当前位置:文档之家› 原子物理复件11秋原子期中试题

原子物理复件11秋原子期中试题

原子物理复件11秋原子期中试题
原子物理复件11秋原子期中试题

哈工大 2011 年秋季学期

原子物理学(期中)试题

(本试卷共7页,6道大题,卷面总分60分)

一 填空题(每空1分,共5分)

1 某黑体的温度升高为原来的2倍,则它的辐射功率将增加为原来的 16 倍。

2 状态为34F 的原子束通过横向不均匀磁场后将分裂成 9 束。

3 电子自旋角动量的大小为

4 原子的4f 支壳层最多能容纳 14 个电子。

5 碱金属原子光谱双线结构是 自旋与轨道运动 相互作用的结果。

选择题(每小题1分,共5分)

1 μ-子的质量是电子的207倍,电荷与电子相同。 中性氢原子中的电子被μ-子取代,就形成了所谓的μ--氢原子,已知氢原子的电离能是E ,则μ--氢原子的电离能是: A E ; B

207

E

; C 207E ; D 186E 答:( D ) 2 温度相同的氢原子和氧原子的德布罗意波长之比H O λλ等于:

A 1/1;

B 1/4;

C 4/1;

D 16/1 答:( C )

3 如果把一个原子的原子核放大到馒头那么大的话,则这个原子的直径与下面哪个尺度最接近?

A 哈工大正心楼到学苑食堂的距离;

B 哈工大哈尔滨一校区到二校区的距离;

C 哈工大哈尔滨一校区到哈工大威海校区的距离;

D 哈工大哈尔滨一校区到哈工大深圳研究生院的距离。 答:( B )

4 锂原子的基态为212S ,钙原子的基态为10S ,钪原子的基态为232D ,硫原子的基态为32P ,这些原子中具有抗磁性的是:

A 锂原子;

B 钙原子;

C 钪原子;

D 硫原子。

答:( B )

5 下面哪个实验证实了原子在外磁场中的空间取向是量子化的?

A 斯特恩-盖拉赫实验;

B 夫兰克-赫兹实验;

C 戴维逊-革末实验;

D 光电效应实验。 答:( A )

三 (本题共包含4道小题,每题5分,共计20分)

1 某原子的激发态发射波长为600nm 的光谱线,波长的相对宽度为710λλ-?=,请问该激发态的寿命约为多长?

2 氧原子的基态为3

P,请计算基态氧原子的轨道角动量和自旋角动量之间的夹角。

2

P,请给出基态氯原子在磁场B中的顺磁共振频率。

3氯原子的基态为2

32

4 已知锂原子光谱主线系最长波长为A λ,第一辅线系最长波长为B λ,柏格曼系系限波长为C λ,求锂原子的电离能。

四 (本题10分) 某原子处于9J D 能级,已知该能级在磁场中分裂成5条,请问J 的值是多少?计算该原子的总有效磁矩J μ,并给出J μ在磁场方向的分量z μ的可能值(以玻尔磁子B μ为单位)。

五 (本题10分) 钠灯被置于强度为B 的磁场中,它所发出的波长为5890A 的光谱线(对应于

2

2

3212P S →的跃迁)发生分裂,请给出分裂后的每条谱线与原谱线的波数差(用字母或符号表示即

可,不用计算出具体数值),画出相应的能级跃迁图。并请回答:从垂直于磁场方向可观测到几条光谱线?迎着磁场方向可观测到几条光谱线? 解:对于232P 态有

()()()()2222222222221,12,3211141213

L S J J J L L S S g J J ===+-+++=+

=

+ (1分)

对于212S 态有

()()()

()

1111111111110,12,1211112

21L S J J J L L S S g J J ===+-+++=+

=+ (1分)

(3分)

(3分)

从垂直于磁场方向可观测到6条光谱线(1分),迎着磁场方向可观测到4条光谱线(1分)。

M Mg

3/2 2

1/2 2/3 -1 /2 -2/3

-3/2 -2

1/2 1 -1/2 -1

六 (本题10分)请写出14号元素硅的基态电子组态,按LS 耦合该组态能够形成哪些原子态?如果硅的一个3p 电子被激发到4s 支壳层而处于激发态,请写出此时的所有可能的原子态,画出激发态电子组态和基态电子组态形成的能级图,并画出这些能级间的容许跃迁。 解:硅的基态电子组态为 1s 22s 22p 63s 23p 2(1分),对于基态电子组态

