当前位置:文档之家› 应用COMI炼钢工艺控制转炉脱磷基础研究

应用COMI炼钢工艺控制转炉脱磷基础研究

应用COMI炼钢工艺控制转炉脱磷基础研究
应用COMI炼钢工艺控制转炉脱磷基础研究

 第4

6卷 第8期 2 0 1 

1年8月钢铁

Iron and 

Steel V

ol.46,No.8Aug

ust 2011应用COMI炼钢工艺控制转炉脱磷基础研究

吕 明1, 朱 荣1, 毕秀荣1, 魏 宁1, 汪灿荣2, 柯建祥2

(1.北京科技大学冶金与生态工程学院,北京100083; 2.福建三钢(集团)闽光股份有限公司,福建三明365000)摘 要:基于转炉炼钢过程脱磷的热力学分析和计算,以控制转炉冶炼过程脱磷期温度为出发点,提出一种利用CO2气体代替部分O2进行吹炼的转炉炼钢新工艺,即COMI炼钢工艺。研究发现:COMI炼钢工艺能有效控制转炉熔池温度,降低半钢和一倒钢液磷含量,同时可有效减少炉渣铁损,为转炉高效脱磷提供了一种新思路。关键词:转炉;脱磷;炼钢工艺;二氧化碳

文献标志码:A 文章编号:0449-749X(2011)08-0031-

05Fundamental Research on Dephosp

horization ofBOF by COMI Steelmaking 

ProcessL Ming1, ZHU Rong1, BI Xiu-rong1, WEI Ning1,

WANG Can-rong2, KE Jian-xiang

(1.Metallurgical and Ecological Engineering School,University 

of Science and TechnologyBeijing,Beijing 100083,China; 2.Fujian Sanming 

Iron and Steel(Group)Co.,Ltd.Minguang,Sanming 

365000,Fujian,China)Abstract:Based on thermodynamic analysis and calculation of dephosphorization in converter steelmaking process,COMI steelmaking process,in which CO2was used as a substitute for part O2to control the temperature of dephos-phorization,was presented.It is discovered that the bath temperature can be effectively controlled and phosphoruscontent of liquid steel is reduced by COMI steelmaking process.Moreover,iron losses of slag are lowered.Theprocess will provide a new idea of converter dephosphorization with high efficiency.Key 

words:converter;dephosphorization;steelmaking process;carbon dioxide基金项目:国家自然科学基金资助项目(50974013

)作者简介:吕 明(1986—),男,博士生; E-mail:lvming

steel@163.com; 收稿日期:2010-09-17 磷是一般钢种中的有害杂质,容易在晶界偏析,造成钢材“冷脆”,显著降低钢材的低温冲击韧

性[

1-

2]。炼钢过程脱磷主要在冶炼前期的低温条件下进行,因此易受脱硅反应后熔池迅速升温的热力学条件限制,

造成吹炼过程温度不易控制、脱磷率不稳定[3-

4]。因此,炼钢过程中如何实现转炉高效率脱

磷,

特别是高硅高磷铁水的脱磷问题一直是炼钢生产的技术难点之一。炼钢厂通常在脱磷期加入适量的固体冷却剂,达到控制熔池升温速度、提高冶炼前期脱磷率的目的,但固体冷却剂易引起熔池局部冷却,以至均匀降温效果不佳且不易控制,同时冷却剂中含有大量的杂质元素,为生产高品质钢种增加负担。

本文基于二氧化碳气体与钢液元素相互作用的相关热力学理论及分析,提出在转炉冶炼前期的顶吹氧流中混吹部分二氧化碳气体,

以此控制脱磷期升温速度,从而有利于控制转炉脱磷的COMI炼钢

工艺。

1 COMI炼钢工艺及脱磷原理

本课题组自2005年以来致力于研发一种将二氧化碳应用于控制转炉炼钢过程的新工艺即二氧化碳-氧气混合喷吹炼钢工艺,简称COMI(CO2andO2M

ixed Injection)炼钢工艺。1.1 脱磷原理

脱磷过程是在钢-渣界面进行的,转炉熔池内的脱磷反应如下:

2[P]+5(FeO)+4(CaO)=(4CaO·P2O5)+5[Fe]lg 

Kp=40 067/T-15.06(1) 脱磷反应为放热反应,

影响反应进行的因素主要有温度、炉渣碱度、渣中(FeO)量以及渣量等。由式(1)可知,当温度降低时,Kp增大,脱磷率提高。因此,应合理控制转炉吹炼工艺过程,充分利用吹炼前期良好的低温脱磷条件,促进脱磷反应

钢 铁

第46卷

的进行[

5]

。1.2 热力学分析

二氧化碳气体属于弱氧化性气体,根据热力学

分析,

在炼钢温度下,以下反应是完全可进行的,二氧化碳气体与C、Fe、Si及Mn反应生成氧化物[6-7]

如表1所示。

表1 相关化学反应热力学数据表

Table 1 Thermody

namic data of interrelated chemical reaction介质种类

化学反应式

Δ

G°/(J·mol-1)1773K

Δ

G/(J·mol-1)

ΔH/(kJ·kg

-1)CO2

CO2(g)+[C]=2CO(g

)34580-30.95T-20294.35 11602.67CO2(g)+Fe(l)=(FeO)+CO(g

)11880-9.92T-5708.16 720.912CO2(g)+[Si]=(SiO2)+2CO(g

)-3577967+357.27T-2944527.29-9299.21CO2(g)+[Mn]=(MnO)+CO(g

)-261507.82+72.905T-132247.26-1512.40O2

1/2O2+[C]=CO(g

)-22219.35-91.84T-185051.67-11639O2+[C]=CO2(g

)-166666.534-40.80T-239004.93-34834O2(g

)+Fe(l)=(FeO)-459400+87.45T-304351.15-4250O2+[Si]=(SiO2)

-866510+152.30T-596482.10-292021/2O2+[

Mn]=(MnO)-803750+171.57T

-499556.39

-6594

二氧化碳与铁、

碳元素的反应虽是氧化反应但却是吸热反应;而与硅、锰的反应虽是放热反应,但相对于氧气与硅、锰元素的反应放热量仅有30%左右。

图1为其他条件不变的情况下,钢液元素与CO2反应比例对熔池温度的影响。分析可知,与转炉常规冶炼工艺相比,随着钢液元素与二氧化碳反应比例的增加,熔池温度有所降低。因此将部分二氧化碳掺入顶吹射流中进行混合喷吹,从而使CO2代替部分O2与熔池中C

、Fe、Si、Mn等元素反应,减少冶炼前期化学反应放热量,有效控制脱磷期温度,

为低温脱磷创造良好的热力学条件

。图1 钢液与CO2反应对熔池温度的影响Fig.1 Effect of reaction between liq

uid steel andcarbon dioxide on bath temp

erature1.3 动力学分析

由表1中反应可知,2mol CO2可代替1mol O2

与铁水中碳、硅、锰元素反应,因此,试验过程采用

2mol CO2代替1mol O2参与反应,

增加了顶吹总气量,增强了熔池的搅拌能力,增大钢渣反应界面,有利于钢渣反应过程传质、传热的进行,为脱磷反应创造了良好的动力学条件。

2 COMI炼钢工艺脱磷工业试验

试验基于30t转炉常规设备,在供氧总管处焊接一条供二氧化碳气体管道。试验所用二氧化碳气

体由一个20m3

的储气罐提供,CO2供气系统采用

西门子WINCC(视窗控制中心)软件通过MPI

(多点连接)接口与PLC进行通讯,控制生产现场仪表阀门站,以控制二氧化碳气体的压力及流量。2.1 试验设备

液态CO2气瓶,汇流排,低温液体汽化器,缓冲储气罐,仪表阀门站,DN25、DN32管道,法兰,30t转炉及其附属设备。其工艺流程如图2所示。2.2 试验方案

试验冶炼方案基于30t转炉常规冶炼制度,同时结合其相关参数进行物料及能量平衡计算。由此得出试验装料制度及供气方案,具体如表2~4所示。2.3 取样方案

根据铁水中各元素(C、Si、Fe、Mn、P等)氧化量确定半钢(冶炼过程中脱磷期结束倒炉取样,以下简称“半钢”)耗氧量,冶炼过程中氧气喷吹量达到计算耗氧值即刻停吹、提枪、倒炉,然后进行半钢样及半渣样的取样检测。吹炼结束前倒炉取一倒钢液(补吹前倒炉取样,以下简称“一倒钢液”)和一倒渣样进行分析。

