实验掌握纳米氧化锌的制备方法

3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产 品。 4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原 理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。 5.掌握基础常用的缓冲溶液的配制方法和原理。 6.加深对实验技能的掌握及提高查阅文献资料的能力。 【实验原理】 1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。纳米氧化锌一系列的优异性和十分诱人的应用前景。 2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法 3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。 4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控 制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下: 在氨性溶液中: Zn2++4NH3?Zn(NH3)42+ 加入EBT(铬黑T)时: Zn(NH3)42++EBT(蓝色)?Zn-EBT(酒红色)+4NH3 滴定开始-计量点前: Zn(NH3)42++EDTA?Zn-EDTA+4NH3 计量点时: Zn-EBT(酒红色)+EDTA?Zn-EDTA+EBT(蓝色)

氧化锌纳米棒研究进展汇总

氧化锌纳米棒研究进展** 孔祥荣*, 邱晨, 刘强, 刘琳, 郑文君 (南开大学化学学院材料系,天津,300071) Kxr0918@https://www.doczj.com/doc/966087960.html, 摘要:氧化锌纳米棒由于具有新奇的物理化学性质而成为研究的热点,本文就近年来氧化锌纳米棒在制备方法和反应机理及应用研究等方面予以综述。 关键词:氧化锌; 纳米棒; 制备; 反应机理 1 引言 近年来,低维纳米结构的半导体材料引起了广泛的关注,尤其是一维(1-D纳米材料在维数和大小物理性质的基础研究中有潜在的优势,同时在光电纳米器件和功能材料中的应用研究成为热点。氧化锌由于在室温下较大的导带宽度和较高的电子激发结合能(60meV 及光增益系数(300 cm 而使之具有独特的催化、电学、光电学、光化学性质,在太阳能电池、表面声波和压电材料、场发射、纳米激光、波导、紫外光探测器、光学开关、逻辑电路 [5,6][1]-1[2][3][4] 等领域潜在的应用等方面均具有广泛的应用前景。本文就氧化锌纳米棒及其阵列的制备、反应机理、应用研究等进行简要的综述。 2 氧化锌纳米棒的制备 2.1 超声波法和微波法 刘秀兰等在低温反应条件下(冰水浴),通过超声的方法,采用醋酸锌和水合肼为原料,[7] 以DBS 作为表面活性剂,制备了ZnO 纳米棒,截面为六方型,直径100nm ,长度1μm。研究表明:与其它制备方法相比,低温与超声技术可以更为方便获得分布均

一、长径比较小的ZnO 纳米棒。Hu等分别用超声和微波辐射两种方法得到了交联(二聚体,三聚体(T形,四聚体(X[8] 形))的ZnO纳米棒。超声辐射法和微波辐射法具有一个共同的特点,反应速度快,设备要求简单。 2.2 水热法 Liu 等用六水合硝酸锌和氢氧化钠为原料配成溶液,180 ℃水热处理20h 得到晶化程度[9] 很高的直径的为50 nm的高长径比的氧化锌纳米棒。Vayssieres [10]用硝酸锌盐和等摩尔的六次甲基四胺在水热条件下95 ℃几小时就可以在底物上得到了直径100~200 nm ,长度为10 μm 氧化锌纳米棒及其阵列。Wang 等[11]报道用Zn 作为底物同时作为反应物水热条件下得到了形貌可控的ZnO 纳米棒。陶新永等[12]采用PEG 辅助水热法合成了ZnO 纳米棒。研究发现,氢 [13]氧化钠浓度和反应时间对产物形貌和尺寸有较大的影响。Tang 等用H 2O 2、NaOH 和Zn 箔为 [14]原料辅助的水热法来合成具有良好光学性质的ZnO 纳米棒阵列。Wu 等用溴化十六烷三甲 基铵(CTAB 表面活性剂作导向剂在水热条件下,通过粒径几十纳米的纳米晶自组装得到了ZnO 单晶纳米棒。Guo 等[15]用氧化铟锡(ITO )底物上用简单的水热法通过改变温度成功的 [16]合成了粒径长度可控的分布较窄的高趋向的ZnO 纳米棒阵列。郭敏等采用廉价低温的水 热法, 在基底上制备高质量、高取向统一、平均直径小于50 nm 并且直径分布很窄的ZnO 纳米棒阵列薄膜。