121211

1,1;,22

2,1,0;1,0

l l s s L S ====

==

注意到3p 2为同科电子,由于泡利不相容原理(或偶数定则)的限制,该电子组态可形成如下原子态:

1

S 0、3P 2, 1, 0、1D 2(3分)。硅的一个3p 电子被激发到4s 支壳层时

121211

1,0;,22

1;1,0

l l s s L S ====

==

可形成如下原子态:3

P 2, 1, 0,1P 1(2分)。激发态向基态电子组态能级间的容许跃迁如下图所示:

画对能级次序给2分,画对跃迁情况给2分。

1

P 1

3

P 2

3P 1 3P 0

1S 0

1

D 2

3

P 2 3P 1 3P 0

34p s ????

???

23p ???????????

原子物理选择题(含答案)

原子物理选择题 1. 如图所示是原子核的核子平均质量与原子序数Z 的关 系图像,下列说法正确的是(B ) ⑴如D 和E 结合成F ,结合过程一定会吸收核能 ⑵如D 和E 结合成F ,结合过程一定会释放核能 ⑶如A 分裂成B 和C ,分裂过程一定会吸收核能 ⑷如A 分裂成B 和C ,分裂过程一定会释放核能 A .⑴⑷ B .⑵⑷ C .⑵⑶ D .⑴⑶ 2. 处于激发状态的原子,如果在入射光的电磁场的影响下,引起高能态向低能态跃迁,同 时在两个状态之间的能量差以辐射光子的形式发射出去,这种辐射叫做受激辐射,原子发生受激辐射时,发出的光子的频率、发射方向等,都跟入射光子完全一样,这样使光得到加强,这就是激光产生的机理,那么发生受激辐射时,产生激光的原子的总能量E n 、电子的电势能E p 、电子动能E k 的变化关系是(B ) A .E p 增大、E k 减小、E n 减小 B .E p 减小、E k 增大、E n 减小 C .E p 增大、E k 增大、E n 增大 D . E p 减小、E k 增大、E n 不变 3. 太阳的能量来自下面的反应:四个质子(氢核)聚变成一个α粒子,同时发射两个正 电子和两个没有静止质量的中微子。已知α粒子的质量为m a ,质子的质量为m p ,电子的质量为m e ,用N 表示阿伏伽德罗常数,用c 表示光速。则太阳上2kg 的氢核聚变成α粒子所放出能量为 (C ) A .125(4m p —m a —2m e )Nc 2 B .250(4m p —m a —2m e )Nc 2 C .500(4m p —m a —2m e )Nc 2 D .1000(4m p —m a —2m e )Nc 2 4. 一个氘核(H 21)与一个氚核(H 31)发生聚变,产生一个中子和一个新核,并出现质 量亏损.聚变过程中(B ) A.吸收能量,生成的新核是e H 42 B.放出能量,生成的新核是e H 42 C.吸收能量,生成的新核是He 32 D.放出能量,生成的新核是He 32 5. 一个原来静止的原子核放出某种粒子后,在磁场中形成如图所示 的轨迹,原子核放出的粒子可能是(A ) A.α粒子 B.β粒子 C.γ粒子 D.中子 6. 原来静止的原子核X A Z ,质量为1m ,处在区域足够大的匀强磁场中,经α衰变变成质 量为2m 的原子核Y ,α粒子的质量为3m ,已测得α粒子的速度垂直磁场B ,且动能为0E .假设原子核X 衰变时释放的核能全部转化为动能,则下列四个结论中,正确的是(D ) ①核Y 与α粒子在磁场中运动的周期之比为2 2-Z