·

23·

第8期

吕 明等:应用COMI

炼钢工艺控制转炉脱磷基础研究

图2 试验工艺图

Fig.2 Technique drawing 

of the experiment表2 试验原料配比

Table 2 Mass percent of raw materials for the exp

eriment t铁水生铁废钢总计25 

5.5 

2.5 

33

3 结果分析

试验共计20炉次,其中COMI炼钢工艺12炉次,常规工艺8炉次。

表3 辅料加料方案

Table 3 Feeding scheme of the secondary 

materials工艺模式脱磷期

脱碳期

常规工艺COMI工艺

根据铁水硅含量确定石灰总加入量,留200kg石灰于脱碳期再加。其余石灰分批加入,同时加入白镁球200kg左右,萤石50kg

补加200kg石灰,

根据温度和化渣情况加入矿石总量

表4 供气方案Table 4 Gas supply 

scheme工艺模式气体供气流量/(m3·h

-1)开吹~3min 3min~脱磷结束

脱碳开始~9min 

9min~终点

常规工艺O28200 7800 7600 8000CO20000COMI工艺

O27800 7400 7600 8000CO2

800 

800 

0 

3.1 半钢分析

图3所示为试验炉次半钢温度与半钢磷含量的关系。图中可以看出,当熔池温度在1 330~1 

340℃时,半钢磷含量均较低,随着温度的升高,磷含量呈上升的趋势。但当温度低于1 325℃时,由于温度过低不利于前期化渣,

致使钢液磷含量偏高,当采用COMI炼钢工艺冶炼时,可以较好地控制转炉脱磷期温度,半钢温度集中在1 330~1 350℃之间,半钢磷的质量分数均在0.050%以下。

表5为2种工艺条件下半钢平均脱磷情况,分析发现,采用常规工艺吹炼可将半钢磷质量分数脱至0.051%,平均脱磷量为0.057%,

平均脱磷率

仅图3 半钢磷含量与半钢温度的关系Fig.3 Relationship 

of phosphorus contentand temp

erature of semi-steel·

33·

钢 铁

第46卷

为53.10%。当采用COMI炼钢工艺吹炼时,半钢磷质量分数平均为0.037%,平均脱磷量为

0.074%,平均脱磷率可达到66.49%,脱磷率提高13.39%。

表5 半钢脱磷分析

Table 5 Analysis of semi-steel dephosp

horization%工艺常规工艺COMI工艺磷质量分数0.051 0.037脱磷量0.057 0.074脱磷率

53.10 

66.49

OMI炼钢工艺在冶炼前期脱磷率较常规工艺有所提高,主要有以下3方面原因:一是吹入的CO2代替部分O2与铁水中各元素反应减少放热量,从而使吹炼前期温度得到有效控制,

有利于转炉熔池

脱磷;二是吹入的CO2加强熔池搅拌,改善了钢渣界面反应的动力学条件;三是由于CO2的控温作用,使转炉脱磷期延长。3.2 一倒钢液分析

图4所示为试验炉次一倒钢液温度与一倒钢液磷含量的关系。图中可以看出,当一倒钢液温度在1 600~1 

640℃时,一倒钢液中磷含量均较低,随着温度的升高,磷含量呈上升的趋势。当采用COMI炼钢工艺冶炼时,一倒钢液温度集中在1 620~1 

645℃之间,一倒钢液磷质量分数较多在0.030%以下。

图4 一倒钢液磷含量与一倒钢液温度的关系Fig.4 Relationship 

of phosphorus contentand temperature of liq

uid steel表6为2种工艺条件下一倒钢液脱磷情况。采用常规工艺吹炼时一倒钢液磷质量分数为0.034%,平均脱磷量为0.074%,

平均脱磷率为68.44%。若采用COMI炼钢工艺吹炼时,

一倒钢液平均磷质量分数为0.027%,脱磷量为0.085%,平均脱磷率可达75.97%,脱磷率较常规工艺提高7.53%。

表6 一倒钢液脱磷分析

Table 6 Analysis of dephosphorization of liq

uid steel%

工艺常规工艺COMI工艺磷质量分数0.034 0.027脱磷量0.074 0.085脱磷率

68.44 

75.97

3.3 磷的分配系数LP分析

磷的分配系数LP代表了炉渣脱磷能力的大小,可采用渣中(P2O5)含量与金属液中[P]含量的比值表示,即为LP=w(P2O5)/w([P])。表7为2种工艺条件下磷的分配系数对比情况。

表7 2种工艺条件下磷的分配系数分析Table 7 Distribution coefficient of phosp

horusby 

different process%

磷的分配系数LP

常规工艺COMI工艺半渣50.01 77.65一倒炉渣

72.19 

94.77

LP主要取决于炉渣成分和温度,

LP随温度的降低而增加,但温度不宜过低。采用COMI炼钢工艺可控制钢液温度略低于常规工艺,同时增强了熔池搅拌能力,有利于流动性良好的高碱度渣的形成,因此,采用COMI炼钢工艺可显著提高磷的分配系数。常规工艺冶炼时半渣磷的分配系数LP基本维持在40~60之间,平均仅为50.01。COMI炼钢工

艺LP为77.65,提高了27.64,若能适当提高初期渣的碱度至1.8以上,可以更好地发挥冶炼前期脱磷温度低的优势。

采用COMI炼钢工艺吹炼时,一倒炉渣LP平均为94.77,与常规工艺相比,提高了22.58,从而提高了脱磷能力,为转炉高效脱磷创造了良好的条件。3.4 炉渣(TFe

)分析2种工艺在不同阶段炉渣中(TFe)以及(FeO)含量如图5所示,研究发现:采用COMI炼钢工艺可使半渣中w(TFe)由常规工艺的20.86%降低为19.89%。一倒渣中w(TFe)从18.82%降至16.82%,降低了2.0%。

由于试验过程采用2mol CO2代替1mol O2参与

·

43·

第8期

吕 明等:应用COMI

炼钢工艺控制转炉脱磷基础研究

图5 炉渣化学成分分析

Fig.5 Analysis of chemical composition of slag

反应,增加了顶吹总气量,增强了熔池搅拌能力,增大了钢渣反应界面,促进了钢渣反应的进行,降低了炉渣铁损。3.5 冶炼节奏分析

采用常规工艺进行冶炼时,平均每炉吹炼时间为12min 4s,采用COMI炼钢工艺平均每炉冶炼时间为12min 7s,基本不影响冶炼节奏,主要是由于混合喷入的CO2为氧化性气体,也可参与熔池反应,同时促进钢渣反应进行。因此,COMI炼钢工艺完全可满足正常生产的需要。

4 结论

1)采用COMI

炼钢工艺可有效控制转炉吹炼过程温度,

降低钢液中磷含量。半钢磷质量分数和一倒钢液磷质量分数较常规工艺分别降低0.014%和0.007%,脱磷率提高13.39%和7.53%。2)COMI炼钢工艺提高了磷的分配系数LP,

从而提高了脱磷能力。

3)COMI炼钢工艺对减少炉渣中铁损有一定效果,从而可降低钢铁料耗。4)COMI炼钢工艺不影响转炉冶炼节奏,可满足正常生产的需要。

参考文献:

[1] 黄希祜.钢铁冶金原理[

M].北京:冶金工业出版社,2006:370.