纳米氧化锌的制备、表面改性及应用

纳米氧化锌的制备、表面改性及应用 纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细氧化锌。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。本文将对本公司生产的纳米氧化锌从制备方法、性能表征、表面改性以及目前所开发的应用领域方面进行较为详细的介绍。 一、纳米氧化锌的制备 氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。我公司采用湿化学法(NPP-法)制备纳米级超细活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得纳米氧化锌。与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处: 1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。 2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。 3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。 4.典型绿色化工工艺,属于环境友好过程。 二、纳米氧化锌的性能表征 纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。 清华大学分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。经ST-A表面和孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 三、纳米氧化锌的表面改性 由于纳米氧化锌具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米氧化锌表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米氧化锌粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某种可溶性固相载体中。经过表面改性的纳米干粉体,其吸附、润湿、分散等一系列表面性质都会发生变化,一般可以自动或极易分散在特定的介质中,因此使用非常方便。一般来讲,纳米粒子的改性方法有三种:1.在粒子表面均匀包覆一层其他物质的膜,从而使粒子表面性质发生变化;2.利用电荷转移络合体(如硅烷、钛酸酯等偶联剂以及硬脂酸、有机硅等)作表面改性剂对纳米粒子表面进行化学吸附或化学反应;3.利用电晕放电、紫外线、等离子、放射线等高能量手段对纳米粒子表面进行改性。

沉淀法制备纳米氧化锌粉体讲义

沉淀法制备纳米氧化锌粉体 一、实验目的 1.了解沉淀法制备纳米粉体的实验原理。 2.掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3.了解实验产物粒度的表征手段,掌握激光纳米粒度仪的使用。 4.了解沉淀剂、实验条件对产物粒径分布的影响。 二、实验原理 氧化锌是一种重要的宽带隙(3.37eV)半导体氧化物,常温下激发键能为60meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。纳米氧化锌由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点,已经广泛的应用在陶瓷、化工、电子、光学、生物、医药等许多领域。纳米氧化锌的制备方法有物理法和化学法,物理法主要包括机械粉碎法和深度塑形变形法,化学法包括沉淀法、溶胶—凝胶法、水热法、微乳液法等方法。本实验采用沉淀法制备纳米氧化锌粉体。 沉淀法包括直接沉淀法和均匀沉淀法。直接沉淀法是制备纳米氧化锌广泛采用的一种方法。其原理是在包含一种或多种离子的可溶性盐溶液中,加入沉淀剂(如OH-,CO32-等)后,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去,沉淀经热分解最终制得纳米氧化锌。其中选用不同的沉淀剂,可得到不同的沉淀产物。均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地、均匀地释放出来,所加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌ZnAc2。常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH3·H2O)、尿素(CO(NH2)2)等。一般情况下,锌盐在碱性条件下只能生成Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体需要进行高温煅烧。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH3·H2O与锌离子反应生成沉淀。反应如下: OH-的生成: CO32-的生成: 形成前驱物碱式碳酸锌的反应: 热处理后得产物ZnO: 用NaOH作沉淀剂一步法直接制备纳米氧化锌的反应式如下: 该实验方法过程简单,不需要后煅烧处理就可以得到氧化锌晶体,而且可以通过调控Zn2+/OH-的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