原子物理知识点汇总

高考考点:原子物理考 点分析一、历史人物及相关成就 1、汤姆生:发现电子,并提出原子枣糕模型——说明原子可再分 2、卢瑟福: 粒子散射实验— —说明原子的核式结构模型 发现质子 3、查德威克:发现中子 4、约里奥.居里夫妇:发现正电子 5、贝克勒尔:发现天然放射

现象——说明原子核可再分6、爱因斯坦:质能方程2mc E=, 2 mc E? = ? 7、玻尔:提出玻尔原子模型,解释氢原子线状光谱8、密立根:油滴实验——测 量出电子的电 荷量 二、核反应的 四种类型 类型可 控 性 核反应 例 衰 变 α衰 变 自 发 β衰 变 自 发

人工转变人 工 控 制 H o He N1 1 17 8 4 2 14 7 + → +卢 瑟福 发现质子 n C He Be1 12 6 4 2 9 4 + → +查 德威 克发现中子 n P He l1 30 15 4 2 27 13 A+ → +约里 奥.居里夫妇 e Si P0 1 30 14 30 15 + →发

重核裂变比较容易进行人工控制 轻核聚除 变氢 弹 外 无 法 控 制 提醒: 1、核反应过程一般都是不可逆的,所以核反

应方程只能用单箭头表示反应方向,不能用等号连接。2、核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写出核 反应方程 3、核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒 三、三种射线比较 种 类

速 度 0.1c 0.99c C 在电磁场中偏转与a射 线反向 偏转 不偏转 贯穿本领最弱, 用纸能 挡住 较强, 穿透几 毫米的 铝板 最强, 穿透几 厘米的 铅板 对 空 气 的 电 离 作 用 很强较弱

原子物理学试题汇编

临沂师范学院物理系 原子物理学期末考试试题(A卷) 一、论述题25分,每小题5分) 1.夫朗克—赫兹实验的原理和结论。 1.原理:加速电子与处于基态的汞原子发生碰撞非弹性碰撞,使汞原子吸收电子转移的的能量跃迁到第一激发态。处第一激发态的汞原子返回基态时,发射2500埃的紫外光。(3分) 结论:证明汞原子能量是量子化的,即证明玻尔理论是正确的。(2分) 2.泡利不相容原理。 2.在费密子体系中不允许有两个或两个以上的费密子处于同一个量子态。(5分) 3.X射线标识谱是如何产生的 3.内壳层电子填充空位产生标识谱。(5分) 4.什么是原子核的放射性衰变举例说明之。 4.原子核自发地的发射 射线的现象称放射性衰变,(4分)例子(略)(1分) 5.为什么原子核的裂变和聚变能放出巨大能量 5.因为中等质量数的原子核的核子的平均结合能约为大于轻核或重核的核子的平均结合能,故轻核聚变及重核裂变时能放出巨大能

量。(5分) 二、(20分)写出钠原子基态的电子组态和原子态。如果价电子被激发到4s态,问向基态跃迁时可能会发出几条光谱线试画出能级跃迁图,并说明之。 二、(20分)(1)钠原子基态的电子组态1s22s22p63s;原子基态为2S1/2。(5分) (2)价电子被激发到4s态向基态跃迁时可发出4条谱线。(6分)(3)依据跃迁选择定则1 0, j 1,± = ? ± ?= l(3分)能级跃迁图为(6分) 三、(15 耦合时,(1)写出所有 可能的光谱项符号;(2)若置于磁场中,这一电子组态一共分裂出多少个能级(3)这些能级之间有多少可能的偶极辐射跃迁 三、(15分)(1)可能的原子态为 1P 1,1D 2, 1F 3; 3P 2,1,0, 3D 3,2,1, 3F 4,3,2。 (7分) (2)一共条60条能级。(5分) (3)同一电子组态形成的原子态之间没有电偶极辐射跃迁。(3分)