[2] Malsuo T,Yamazaki I,Masuda S,et al.Develop

ment of NewHot Metal Dephosphorization Process in Top and Bottom Blo-wing Converter[C]//73rd Steelmaking Conference Proceed-ing

s.Detroit:ISS-AIME,1990:115.[3] Villarreal R R,Ramirez C R.Dephosp

horization in Converter[C]//79th Steelmaking Conference Proceedings.Pittsburgh:ISS-A

IME,1996:173.[4] 杨文远,陈华,郑丛杰,等.大型转炉炼钢脱磷的研究[

J].炼钢,2002,18(1):30.

[5] 王金平,吴健鹏,李小明,等.转炉高碳低磷钢工艺研究与

应用[J].炼钢,2007,23(2):7.

[6] 野村宏之,森一美.高炭素领域における溶鉄の脱炭反応機

構に関する研究[J].鉄と鋼,1971,57(9):1468.

[7] 野村宏之,森一美.低炭素领域における溶鉄の脱炭反応機

構に関する研究[J].鉄と鋼,1972,58(1):櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁櫁30.

(上接第24页)

4 结论

1)在本试验条件下,1 000℃时锌的吸附效果最好。气相吸附法制备的焦样,锌不仅吸附在焦炭表面,

而且还沿气孔进入焦炭内部。2

)锌对焦炭的溶损反应起着正催化作用。随着锌吸附量的增加,焦炭反应性随之增强。在w小于0.1%时,

对焦炭反应性的影响很小。参考文献:

[1] 肖慧敏.

焦炭破损机理研究[J].武钢技术,1985(1):10.[2] 王西鑫.

锌在高炉生产中的危害分析与防治[J].西安冶金建筑学院学报,1993,25(1):92.

[3] 傅永宁.

高炉焦炭[M].北京:冶金工业出版社,1995.[4] 王庆祥,

尹坚.湘钢1号高炉碱金属行为[J].中国金属,2005(2):18.

[5] 潘一凡.碱金属对高炉冶炼的影响[J].浙江冶金,1993(2):12.[6] 周传典.

高炉炼铁生产技术手册[M].北京:冶金工业出版社,2002.

[7] 王西鑫.

锌在高炉生产中的危害分析与防治[J].西安冶金建筑学院学报,1993,25(1):92.

[8] 杨俊和,

杜鹤桂,钱湛芬.焦炭粒焦反应性[J].东北大学学报,1999(3):59.

·

53·

转炉炼钢过程工艺控制的发展与展望要求

转炉炼钢过程工艺控制的发展与展望要求 发表时间:2018-12-31T11:57:53.667Z 来源:《建筑学研究前沿》2018年第28期作者:亓传军[导读] 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力。山东泰山钢铁有限公司不锈钢炼钢厂技术科山东莱芜 271100 摘要:在转炉冶炼控制方面,钢厂关注更多的是终点钢水是否合格,但随着日益增加的市场竞争压力和环境要求,钢厂希望尽可能实现节能降耗,减少气体排放,而过程控制的优化是实现这一目标的有效手段。通过对转炉炼钢过程进行优化控制,使炼钢进程以合理的方式进行,使辅料和能源消耗最小化,才能使企业在市场经济条件下更具竞争力,并且过程控制也是转炉全自动控制发展的重要部分。文章 重点就转炉炼钢过程工艺控制的发展与展望进行研究分析,以供参考。关键字:转炉炼钢;工艺技术;发展对策;未来展望 引言 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力,工艺优化,不但可以降低成本,同时提高炼钢企业的年产量,节省各项资源的消耗,最大限度地提高了企业的经济效益。各项技术指标的提高,进一步优化炼钢工艺,带动炼钢业的经济发展。 1转炉炼钢工艺的目的 转炉冶炼主要是将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。按照配料要求,先把废钢等装入炉内,然后倒入铁水,并加入适量的造渣材料(如生石灰等)。加料后把氧气喷枪从炉顶插入炉内,吹入氧气(纯度大于99%的高压氧气流),使它直接跟高温的铁水发生氧化反应,除去杂质。用纯氧代替空气可以克服由于空气里的氮气的影响而使钢质变脆,以及氮气排出时带走热量的缺点。在除去大部分硫、磷后,当钢水的成分和温度都达到要求时,即停止吹炼,提升喷枪,准备出钢。出钢时使炉体倾斜,钢水从出钢口注入钢水包里,同时加入脱氧剂进行脱氧和调节成分。钢水合格后,可以浇成钢的铸件或钢锭,钢锭可以再轧制成各种钢材。氧气顶吹转炉在炼钢过程中会产生大量棕色烟气,它的主要成分是氧化铁尘粒和高浓度的一氧化碳气体等。因此,必须加以净化回收,综合利用,以防止污染环境。从回收设备得到的氧化铁尘粒可以用来炼钢;一氧化碳可以作化工原料或燃料;烟气带出的热量可以副产水蒸气。此外,炼钢时生成的炉渣也可以用来做钢渣水泥,含磷量较高的炉渣,可加工成磷肥等。氧气顶吹转炉炼钢法具有冶炼速度快、炼出的钢种较多、质量较好,以及建厂速度快、投资少等许多优点。但在冶炼过程中都是氧化性气氛,去硫效率差,昂贵的合金元素也易被氧化而损耗,因而所炼钢种和质量就受到一定的限制。 2转炉炼钢过程工艺控制现状 针对当前钢铁行业所面临的处境,提高市场竞争力、降低炼钢生产成本势在必行。而在炼钢生产中,金属炉料成本约占炼钢生产总成本的80%以上,所以抓好金属炉料成本是控制炼钢生产成本的关键。为进一步减少金属炉料消耗,炼钢厂通过探索,优化炉料结构,改进炉前冶炼工艺和优化合金料的使用,采用少渣炼钢工艺、改进吹氧工艺、引用低成本合金等措施,有效地降低金属炉料消耗、氧耗和合金成本,达到降低生产成本的目的,增加了企业经济效益。近年来,炼钢厂通过完善溅渣护炉、低铁水比冶炼、高效转炉、低耐材消耗达到了转炉炼钢厂生产工艺的优化组合。 3转炉炼钢过程工艺控制的发展对策3.1优化入炉料结构,合理使用好铁矿石有数据测得,与原材料成分相近的高炉铁水和铁块的实际金属收得率约为93%和92%,自产废钢和社会废钢的金属收得率约为97%和88%。根据铁钢产能的平衡及铁水废钢价格,通过热平衡和物料平衡计算,优化了入炉料结构。实际炉料结构中采用增大入炉原料中铁水比例,降低废钢配比,增加矿石使用量的工艺措施,可有效地提高炉料金属收得率,降低金属料消耗。为了尽量增加矿石用量,提高矿石还原效果和减少吹炼过程中矿石加入量过多对冶炼的影响,在实际生产中,对矿石加入工艺进行了调整。在转炉溅渣及加废钢后,根据铁水的条件直接将2/3左右的矿石加入炉内后再兑铁,在兑铁过程中与废钢搅拌以促进部分矿石的还原。在保证化渣效果和避免喷溅的原则下,尽量保证剩余矿石早加和均匀加入,以保证矿石化渣还原时间和效果。吹炼中期采用分批少量加入控制,避免吹炼中期加入量集中造成的喷溅,吹炼后期严禁加矿石,避免矿石加入过晚造成熔化还原效果差和炉渣氧化性强对脱氧合金化的影响。 3.2优化冶炼工艺,减少炉渣铁耗和氧耗3.2.1优化吹炼工艺,减少喷溅和氧耗喷溅是造成铁耗损失的主要原因之一,为消除或减轻喷溅采取了以下措施:根据天车限载的要求,进一步降低装入量,使转炉装入量得到合理控制,适当提高了炉容比,有效地保证了炉内有效工作容积,以利于减少喷溅;前期化好渣,在第二批造渣料加入前后,通过提前成渣的方法,将泡沫渣的高峰期前移,以便与脱碳的峰值时刻错开;改进吹炼工艺,吹炼前期采用大氧压适当降低枪位操作,利于熔解废钢,在硅氧化完毕之后、脱碳的高峰期到达之前,暂时降低供氧强度,然后再将其平缓地恢复到正常值,吹炼终期采用大氧压低枪位操作,加强熔池搅拌,保证终点钢水成分和温度的均匀,降低了氧耗,同时降低炉渣氧化性。 3.2.2优化造渣工艺,实施少渣炼钢,减少炉渣铁耗为了减少单炉产渣量,在生产中采取精料方针,在进一步完善转炉留渣溅、渣操作工艺应用基础上努力提高入炉原料质量,使用高品位石灰和矿石,采用轻烧白云石造渣。根据铁水Si、S含量情况合理调整造渣料消耗,在确保满足生产需要的情况下适当减少石灰量消耗。铁水中硅、锰含量低及无需脱硫,这些条件会改变造渣机理及动力特性,因为这时石灰消耗下降,渣量减少,渣碱度及氧化度增高。在这样的条件下,渣的精炼功能只限于铁水脱磷,这样就能在转炉冶炼本身中多次利用渣,使渣具有很高的精炼能力。4转炉冶炼工艺过程控制的未来展望