纳米氧化锌

纳米氧化锌材料 摘要:综述了纳米氧化锌的性能。描述了纳米氧化锌的制备研究, 随着科技的发展, 许多新的手段引入到了纳米氧化锌的合成工艺中弥补相互之间的不足。 关键词:纳米氧化锌,性能,制备,应用 1.纳米氧化锌的性能 1.1紫外线屏蔽 在整个紫外光区( 200~ 400 nm) ,氧化锌对光的吸收能力比氧化钛强。纳米氧化锌的有效作用时间长, 对紫外屏蔽的波段长, 对长波紫外线和中波紫外线均有屏蔽作用, 能透过可见光, 有很高的化学稳定性和热稳定性。它可用于制备抗紫外线、耐光老化性能好的涂料及其它的高分子材料。在乳胶漆中使用纳米氧化锌可以增大乳胶漆对紫外线辐射的抵抗力, 减弱乳胶漆对潮湿环境条件的敏感性,提高耐老化性。同时,氧化锌能够散射光线,使乳胶漆的遮盖力得到一定程度的改善。1.2补强性 一般的无机填料填充于聚合物中时具有如下缺点: 使用量大, 不能兼顾刚性、耐热性、尺寸稳定性和韧性同时提高。而在聚合物中添加少量的纳米粒子, 就可以使基体树脂的力学性能( 拉伸强度、弯曲强度、冲击强度、断裂伸长率等) 得到显著的提高, 并克服了以上提及的一般无机材料的缺点。 1.3抗菌、除臭性 氧化锌是传统无机抗菌材料, 在与细菌接触时, 锌离子缓慢释放出来。由于锌离子具有氧化还原性, 它能与细胞膜及膜蛋白结合, 并与其结构中有机物的巯基、羧基、羟基反应, 破坏其结构, 进入细胞后破坏电子传递系统的酶, 并与- SH 基反应, 达到抗菌的目的。在杀灭细菌之后, 锌离子可以从细胞内游离出来, 重复上述过程。氧化锌纳米粉末因为粒径小, 表面原子数量大大超过传统粒子, 表面原子由于缺少邻近的配位原子而具有很高的能量, 所以可增强氧化锌的亲和力, 提高抗菌效率。 1.4阻燃性 氧化锌可作为一种阻燃增效剂。它多数是和其它的增效剂或阻燃剂协同使用, 其增效作用与硼酸锌类似。ZnO 一般可作为PVC 的紫外吸收剂, 但其对PVC 的热稳定性有不利的影响, 因此在配方中一般采用的含量不高。在电缆涂层中使用纳米

ZnO及其纳米结构的性质与应用

ZnO及其纳米结构的性质与应用 本文将综述ZnO及其纳米结构的性质与应用等方面的内容。 1.ZnO的形貌与晶体结构 按形貌来分,有单晶ZnO,薄膜ZnO、纳米结构ZnO,纳米结构又分为纳米点、纳米颗粒、纳米线、纳米棒(纳米柱)、纳米管、纳米花、纳米片(纳米带)、纳米弹簧、纳米环、纳米梳、纳米钉(纳米针)、纳米笼、纳米四足体、塔状纳米结构、盘状纳米结构、星状纳米结构、支状纳米结构、中空纳米微球、纳米阵列等。 按晶体结构来分,ZnO又有六方对称铅锌矿结构、四方岩盐矿结构和闪锌矿结构,其中六方对称铅锌矿结构为稳定相结构。 在不同的环境下制备出的ZnO的结构与形貌都不尽相同,而不同的结构与形貌又表现出不同的性质,有不同的应用。 2.ZnO的性质及应用 纳米氧化锌材料具有诸多优良的性质,总的来说,可分为三个方面,一是作为半导体材料所具有的性质,二是作为纳米材料而具有的性质,三是其自身独有的性质。 2.1作为半导体材料的ZnO 在半导体产业中,一般将Si、Ge称为第一代半导体材料;将GaAs(砷化镓) 、InP(磷化铟) 、GaP(磷化镓)等称为第二代半导体材料;而将宽禁带( Eg >2. 3eV) 的SiC(碳化硅) 、GaN(氮化镓)和金刚石等称为第三代半导体材料。[1]通常状态下,ZnO是直接宽带隙n型半导体材料,室温下的禁带宽度是3.3eV,是第三代半导体材料中的典型代表。因而其具有第三代半导体材料所具有的诸多优良性质,比如发光特性、光电特性、电学性质、压阻特性、铁磁性质等。 2.1.1发光特性 在半导体中,处于激发态的电子可以向较低的能级跃迁,以光辐射的形式释放出能量,这就是半导体的发光现象。[2]LED产业中比较有代表性的半导体材料是GaN、SiC、ZnO和金刚石,虽然GaN 与SiC的工艺已经比较成熟,但SiC发光效率低,而ZnO在某些方面具有比GaN更优越的性能,如:熔点、激子束缚能和激子增益更高、外延生长温度低、成本低、易刻蚀而使后继工艺加工更方便等。[1]此外,ZnO还具有紫外激光发射行为,因而可用作紫外激光器,由于其波长比GaN所发蓝光更短,因而更受青睐。 2.1.2光电特性 ZnO 薄膜中掺Al使其禁带宽度显著增大,具有较高的光透过率。在可见光区,光透过率达90%。高的光透过率和大的禁带宽度使其可作为太阳能电池窗口材料、低损耗光波导器件及紫外光探测器。[3] 2.1.3电学性质 目前已经可以合成质量好的ZnO单晶,在这种单晶中一般存在较低的本底杂质、点缺陷及位错浓度,从而显示出较好的电学性质。[4]此外,尽管ZnO的迁移率低于GaN,但ZnO的饱和速率却高于GaN,这表明ZnO适于高频器件。[5] 2.1.4压阻特性 对半导体施加应力时,除产生形变外,能带结构也要相应地发生变化,因而材料的电阻率就要改变。[2]ZnO压敏材料受到外加电压时,存在一个阈值电压,当外加电压高于该值时即进入击穿区,此时电压的微小变化即会引起电流的迅速增大。由于具有这种特征,ZnO压敏材料在各种电器设备的电压保护、稳压和浪涌电压吸收等方面都起着重要作用。[3] 2.1.5铁磁性质 Dietl预言在p型ZnO通过Mn掺杂将可以实现室温下载流子控制的铁磁性,通过控制半导体中自旋可以生产相关的器件:如自旋光发射二极管、自旋场效应管及量子计算机的自旋量子位等。[4]