高中物理光学原子物理知识要点精编WORD版

高中物理光学原子物理知识要点精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

光学 一、光的折射 2.光在介质中的光速:n=n/n 1.折射定律:n=nnn大角 nnn小角 3.光射向界面时,并不是全部光都发生折射,一定会有一部分光发生反射。 4.真空/空气的n等于1,其它介质的n都大于1。 5.真空/空气中光速恒定,为n=3×108m/s,不受光的颜色、参考系影响。光从真空/空气中进入介质中时速度一定变小。 6.光线比较时,偏折程度大(折射前后的两条光线方向偏差大)的光折射率n大。 二、光的全反射 1.全反射条件:光由光密(n大的)介质射向光疏(n小的)介质;入射角大于或等于临界角C,其求法为nnn n=n 。 n 2.全反射产生原因:由光密(n大的)介质,以临界角C射向空气时,根据折射定律,空气中的sin角将等于1,即折射角为90°;若再增大入射角,“sin空气角”将大于1,即产生全反射。 3.全反射反映的是折射性质,折射倾向越强越容易全反射。即n越大,临界角C越小,越容易发生全反射。 4.全反射有关的现象与应用:水、玻璃中明亮的气泡;水中光源照亮水面某一范围;光导纤维(n大的内芯,n小的外套,光在内外层界面上全反射)

三、光的本质与色散 1.光的本质是电磁波,其真空中的波长、频率、光速满足n=nn(频率也可能用n表示),来源于机械波中的公式n=n/n。 2.光从一种介质进入另一种介质时,其频率不变,光速与波长同时变大或变小。 3.将混色光分为单色光的现象成为光的色散。不同颜色的光,其本质是频率不同,或真空中的波长不同。同时,不同颜色的光,其在同一介质中的折射率也不同。 4.色散的现象有:棱镜色散、彩虹。 5.红光和紫光的不同属性汇总如下:

原子物理学习题答案(褚圣麟)很详细

1.原子的基本状况 1.1解:根据卢瑟福散射公式: 2 02 22 442K Mv ctg b b Ze Ze αθ πεπε== 得到: 21921501522 12619079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12K Mv α=是α粒子的功能。 1.2已知散射角为θ的α粒子与散射核的最短距离为 2202 1 21 ()(1)4sin m Ze r Mv θ πε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min 202 1 21 ()(1)4sin Ze r Mv θπε=+ 1929 619479(1.6010)1910(1)7.6810 1.6010sin 75ο --???=???+???14 3.0210-=?米 1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最 解:当入射粒子与靶核对心碰撞时,散射角为180ο。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得: 22 0min 124p Ze Mv K r πε==,故有:2min 04p Ze r K πε= 1929 13 619 79(1.6010)910 1.141010 1.6010 ---??=??=???米

由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-?米。 1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-?的银箔上,α粒 解:设靶厚度为't 。非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。 因为散射到θ与θθd +之间Ωd 立体 角内的粒子数dn 与总入射粒子数n 的比为: dn Ntd n σ= (1) 而σd 为:2 sin ) ()41 (4 2 2 22 0θ πεσΩ=d Mv ze d (2) 把(2)式代入(1)式,得: 2 sin )()41(4 22220θπεΩ =d Mv ze Nt n dn (3) 式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds d N 为原子密度。'Nt 为单位面上的原子数,10')/(/-==N A m Nt Ag Ag ηη,其中η是单位面积式上的质量;Ag m 是银原子的质量;Ag A 是银原子的原子量;0N 是阿佛加德罗常数。 将各量代入(3)式,得: 2 sin )()41(324 22 22 00θπεηΩ=d Mv ze A N n dn Ag 由此,得:Z=47

原子物理学期末自测题

1、原子半径的数量级是: A.10-10cm; B.10-8m C.10-10m D.10-13m 2、原子核式结构模型的提出是根据α粒子散射实验中: A.绝大多数α粒子散射角接近180° B. α粒子只偏差2°~3° C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小角散射 3、进行卢瑟福理论实验验证时发现小角散射与实验不符这说明: A.原子不一定存在核式结构 B.散射物太厚 C.卢瑟福理论是错误的 D.小角散射时一次散射理论不成立 4、用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限.试问用质子束所得结果是用α粒子束所得结果的几倍? A.1/4 B.1/2 C.1 D.2 5、动能E =40keV的α粒子对心接近Pb(z=82)核而产生散射,则最小距离 K 为(m): A.5.9 B.3.0 C.5.9╳10-12 D.5.9╳10-14 6、如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍? A.2 B.1/2 C.1 D .4 7,每10000 现有4个粒子被散射到角度大于5°的围.若金箔的厚度增加到4倍,那么被散 A. 16 B.8 C.4 D.2 8、90°和60°角方向上单位立体角的粒子数之比为: A. 9,, 分布,在散射物不变条件下则必须使: A B C D 10、氢原子光谱莱曼系和巴耳末系的系线限波长分别为: A.R/4 和R/9 B.R 和R/4 C.4/R 和9/R D.1/R 和4/R