炼钢工艺的发展历程

炼钢工艺的发展历程 2008年12月8日摘自冶金自动化网 炼钢方法(1) 最早出现的炼钢方法是1740年出现的坩埚法,它是将生铁和废铁装入由石墨和粘土制成的坩埚内,用火焰加热熔化炉料,之后将熔化的炉料浇成钢锭。此法几乎无杂质元素的氧化反应。 炼钢方法(2) 1856年英国人亨利·贝塞麦发明了酸性空气底吹转炉炼钢法,也称为贝塞麦法,第一次解决了用铁水直接冶炼钢水的难题,从而使炼钢的质量得到提高,但此法要求铁水的硅含量大于0.8%,而且不能脱硫。目前已淘汰。 炼钢方法(3) 1865年德国人马丁利用蓄热室原理发明了以铁水、废钢为原料的酸性平炉炼钢法,即马丁炉法。1880年出现了第一座碱性平炉。由于其成本低、炉容大,钢水质量优于转炉,同时原料的适应性强,平炉炼钢法一时成为主要的炼钢法。 炼钢方法(4) 1878年英国人托马斯发明了碱性炉衬的底吹转炉炼钢法,即托马斯法。他是在吹炼过程中加石灰造碱性渣,从而解决了高磷铁水的脱磷问题。当时,对西欧的一些国家特别适用,因为西欧的矿石普遍磷含量高。但托马斯法的缺点是炉子寿命底,钢水中氮的含量高。 炼钢方法(5) 1899年出现了完全依靠废钢为原料的电弧炉炼钢法(EAF),解决了充分利用废钢炼钢的问题,此炼钢法自问世以来,一直在不断发展,是当前主要的炼钢法之一,由电炉冶炼的钢目前占世界总的钢的产量的30-40%。 炼钢方法(6)

瑞典人罗伯特·杜勒首先进行了氧气顶吹转炉炼钢的试验,并获得了成功。1952年奥地利的林茨城(Linz)和多纳维兹城(Donawitz)先后建成了30吨的氧气顶吹转炉车间并投入生产,所以此法也称为LD法。美国称为BOF法(Basic Oxygen Furnace)或BOP法, 如图1所示。 图1 BOF法 炼钢方法(7) 1965年加拿大液化气公司研制成双层管氧气喷嘴,1967年西德马克西米利安钢铁公司引进此技术并成功开发了底吹氧转炉炼钢法,即OBM法(Oxygen Bottom Maxhuette) 。1971年美国钢铁公司引进OBM法,1972年建设了3座200吨底吹转炉,命名为Q-BOP (Quiet BOP) ,如图2所示。 图2 Q-BOP法 炼钢方法(8) 在顶吹氧气转炉炼钢发展的同时,1978-1979年成功开发了转炉顶底复合吹炼工艺,即从转炉上方供给氧气(顶吹氧),从转炉底部供给惰性气体或氧气,它不仅提高钢的质量,而且降低了炼钢消耗和吨钢成本,更适合供给连铸优质钢水,如图3所示。 图3 转炉顶底复合吹炼法 炼钢方法(9) 我国首先在1972-1973年在沈阳第一炼钢厂成功开发了全氧侧吹转炉炼钢工艺。并在唐钢等企业推广应用,如图4所示。

转炉脱磷及深脱磷

精心整理转炉脱磷工艺 近年来,随着我国钢材的发展,对低磷钢的生产要求越来越高,对高级别钢特别是低磷钢的需求大大增加,这些产品对钢中磷的质量分数提出了很高的要求,大多要求磷含量低于0.015%;低温用钢管、特殊深冲钢、镀锡板要求钢中磷低于0.010%;一些航空、原子能、耐腐蚀管线用钢要求磷低于0.005%,所以超 法, 空间大,允许强烈搅拌钢水,顶吹供氧,高强度底吹,不需要预脱硅,废钢比较高,炉渣碱度比较低,渣量低,处理后铁水温度较高(1350),脱磷效率明显提高。 1转炉脱磷新工艺 1.1JFE福山制铁所

福山制铁所,有两个炼钢厂(第二炼钢厂和第三炼钢厂)。该制铁所是日本粗钢产量最好的厂家。第三炼钢厂有2座320T的顶底复吹转炉,采用LD-NRP工艺(双联法),一座转炉脱磷,另一座转炉脱碳,转炉脱磷能力为450万t/a。该厂1999年开始全量铁水转炉脱磷预处理。 转炉脱磷指标:吹炼时间为10分钟,废钢比为7%~10%;氧气流量为30000 ),“三 25%,运送给第二炼钢厂。 脱磷转炉指标:吹炼时间为8min;冶炼周期为22Min;废钢比为10%(加轻废钢);出铁温度为1350;渣量为40kg/t。 脱碳转炉指标:吹炼时间为14min;冶炼周期为30Min;锰矿用量为15kg/t (Mn回收率:30%~40%);渣量为20kg/t(以干渣方式回收)。

1.3住友金属和歌山制铁所 住友金属和歌山制铁所粗钢产能390万吨。炼钢生产采用SRP法,100%铁水经转炉脱磷。该厂脱磷转炉与脱碳转炉设在不同跨,脱磷转炉和脱碳转炉的吹炼时间9~12min,转炉炼钢的冶炼周期在20min以内。一个转炉炼钢车间供钢水给三台连铸机,是目前世界上炼钢生产节奏最快的钢厂。SRP法优点是: IF钢 由于神户制钢生产的高碳钢比例较大,转炉的脱磷负荷大,铁水脱磷,脱硫预处理用H炉(专用转炉),处理过程分两步:首先在高炉出铁沟用喷吹法对铁水进行脱硅处理,用撇渣器去除脱硅渣后,将铁水在兑入H炉进行脱磷,脱硫。脱磷时,喷吹石灰系渣料,同时顶吹氧气;脱磷后,在喷入苏打粉系渣料脱硫。经预处理的铁水再装入另一座转炉进行脱碳。