简单的制备纳米氧化锌的制备方法

在水——乙醇介质中用氨水沉淀法制备出了纳米()和材料,讨论了介质组成对沉淀产物微粒地粒径范围及形貌地影响,并研究出由()分解为纳米地最佳干燥脱水条件为℃、.表明本方法不需高温处理就可得到颗粒均匀且分布窄地纳米材料,粒径可达~. 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂. 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱. 二、试验方法 以水——乙醇为溶剂,其中醇地体积含量分别为(去离子水)、、、.将氯化锌、氨水配制成不同浓度地溶液(不同浓度是多少?).取一定体积(一定体积是多少?)地氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度地氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应.控制氨水用量,调节值为左右,确定滴定终点.反应得到地白色沉淀物,经抽滤洗涤后自然风干即为()纳米粉,()经干燥(℃、)脱水后,为纳米粉体.资料个人收集整理,勿做商业用途 三、不同乙醇浓度对粒径地影响 并且含量越高,这种抑制作用也越强.资料个人收集整理,勿做商业用途 氯化锌地浓度对地粒径影响不大,规律性不强;氨水地浓度对地粒径稍有影响,浓度增大,粒径是减小趋势,浓度为时,粒径为~,浓度为时,粒径为~.资料个人收集整理,勿做商业用途 五、该方法操作简单,条件温和,所用原材料成本低,过程易控制等,是制备纳米粉地好方法,值得推广. 固相合成氧化锌 一、试剂与前驱物地准备 七水硫酸锌、无水草酸纳均为分析纯; 准确称取比为地七水硫酸锌和无水草酸纳,分别研磨后,充分混合,再转入同一研钵中共研磨.热水洗去副产物后,再用无水乙醇淋次,于℃烘干.资料个人收集整理,勿做商业用途二、纳米氧化锌地制备 由前驱物地热分析得地热分解温度为℃.将置于马弗炉中加热升温至分解温度,保持,即得浅黄色纳米氧化锌.资料个人收集整理,勿做商业用途 液相沉淀制备氧化锌 一、单组分锌氨溶液地制备