11、氢原子基态的电离电势和第一激发电势分别是: A.13.6V和10.2V;B.–13.6V和-10.2V;C.13.6V和3.4V;D.–13.6V和-3.4V 12 A.5.29×10-10m B.0.529×10-10m C. 5.29×10-12m D.529×10-12m 电子的动能为1eV,其相应的德布罗意波长为1.22nm。 13、欲使处于激发态的氢原子发出H 线,则至少需提供多少能量(eV)? α A.13.6 B.12.09 C.10.2 D.3.4 14、用能量为12.7eV的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); A.3 B.10 C.1 D.4 15、按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的: A.1/10倍 B.1/100倍 C .1/137倍 D.1/237倍 16、已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为: A. 17 A.-3.4eV B.+3.4eV C.+6.8eV D.-6.8eV +的第一轨道半径是: 18、根据玻尔理论可知,氦离子H e A. +处于第一激发态(n=2)时电子的轨道半径为: 19、一次电离的氦离子H e -10m-10-10-10m +离子中基态电子的电离能能是: 20、在H e A.27.2eV B.54.4eV C.19.77eV D.24.17eV 21、弗兰克—赫兹实验的结果表明: A电子自旋的存在B原子能量量子化C原子具有磁性D原子角动量量子化 22、为使电子的德布罗意假设波长为100nm,应加多大的加速电压: A.6V; B.24.4V;5V; D.15.1V 23、如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为(以焦耳为单位):

(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

原子物理学习题答案(褚圣麟)

7.2 原子的3d 次壳层按泡利原理一共可以填多少电子?为什么? 答:电子的状态可用四个量子s l m m l n ,,,来描写。根据泡利原理,在原子中不能有两个电子处在同一状态,即不能有两个电子具有完全相同的四个量子数。 3d 此壳层上的电子,其主量子数n 和角量子数l 都相同。因此,该次壳层上的任意两个电子,它们的轨道磁量子数和自旋磁量子数不能同时相等,至少要有一个不相等。对于一个给定的l m l ,可以取12;,....,2,1,0+±±±=l l m l 共有个值;对每个给定的s l m m ,的取值是 2 1 21-或,共2个值;因此,对每一个次壳层l ,最多可以容纳)(122+l 个电子。 3d 次壳层的2=l ,所以3d 次壳层上可以容纳10个电子,而不违背泡利原理。 7.4 原子中能够有下列量子数相同的最大电子数是多少? n l n m l n )3(;,)2(;,,)1(。 答:(1)m l n ,,相同时,s m 还可以取两个值:2 1 ,21-==s s m m ;所以此时最大电子数为2个。 (2)l n ,相同时,l m 还可以取两12+l 个值,而每一个s m 还可取两个值,所以l n ,相同的最大电子数为)12(2+l 个。 (3)n 相同时,在(2)基础上,l 还可取n 个值。因此n 相同的最大电子数是: 21 2)12(2n l N n l =+=∑-= 7.5 从实验得到的等电子体系K Ⅰ、Ca Ⅱ……等的莫塞莱图解,怎样知道从钾Z=19开始不填s d 43而填次壳层,又从钪Z=21开始填s d 43而不填次壳层? 解:由图7—1所示的莫塞莱图可见,S D 2 2 43和相交于Z=20与21之间。当Z=19和 20时,S 24的谱项值大于D 23的值,由于能量同谱项值有hcT E -=的关系,可见从钾Z=19 起到钙Z=20的S 2 4能级低于D 2 3能级,所以钾和钙从第19个电子开始不是填s d 43而填次壳层。从钪Z=21开始,S 2 4谱项低于D 2 3普项,也就是D 2 3能级低于S 2 4能级,所以,从钪Z=21开始填s d 43而不填次壳层。 7.6 若已知原子阿Ne,Mg,P 和Ar 的电子壳层结构与“理想”的周期表相符,试写出这些原子组态的符号。