转炉炼钢设备

1 概述 1.1氧气顶吹转炉炼钢特点 氧气顶吹转炉炼钢又称 LD 炼钢法,通过近几十年的发展,目前已完全取代了平炉炼钢,其之所以能够迅速发展的原因,主要在于与其它炼钢方法相比,它具有一系列的优越性,较为更突出的几点如下: 1.生产效率高 一座容量为80 吨的氧气顶吹转炉连续生产24 小时,钢产量可达到日产3000 — 4000 吨,而一座 100 吨的平炉一昼夜只能炼钢 300 — 400 吨钢,平均小时产量相差甚远,而且从冶炼周期上看,转炉比平炉、电炉的冶炼周期要短得多。 2.投资少,成本低 建氧气顶吹转炉所需的基本建设的单位投资,比同规模的平炉节约30% 左右,另外投产后的经营管理费用,转炉比平炉要节省,而且随着转炉煤气回收技术的广泛推广和应用,利用转炉余热锅炉产生蒸气及转炉煤气发电,使转炉逐步走向“负能”炼钢。 3.原料适应性强 氧气顶吹转炉对原料情况的要求,与空气转炉相比并不那么严格,可以和平炉、电弧炉一样熔炼各种成分的铁水。 4.冶炼的钢质量好,品种多 氧气顶吹转炉所冶炼的钢种不但包括全部平炉钢,而且还包括相当大的一部分电弧炉钢,其质量与平炉钢基本相同甚至更优,氧气顶吹转炉钢的深冲性能和延展性好,适宜轧制板、管、丝、带等钢材。 1 / 35

5.适于高度机械化和自动化生产 由于冶炼时间短,生产效率高,再加转炉容量不断扩大,为准确控制冶炼过程,保证获得合格钢水成分和出钢温度,必须进行自动控制和检测,实现生产过程自动化。另外,在这种要求下,也只有实现高度机械化和自动化,才能减轻工人的劳动强度,改善劳动条件。 1.2 转炉炼钢机械设备系统 氧气顶吹转炉炼钢法,是将高压纯氧[压力为0.5~1.5MPa ,纯度99.5% 以上,(我厂为99.99% )],借助氧枪从转炉顶部插入炉内向熔池吹氧,将铁水吹炼成钢。氧气顶吹转炉的主要设备有: 1.转炉本体系统: 包括转炉炉体及其支承系统——托圈、耳轴、耳轴轴承和支承座,以及倾动装置,其中倾动装置由电动机、一次减速机,二次减速机、扭矩缓冲平衡装置等组成。 2.氧枪及其升降、氧气装置及配套装置。 氧枪包括枪体、氧气软管及冷却水进出软管。 根据操作工艺要求氧枪必须随时升降,因此需要升降装置,为保证转炉连续生产,必须设有备用枪,即通过换枪装置,随时将备用枪移至工作位置,同时要求备用枪的氧气,进出水管路连接好。 3.散装料系统: 氧气顶吹转炉炼钢使用的原料有: (1)金属料——铁水、废铁、生铁块; (2)脱氧剂——锰铁、硅铁、硅锰、铝等; (3)造渣剂——石灰、萤石、白云石等;

转炉炼钢脱磷工艺的探讨

转炉炼钢脱磷工艺的探讨 【摘要】本文从脱磷的热力学分析入手,对冶炼过程中温度、炉渣碱度、渣中(FeO),等对磷含量的影响进行了探讨。同时探讨了回磷的原因、影响的因素和防止的措施。 【关键词】转炉炼钢;脱磷工艺;探讨 磷在钢中是以【Fe3P】或【Fe2P】形式存在,一般以【P】表示。磷含量高时,会使钢的朔性和韧性降低,即使钢的脆性增加,这种现象低温时更严重,通常把它称为“冷脆”。且这种影响常常随着氧,氮含量的增加而加剧。磷在连铸坯中的偏析仅次于硫,同时它在铁固溶体中扩散速度又很小。不容易均匀化,因而磷的偏析和难消除。由于炼铁过程为还原性气氛,脱磷能力较差。因此脱磷是炼钢过程的重要任务之一。在20世纪90年代中后期,为解决超低磷钢的生产难题,世界上各大钢厂都曾经进行过转炉铁水脱磷实验研究。 1、铁水预处理方法 1.1喷吹苏打粉处理 日本住友公司鹿岛厂开发的“住友碱精炼法”是成功用于工业生产的苏打精炼法。 工艺流程:从高炉流出的铁水先经脱硅处理,即将高炉铁水注入混铁车内,用氮气输送和喷吹烧结矿粉,喷入量为每吨铁水40公斤,最大供粉速度为每分钟400公斤,最大吹氧量为每分钟50立方米,脱硅量约为0.4%。脱硅处理后的铁水硅含量可降到0.1%以下。然后用真空吸渣器吸出脱硅渣,进行脱磷处理,以氮气为载气向铁水中喷入苏打粉,苏打粉用量为每吨18公斤,最大供粉量为每分钟250公斤,最大吹氧量为每分钟50立方米,处理后铁水中【P】≤0.001%,【S】≤0.003%,再用真空吸渣器吸出脱磷渣,并将其送到苏打回收车间,经水浸后可回收约80%的Na2O,最后将处理过的铁水倒入转炉冶炼。 1.2喷吹石灰系熔剂处理 由于石灰系熔剂具有成本低,对环境污染小的优点,因此受到重视,并不断对其深入研究,以使其满足精炼铁水的需要。

转炉炼钢工艺的优化实践

转炉炼钢工艺的优化实践 摘要: 目前,我国炼钢行业正在快速发展,同时炼钢技术的进步主要围绕着高效率、高质量、低成本、低能耗、少环境污染等方面。对于炼钢技术采取优化措施,结合工艺优化和综合降耗,从炉料消耗、氧气消耗、石灰、合金消耗、煤气回收、除尘灰、钢渣综合处理等环节有效控制,明显提高炼钢的经济和质量效益。在整体上提高炼钢行业的竞争性,创新炼钢工艺,不断优化炼钢工艺等方面,取得了明显的效果。 关键词: 转炉炼钢工艺优化 0 前言 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力,工艺优化,不但可以降低成本,同时提高炼钢企业的年产量,节省各项资源的消耗,最大限度地提高了企业的经济效益。各项技术指标的提高,进一步优化炼钢工艺,带动了炼钢业的经济发展。本文主要通过对炼钢行业现状的分析,结合成功经验,对炼钢工艺优化提出一些既有效又经济的方法,降低成本的同时,提高炼钢产量,节约能源。笔者分析探讨了炼钢工艺优化的重要性和可实施性。 1总述炼钢行业的现状 针对当前钢铁行业所面临的处境,提高市场竞争力、降低炼钢生产成本势在必行。而在炼钢生产中,金属炉料成本约占炼钢生产总成本的80%以上,因此抓好金属炉料成本是控制炼钢生产成本的关键。为进一步减少金属炉料消耗,略钢炼钢厂通过探索,优化炉料结构,改进炉前冶炼工艺和优化合金料的使用,采用少渣炼钢工艺、改进吹氧工艺、引用低成本合金等措施,有效地降低金属炉料消耗、氧耗和合金成本,达到降低生产成本的目的,增加了企业经济效益。近年来炼钢厂通过完善溅渣护炉、低铁水比冶炼、高效转炉、低耐材消耗达到了转炉炼钢厂生产工艺的优化组合。 2炉料结构优化思路 目前,常用的转炉金属炉料有高炉铁水、铁块(生铁)、自产废钢、社会废钢( 以中型和小型废钢为主)等。炉料结构优化应以满足转炉炼钢需要为基础,以提高炉料金属收得率为出发点,找出成本最低的炉料配比为目的。炉料金属收得率是指某一金属炉料的单位投入量通过冶炼可以产出合格钢水的百分率。它受两方面因素影响: 一方面是炉料自身含量,另一方面是在冶炼过程中的各种损耗,包括原料中杂质元素化学损失、烟尘损失、喷溅及炉渣带钢造成的铁耗等。 3 提高炉料金属收得率工艺措施 3.1 优化入炉料结构,合理使用好铁矿石