纳米氧化锌的部分特性

纳米氧化锌的部分特性 薛元凤051002231 摘要:纳米材料的物理化学性能与其颗粒的形状、尺寸有着密切的关系。因此,单分散纳米材料的制备及其与尺寸相关的性能研究成为近几年人们研究的热点之一。ZnO作为一种宽禁带半导体具有独特的性质,在纳米光电器件、光催化剂、橡胶、陶瓷及化妆品领域有着广阔的应用前景,随着对不同形状的纳米ZnO的制备及其相关的性能研究不断升温,对其应用方面的研究进展不断深入,单分散纳米ZnO材料已经引起了人们越来越广泛的关注。ZnO作为一种宽禁带,高激子结合能的氧化物半导体,以其优越的磁、光、电以及环境敏感等特性而广泛地应用于透明电子元件、UV 光发射器、压电器件、气敏元件以及传感器等领域。ZnO 本身晶格结 构特点决定了在众多的氧化物半导体中是一种晶粒形态最丰富的材料。本文主讲纳米氧化锌紫外屏蔽、光电催化、气敏、磁性等特性,及纳米氧化锌在生活中、工厂作业中的用途。 关键词:紫外屏蔽光电催化气敏导电性磁性 1 引言 随着纳米科学的发展,人类对自然的认识进入到一个新的层次。材料的新性质被逐渐发掘!认识,新的理论模型被提出"著名学者钱学森院士预言:“纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是二十一世纪的又一次产业革命”。 纳米ZnO具有优异的光、电、磁性能,在当今一些材料研究热点领域表现活跃。与普通ZnO相比,纳米ZnO颗粒尺寸小,微观量子效应显著,展现出许多材料科学家渴望的优异性质,如压电性,荧光性,非迁移性,吸收和散射电磁波能力等。大量科研工作集中于纳米ZnO材料的制备、掺杂和应用等方面。制备均匀、稳定的纳米ZnO是首要任务,获得不同形貌的纳米结构,如纳米球、纳米棒、纳米线、纳米笼、纳米螺旋、纳米环等,将这些新颖的纳米结构材料所具有的独特性能,应用到光电、传导、传感,以及生化等领域,取得了可喜的成绩。世界各国相继大量投入,开发和利用纳米ZnO材料,使其在国防,电子,化工,冶金,航空,生物,医学和环境等方面具发挥更大的作用。 2简介 纳米氧化锌(ZnO)问世于20世纪80年代,其晶体结构为六方晶系P63mc空间群,纤锌矿结构,白色或浅黄色的晶体或粉末,无毒,无臭,系两性氧化物,不溶于水和乙醇,溶解于强酸和强碱,在空气中易吸收二氧化碳和水,尤其是活性氧化锌。

纳米氧化锌的研究进展

学号:201140600113 纳米氧化锌的制备方法综述 姓名:范丽娜 学号: 201140600113 年级: 2011级 院系:应用化学系 专业:化学类

纳米氧化锌的制备方法综述 姓名:范丽娜学号: 201140600113 内容摘要:介绍了纳米氧化锌的应用前景及国内外的研究现状,对制 备纳米氧化锌的化学沉淀法、溶胶凝胶法、微乳液法、水热合成法、 化学气相法的基本原理、影响因素、产物粒径大小,操作过程等进行 了详细的分析讨论;提出了每种创造工艺的优缺点,指出其未来的研 究方向是生产具有新性能、粒径更小、大小均一、形貌均可调控、生 产成本低廉的纳米氧化锌。同时也有纳米氧化锌应用前景的研究。 Describes the application of zinc oxide prospects and research status, on the preparation of ZnO chemical precipitation, sol-gel method, microemulsion, hydrothermal synthesis method, chemical vapor of the basic principles, factors, product particle size, operating procedure, carried out a detailed analysis and discussion; presents the advantages and disadvantages of each creation process, pointing out its future research direction is the production of new properties, particle size is smaller, uniform size, morphology can be regulated, production cost of zinc oxide. There is also promising research ZnO. 关键字:纳米氧化锌制备方法影响研究展望 正文:纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。由于晶粒的细微化,其表面电子结构和晶体结构发生 变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效 应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在

相关主题
文本预览
相关文档 最新文档