原子物理学试题汇编

原子物理学试题汇编 1 临沂师范大学物理系 原子物理期末考试(卷一) (1)弗兰克-赫兹实验的原理和结论。 1.原理:加速电子与基态汞原子之间的碰撞非弹性碰撞,使汞原子吸收4.9电子伏特的电子转移能量并跃迁到第一激发态。当处于第一激发态的汞原子回到基态时,它会发出2500埃的紫外光。(3分) 结论:证明汞原子的能量是量子化的意味着证明玻尔的理论是正确的。(2分) 2.泡利不相容原理。 2.在费米子系统中,两个或更多的费米子不允许处于相同的量子态。(5分) 3.x光识别光谱是如何产生的? 3.内壳中的电子填充空位产生识别光谱。(5分)4。什么是原子核的放射性衰变?举个例子。 4.原子核的自发发射???辐射现象称为放射性衰变,(4分)例(略)(1分) 5.为什么核裂变和核聚变会释放巨大的能量? 5.因为中等质量数的原子核的平均结合能比轻或重原子核的平均结合能大约8.6兆电子伏,所以轻核聚变和重核裂变可以释放出大量的能量。

2 巨大的能量。(5分) 第二,(20分)写下钠原子基态的电子构型和原子态。如果价电子被激发到4s态,在跃迁到基态的过程中会发射出多少条谱线?试着画一个能级转换图并解释它。 (2)、(20分钟)(1)钠原子基态的电子组态1 s22s 22p 63s;原子基态是2S1/2。(5分) (2)当价电子被激发从4s态跃迁到基态时,它们可以发射4条谱线。(6分)(3分)根据过渡选择规则?l=?1,?j。0,?1 (3分) 能级跃迁图为(6分) 42S1/2 32P3/2 32P1/2 32S1/2 (3)、(15)对于电子构型3p4d,(1)当ls耦合时,写下所有可能的光谱项符号;(2)如果放在磁场中,这个电子构型会分裂成多少能级?(3)在这些能级之间有多少可能的偶极辐射跃迁?三,(15点)(1)可能的原子状态是 1 P1,1D2,1F 3;3P2,1,0,3D3,2,1,3F4,3,2 .(7 点数) (2)总共60个能级。(5分) (3)由相同电子构型形成的原子态之间没有偶极辐射跃迁。(3分) 2

原子物理学杨福家1-6章课后习题答案

原子物理学课后前六章答案(第四版) 福家著(高等教育) 第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论 第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线 第一章 习题1、2解 1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为 10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不 动).注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散 射。电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) ?θααcos cos v m V M V M e +'= (2)

? θ α sin sin 0v m V M e - ' = (3)作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e (4) ) sin( sin ? θ ? α α+ ='V M V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v, ) ( sin sin ) ( sin sin 2 2 2 2 2 2 2 2 ? θ θ ? θ ? α α α+ + + =V m M V M V M e 化简上式,得 θ ? ? θα2 2 2sin sin ) ( sin e m M + = + (6)若记 α μ M m e = ,可将(6)式改写为 θ ? μ ? θ μ2 2 2sin sin ) ( sin+ = + (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )] (2 sin 2 sin [ )] sin( 2 [sin? θ ? μ ? θ μ θ ? θ + + - = + - d d 令 = ? θ d d ,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0 若 sinθ=0, 则θ=0(极小)(8) (2)若cos(θ+2φ)=0 ,则θ=90o-2φ(9)