转炉炼钢工艺流程

转炉炼钢工艺流程 转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高 200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 电炉.转炉系统炼钢生产工艺流程简图 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , Mn0,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅

与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理; (2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3?5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3?5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);

转炉炼钢知识问答

转炉炼钢知识问答 1 转炉炼钢的原材料 1-1 转炉炼钢用原材料有哪些,为什么要用精料? 炼钢用原材料分为主原料、辅原料和各种铁合金。氧气顶吹转炉炼钢用主原料为铁水和废钢(生铁块)。炼钢用辅原料通常指造渣剂(石灰、萤石、白云石、合成造渣剂)、冷却剂(铁矿石、氧化铁皮、烧结矿、球团矿)、增碳剂以及氧气、氮气、氩气等。炼钢常用铁合金有锰铁、硅铁、硅锰合金、硅钙合金、金属铝等。 原材料是炼钢的物质基础,原材料质量的好坏对炼钢工艺和钢的质量有直接影响。国内外大量生产实践证明,采用精料以及原料标准化,是实现冶炼过程自动化、改善各项技术经济指标、提高经济效益的重要途径。根据所炼钢种、操作工艺及装备水平合理地选用和搭配原材料可达到低费用投入,高质量产出的目的。 转炉入炉原料结构是炼钢工艺制度的基础,主要包括三方面内容:一是钢铁料结构,即铁水和废钢及废钢种类的合理配比;二是造渣料结构,即石灰、白云石、萤石、铁矿石等的配比制度;三是充分发挥各种炼钢原料的功能使用效果,即钢铁料和造渣料的科学利用。炉料结构的优化调整,代表了炼钢生产经营方向,是最大程度稳定工序质量,降低各种物料消耗,增加生产能力的基本保证。1-2 转炉炼钢对铁水成分和温度有什么要求? 铁水是炼钢的主要原材料,一般占装入量的70%~100%。铁水的化学热与物理热是氧气顶吹转炉炼钢的主要热源。因此,对入炉铁水化学成分和温度必须有一定的要求。 A铁水的化学成分 氧气顶吹转炉炼钢要求铁水中各元素的含量适当并稳定,这样才能保证转炉冶炼操作稳定并获得良好的技术经济指标。 (1)硅(Si)。硅是转炉炼钢过程中发热元素之一。硅含量高,会增加转炉热源,能提高废钢比。有关资料表明,铁水中WSi每增加0.1%,废钢比可提高约1.3%。铁水硅含量高,渣量增加,有利于去除磷、硫。但是硅含量过高将会使渣料和消耗增加,易引起喷溅,金属的收得率降低。Si含量高使渣中SiO2含量过高,也

转炉脱磷效果影响因素分析

转炉脱磷效果影响因素分析 徐文静 摘要:从氧气顶吹转炉脱磷的热力学分析入手,探讨了冶炼过程中温度、炉渣碱度、(Fe O)对磷含量的影响,回磷的原因、影响因素及防止措施等,指出应控制炉渣碱度、终点温度、(Fe O)在合理范围内,应重视钢水回磷问题。 关键词:磷;碱度;温度;回磷 1 前言 炼钢生产中的脱磷效果,主要是指成品钢中含磷量的高低,而成品钢中含磷量的多少,主要取决于转炉冶炼终点的磷含量和出钢过程的回磷量。下面从这两个方面入手对转炉脱磷效果进行分析。 2 冶炼过程中磷含量的控制 2.1脱磷的基本反应 脱磷反应是在钢—渣界面进行的,按炉渣分子理论的观点,由下列反应组成:

5(Fe O)=5[O]+5[Fe] 2[P]+5[O]=(P 2O 5 ) (P 2O5)+4(C aO)=(4Ca O.P 2 O 5 ) 2[P]+5(F eO)+4(Ca O)=(4C aO.P 2O 5 )+5[Fe] lg K=lg(a 4C a O.P2O5)/{[%P]2.a5 F e O .a4 C a O } =(%C a4.P 2 O 9 ).r C a4 .P 2 O 9 /{[P]2.f2 P [%Fe O]5.r5 F e O .(%Ca O)4.r4 C a O } =40067/T-15.06 (1) 式中K—脱磷反应的化学平衡常数; T—钢水温度。 为了分析方便,以脱磷的分配比: L P =(%P 2 O 5 )/[%P]2 表示炉渣的脱磷能力。由(1)式可得: L P =(%P 2 O 5 )/[%P]2=K.(Fe O)5.(%C aO)4.f2 p .r5 F e O. r5 C a O /r C a4P2O9 (2)

转炉炼钢终点控制技术现状研究

转炉炼钢终点控制技术现状研究 摘要】在炼钢过程中,终点控制技术是一个相对重要的环节,该项工作的效率 会直接影响到转炉炼钢的整体效率。基于此,本文对转炉炼钢中的终点控制技术 进行了具体研究,以期从根本上把握终点的控制技术,充分发挥技术优势,在提 高技术专业化水准的同时,进一步提高转炉炼钢的生产效率,促使炼钢企业朝着 更好的方向发展。 【关键词】转炉炼钢;终点控制;技术应用 实施终点控制技术的作用在于控制炼钢时间,这是一项重要的操作程序,需 要在转炉炼钢后期进行,具体包括动态化控制、静态化控制、人工控制以及自动 化控制等四项技术。每种控制技术都有各自的优势,其所产生的应用效果也存在 差异。在今后的生产过程中,为了能够更好地利用该项技术,相关技术人员要根 据生产实际,并结合以往的实践经验,切实做好技术应用工作,本文就此展开论述。 一、终点控制技术的应用实践 (一)动态化控制技术 1、炉气动态分析终点控制 炉气动态分析终点控制主要是由根据炉口表的成分检测结果,计算钢铁熔池 脱碳的实际速率,该操作在吹炼的后期阶段进行,当确定了钢水的温度和成分后,方可实现转炉炼钢的终点动态化目标。该项技术通过连续性动作来提示钢水的实 际含碳量和温度,同时还能够利用动态化分析对控制系统加以校正,更加直观的 向工作人员展现钢水的 P、S 实际变化状况。就实际操作结果分析,笔者发现终点钢水的碳实际质量分数与其测量的精准度和命中率是成反比的。由此可见,炉气 动态分析终点技术在终点碳温的命中几率提升方面具有积极意义。 2、副枪动态分析终点控制 技术人员要在即将到达吹炼终点期时,将副枪插入熔池内,从而获取池内的 碳实际含量和相应的温度检测数值。根据最终检测结果,技术人员要对静态模型 进行客观分析,最终计算结果,并给予更正处理。此外,吹炼的终点需要加入足 量的副原料,当供氧量足够时,技术人员必须严格控制终点命中率,以此来保证 转炉冶炼的稳定性。在计算机技术的辅助作用下,得以实现高水平、高质量的转 炉冶炼动态化的控制目标。当钢中碳的质量分数较低时,技术人员要用结晶的定 碳技术去分析该项数据,获取到最精确的实时测量数据;而当该项数值处于较高 的分数时,技术人员是无法保证测量精准度的。因此副枪动态分析终点控制技术 多用于低、中型的碳钢生产企业。 (二)静态化控制技术 静态化控制技术的实际应用较为严格,需要技术人员把握好原材料的基础条 件和吹炼的钢种目标等因素,通过对各种材料的精准化分析,最终确定供氧量标准,其后方可进行下一步的操作。静态化控制技术对于吹炼操作期间的更改难度 提出了更高的要求,其终点命中率通常会受到多种客观因素的影响,因此在该项 技术的实际应用期间,技术人员需要结合以往的实践经验,牢牢控制终点控制标准,该种技术应用环境下的终点碳温实际命中几率大约为 80%。 (三)自动化控制技术 炉渣在线式检测专项技术是自动化控制技术中的典型,通过技术应用能够对 炉渣实际状态进行实时化的监控和探测,且在吹炼操作期间,该项技术还能够合

转炉炼钢工艺标准经过流程

转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种

转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min 后火焰微弱,停吹); (5)倒炉,测温、取样,并确定补吹时间或出钢; (6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。 上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹3-5分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。 吹炼过程中的供氧强度:

转炉少渣工艺技术分析

转炉少渣工艺技术分析 摘要:阐述了少渣炼钢的工艺路线,分析了转炉少渣吹炼的供气制度、造渣制度、温度制度、合金化制度等,介绍了国内外几家钢厂典型的少渣炼钢工艺及其冶金效果,指出少渣炼钢是未来炼钢的主要发展方向。 关键词:转炉;少渣炼钢;工艺制度 Progress and Prospect of Less Slag Steelmaking Process Abstract:The paper summarizes the process line of less slag steelmaking,and analyzes the system of gas supplying,slagging and alloying,that 0f the temperature and SO on.of less slag blowing in converter.introduces the typical processes of less slag steelmaking and its metallurgical effects of seven steel plants at home and abroad,meanwhile,points out that less slag steelmaking is the main development direction of the steelmaking in the future. Key words:converter;less 8lag steelmaking;process system 铁水“三脱”使传统炼钢工艺发生了显著变化,在铁水预处理阶段进行脱硅、脱磷和脱硫,使炼钢转炉的主要功能转变为调温和脱碳,同时炼钢渣量减少,形成了少渣炼钢工艺。由于少渣炼钢用的铁水硅含量很低,造渣用石灰加入量明显减少,降低了渣料消耗和能耗,喷溅少,铁损低,减少了污染物的排放。同时,因渣量少,氧的利用效率高,吹炼终点钢水中氧含量低,余锰高,合金元素收得率较高,从而降低了生产成本。另外,少渣炼钢工艺终点命中率高,改善了钢水的纯净度,为生产超纯净钢创造了条件。 1 少渣炼钢工艺路线 常见的转炉炼钢工艺路线有四种。第一种是传统的炼钢工艺,欧美各国的炼钢厂多采用这种模式,即铁水先脱硫预处理后,再转炉炼钢。通常转炉炼钢渣量占金属量的10%以上,转炉渣中FeO含量在17%左右。此外,渣中还含有约8%的铁珠,该工艺钢铁料消耗高。第二种炼钢工艺是先在铁水沟、混铁车或铁水罐内进行铁水“三脱”预处理,然后在复吹转炉进行少渣炼钢,这种工艺的不足之处是脱磷前必须先脱硅,废钢比低(≤5%),脱磷渣碱度过高,难于利用。第三种炼钢工艺是20世纪90年代中后期日本各大钢厂试验研究成功的转炉铁水脱磷工艺,该工艺解决了超低磷钢的生产难题。与第二种工艺路线的明显区别是脱磷预处理移到转炉内进行,转炉内自由空间大,反应动力学条件好,生产成本较低。具体工艺是采用两座转炉双联作业,一座脱磷,另一座接受来自脱磷炉的低磷铁水脱碳[1、2],即“双联法”。典型的双联法工艺流程为:高炉铁水_+铁水预脱硫-+转炉脱磷_+转炉脱碳_+炉外精炼.+连铸。由于受设备和产品的限制,也有在同一座转炉上进行铁水脱磷和脱碳的操作模式,类似传统的“双渣法”。第四种炼钢工艺是对第三种炼钢工艺进行了改进,与第三种工艺的明显不同是将部分脱碳渣(约8%)返回脱磷转炉,脱磷后的铁水进入脱碳转炉脱碳。该工艺是目前渣量最少、最先进的转炉生产纯净钢的工艺路线。在上述四种转炉炼钢工艺路线中,后三种炼钢工艺铁水经过“三脱”预处理后再脱碳炼钢,能够做到少渣操作。四种

炼钢工艺流程图

炼钢工艺流程 1炼钢厂简介 炼钢厂主要将铁水冶炼成钢水,再经连铸机浇铸成合格铸坯。现有5座转炉,5台连铸机,年设计生产能力为500万吨,现年生产钢坯400万吨。其中炼钢一分厂年生产能力达到240万吨;炼钢二厂年生产能力为160万吨。 2炼钢的基本任务 钢是以Fe为基体并由C、Si、Mn、P、S等元素以及微量非金属夹杂物共同组成的合金。 炼钢的基本任务包括:脱碳、脱磷、脱硫、脱氧去除有害气体和夹杂,提高温度,调整成分,炼钢过程通过供氧造渣,加合金,搅拌升温等手段完成炼钢基本任务,“四脱两去两调整”。 3氧气转炉吹炼过程 氧气顶吹转炉的吹氧时间仅仅是十分钟,在这短短的时间内要完成造渣,脱碳、脱磷、脱硫、去气,去除非金属夹杂物及升温等基本任务。 由于使用的铁水成分和所炼钢种的不同,吹炼工艺也有所区别。氧气顶吹转炉炼钢的吹炼过程,根据一炉钢吹炼过程中金属成分,炉渣成分,熔池温度的变化规律,吹炼过程大致可以分为以下3个阶段: (1)吹炼前期。(2)吹炼中期。(3)终点控制。 炼好钢必须抓住各阶段的关键,精心操作,才能达到优质、高产、低耗、长寿的目标。 装入制度 装入制度是保证转炉具有一定的金属熔池深度,确定合理的装入数量,合适的铁水废钢比例。

3.1.1装入量的确定 装入量是指转炉冶炼中每炉次装入的金属料总重量,它主要包括铁水和废钢量。目前国内外装入制度大体上有三种方式: (1)定深装入;(2)分阶段定量装入;(3)定量装入 3.2.2装入次序 目前永钢的操作顺序为,钢水倒完后进行溅渣护炉溅渣完后装入废钢,然后兑入铁水。 为了维护炉衬,减少废钢对炉衬的冲击,装料次序也可以先兑铁水,后装废钢。若采用炉渣预热废钢,则先加废钢,再倒渣,然后兑铁水。如果采用炉内留渣操作,则先加部分石灰,再装废钢,最后兑铁水。 供氧制度 制订供氧制度时应考虑喷头结构,供氧压力,供氧强度和氧枪高度控制等因素。 3.2.1氧枪喷头 转炉供氧的射流特征是通过氧枪喷头来实现的,因此,喷头结构的合理选择是转炉供氧的关键。氧枪有单孔,多孔和双流道等多种结构。永钢使用的是4孔拉瓦尔喷头形式喷枪。 3.2.2氧气压力控制 氧气压力控制受炉内介质和流股马赫数的影响。经测定,炉内介质压力一般为—,流股马赫数在—之间。因此目前在转炉上使用的工作压力为—,视各种扎容量而定。一般说来,转炉容量大,使用压力越高。 3.2.3氧气流量和供氧强度 (1)氧气流量:

转炉炼钢低氮控制实践

转炉炼钢低氮控制实践 2009-11-23 9:50:39 李安东、郑皓宇、徐文杰 (宝山钢铁股份有限公司不锈钢事业部炼钢厂) 摘要:宝钢不锈钢事业部炼钢厂引进宝钢分公司的转炉低氮控制技术,结合不锈钢分公司碳钢炼钢的自身特点,在重点品种IF钢的冶炼过程中,进行转炉低氮控制工艺转化,得出了可操作工艺参数,并推广应用到其它优质低氮钢,形成了规范的转炉低氮控制技术,为不锈钢事业部生产高等级的汽车面板钢作了充分的技术储备。 关键词:转炉冶炼,钢水脱氮 Study on Low-Nitrogen Controlling Technology Li Andong、Zhen Hao yu、Xu Wen Jie (Melting Shop of Baoshan Iron & Steel Co. Ltd. Stainless Steel Business Unit) Abstract: The melting shop of Baosteel Stainless Steel Branch introduced low- nitrogen controlling technology from Baosteel Branch. Combining with the smelting process characteristics of carbon steel, Baosteel Stainless steel Branch applied the technology to the converter in smelting process of IF steel to draw the operational process parameters. And the technology has also been applied to other high-quality low–nitrogen steel and become a standardized low-nitrogen converter controlling technology that is existing as the sufficient technical reserves for the production of high-grade steel panels of motor vehicles. Key words: smelting in converter, denitrigenation from steel 1 前言 钢水中氮的控制贯穿于铁水预处理-BOF-精炼-CC的全过程,基本的控制方法可分为两个方面,即脱氮+防止增氮[1,2]。从理论上讲,铁水预处理、转炉冶炼、RH真空精炼工序均可

转炉炼钢连铸精益生产实践

转炉炼钢连铸精益生产实践 随着炼钢工艺技术及信息化、智能化的不断发展,炼钢-连铸过程工艺流、时间流、物质流的系统协同优化,已成为炼钢企业生产过程管控的重点研究方向。为此,莱钢炼钢厂根据自身工艺装备水平和产品特点,围绕生产组织、质量控制、成本管控、设备点检、安全管理进行系统优化创新和管理升级,形成五位一体”的协同生产管控模式,并 通过实施各工序关键工艺精准控制,实现了优质、高效、低耗的精益冶炼模式,在产品质量、关键指标、成本控制等方面,取得了良好效果,精益生产水平不断提高。 1工艺装备 莱钢炼钢厂现有2座1880m3高炉、1座3200m3高炉,3座120t转炉、1座150t转炉,以及大H型钢生产线、1500mm热轧宽带生产线和4300mm宽厚板生产线,年产钢500万吨。炼钢工序主要工艺装备情况如表1所示。 炼钢厂主要工艺袈裔 主要生产品种包括:普通碳素结构钢、低合金高强度结构钢、优质碳素结构钢、船板钢、汽车大梁钢、耐磨钢、管线钢、压力容器钢等。 2工艺流程 莱钢炼钢厂冶炼钢种多,对应的产品规格与性能要求又存在较大差异,由图1可见, 现场工艺装备复杂,在生产组织过程中各工序间交叉作业频繁,行车作业率高,故工艺选择较为复杂,生产组织协同性差,造成生产成本高、能耗高,质量控制不稳定。

圈1嫌钢连铸生产流祁 3炼钢-连铸过程协同优化研究 针对炼钢-连铸生产过程控制,围绕生产组织、质量控制、成本管控、设备点检、安全管理进行系统优化创新和管理升级,形成五位一体”的协同生产管控模式,在产品 质量、关键指标、成本控制等方面取得了良好效果,精益生产水平不断提高。 3.1以生产时刻表”为主线,建立精益生产组织模型 按照不同钢种的工艺流程、各工序标准工艺时间以及炼钢-连铸协同配置要求,建 立专线化生产、生产时刻表和调度组织模型,实现了均衡、稳定、高效、低耗的精益生产组织模式。 1)炼钢生产时刻表运行系统 以炼钢、精炼、连铸各工序标准时间序为基准,建立像火车时刻表”一样的生产 时刻表”实现了生产过程的动态、精准控制。 2)专线化生产组织模型 根据合同订单计划,依托炼钢MES系统,运用当量周期、炉机匹配度等分析评价指标,对转炉、精炼及连铸产能、节奏、生产组织模式进行系统分析研究,建立专线化生产组织模型。 3.2以参数群控制为核心,建立质量识别系统 依托一级、二级控制系统,建立健全全流程工艺参数自动采集系统,对生产过程工艺参数进行自动采集识别。根据各工序工艺控制特点,制定各工序关键控制点控制标准及不合项扣分标准,根据每炉钢实际参数控制情况,对每炉铸坯质量进行综合打分判定。 通过建立从铁水到铸坯的全流程关键工艺参数标准模型,过程工艺参数自动采集,对工艺参数实时

转炉脱磷和深脱磷

转炉脱磷工艺 近年来,随着我国钢材的发展,对低磷钢的生产要求越来越高,对高级别钢特别是低磷钢的需求大大增加,这些产品对钢中磷的质量分数提出了很高的要求,大多要求磷含量低于0.015%;低温用钢管、特殊深冲钢、镀锡板要求钢中磷低于0.010%;一些航空、原子能、耐腐蚀管线用钢要求磷低于0.005%,所以超低磷钢将成为以后发展的主要方向。下面是关于国内外对超低磷钢的生产研究。以及现场的一些主要工艺过程。 一国际上对超低磷钢的研究 日本发明的转炉脱磷工艺主要方法有:JFE的LD-NRP法,住友金属的SRP法,神户制钢的H炉,新日铁的LD-ORP法和MURC法。其操作方式住友有两种,第一种是采用两座转炉双联作业,一座是脱磷,另一座接受来自脱磷炉的低磷铁水脱碳,即“双联法”,典型的双联法工艺流程为:高炉铁水—铁水预处理—转炉脱磷—转炉脱碳—二次精炼—连铸;第二种是在同一座转炉上进行铁水脱磷和脱碳,类似传统的“双渣法”。 德国发明的转炉脱磷工艺:TBM工艺(蒂森底吹技术) 目前双联法是生产超低磷钢的最先进转炉炼钢法,其主要优势是:炉内自由空间大,允许强烈搅拌钢水,顶吹供氧,高强度底吹,不需要预脱硅,废钢比较高,炉渣碱度比较低,渣量低,处理后铁水温度较高(1350),脱磷效率明显提高。 1转炉脱磷新工艺 1.1JFE福山制铁所 福山制铁所,有两个炼钢厂(第二炼钢厂和第三炼钢厂)。该制铁所是日本粗钢产量最好的厂家。第三炼钢厂有2座320T的顶底复吹转炉,采用LD-NRP工艺(双联法),一座转炉脱磷,另一座转炉脱碳,转炉脱磷能力为450万t/a。该厂1999年开始全量铁水转炉脱磷预处理。 转炉脱磷指标:吹炼时间为10分钟,废钢比为7%~10%;氧气流量为30000立方米/h,底吹气体为3000立方米/h;石灰消耗为10~15kg/t。 转炉脱碳指标:炉龄低于脱磷转炉,转炉在炉役前期用于脱碳,炉役后期用于脱磷,炉龄约7000炉;石灰消耗5~6kg/t。 第二炼钢厂有3座250t顶底复吹转炉;采用传统‘三脱’工艺(NRP),“三脱”处理能力420玩吨/年。该厂统计的生产数据表明,铁水罐内脱磷处理周期长,产能低;LD—NRP技术与常规冶炼技术相比,每吨钢的成本降低5美元左右。此外,JFE京滨炼钢厂的两座330t转炉也采用双联法炼钢。 1.2住友金属鹿岛制铁所 住友金属鹿岛制铁所有两个炼铁厂,第一炼铁厂3座250t转炉,采用该公司发明的SRP法(双联法)炼钢,第二炼钢厂2座250t转炉,采用常规冶炼工艺。第一炼钢厂一座转炉脱磷,另两座转炉脱碳(二吹一),脱磷铁水富余25%,运送给第二炼钢厂。 脱磷转炉指标:吹炼时间为8min;冶炼周期为22Min;废钢比为10%(加轻废钢);出铁温度为1350;渣量为40kg/t。

相关主题
文本预览
相关文档 最新文档