原子物理习题

基本练习: 1.选择题: (1)在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:C A .0; B.1; C.2; D.3 (2)正常塞曼效应总是对应三条谱线,是因为:C A .每个能级在外磁场中劈裂成三个; B.不同能级的郎德因子g 大小不同; C .每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁 (3)B 原子态2 P 1/2对应的有效磁矩(g =2/3)是 A A. B μ33; B. B μ3 2 ; C. B μ32 ; D. B μ22. (4)在强外磁场中原子的附加能量E ?除正比于B 之外,同原子状态有关的因子有:D A.朗德因子和玻尔磁子 B.磁量子数、朗德因子 C.朗德因子、磁量子数M L 和M J D.磁量子数M L 和M S (5)塞曼效应中观测到的π和σ成分,分别对应的选择定则为:A A ;)(0);(1πσ±=?J M B. )(1);(1σπ+-=?J M ;0=?J M 时不出现; C. )(0σ=?J M ,)(1π±=?J M ; D. )(0);(1πσ=?±=?S L M M (6)原子在6 G 3/2状态,其有效磁矩为:B A . B μ315; B. 0; C. B μ25; D. B μ2 15- (7)若原子处于1 D 2和2 S 1/2态,试求它们的朗德因子g 值:D A .1和2/3; B.2和2/3; C.1和4/3; D.1和2 (8)由朗德因子公式当L=S,J ≠0时,可得g 值:C A .2; B.1; C.3/2; D.3/4 (9)由朗德因子公式当L=0但S ≠0时,可得g 值:D A .1; B.1/2; C.3; D.2 (10)如果原子处于2 P 1/2态,它的朗德因子g 值:A A.2/3; B.1/3; C.2; D.1/2 (11)某原子处于4 D 1/2态,若将其放于弱磁场中,则能级分裂为:C A .2个; B.9个; C.不分裂; D.4个 (12)判断处在弱磁场中,下列原子态的子能级数那一个是正确的:B A.4D 3/2分裂为2个; B.1P 1分裂为3个; C.2F 5/2分裂为7个; D.1 D 2分裂为4个 (13)如果原子处于2 P 3/2态,将它置于弱外磁场中时,它对应能级应分裂为:D A.3个 B.2个 C.4个 D.5个 (14)态1 D 2的能级在磁感应强度B 的弱磁场中分裂多少子能级?B A.3个 B.5个 C.2个 D.4个 (15)钠黄光D 2线对应着32P 3/2→32 S 1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂:B A.3条 B.6条 C.4条 D.8条 (16)碱金属原子漫线系的第一条精细结构光谱线(2D 3/2→2 P 3/2)在磁场中发生塞曼效应,光

关于原子物理学试题

高校原子物理学试题 试卷 一、选择题 1.分别用1MeV的质子和氘核(所带电荷与质子相同,但质量是质子的两倍)射向金箔,它们与金箔原子核可能达到的最小距离之比为: A.1/4; B.1/2; C.1; D.2. 2.处于激发态的氢原子向低能级跃适时,可能发出的谱总数为: A.4; B.6; C.10; D.12. 3.根据玻尔-索末菲理论,n=4时氢原子最扁椭圆轨道半长轴与半短轴之比为: A.1; B.2; C.3; D.4. 4.f电子的总角动量量子数j可能取值为: A.1/2,3/2; B.3/2,5/2; C.5/2,7/2; D.7/2,9/2. 5.碳原子(C,Z=6)的基态谱项为 A.3P O ; B.3P 2 ; C.3S 1 ; D.1S O . 6.测定原子核电荷数Z的较精确的方法是利用 A.α粒子散射实验; B. x射线标识谱的莫塞莱定律; C.史特恩-盖拉赫实验; D.磁谱仪. 7.要使氢原子核发生热核反应,所需温度的数量级至少应为(K) A.107; B.105; C.1011; D.1015. 8.下面哪个粒子最容易穿过厚层物质? A.中子; B.中微子; C.光子; D.α粒子 9.在(1)α粒子散射实验,(2)弗兰克-赫兹实验,(3)史特恩-盖拉实验,(4)反常塞曼效应中,证实电子存在自旋的有: A.(1),(2); B.(3),(4); C.(2),(4); D.(1),(3). 10.论述甲:由于碱金属原子中,价电子与原子实相互作用,使得碱金属原子的能级对角量子数l的简并消除. 论述乙:原子中电子总角动量与原子核磁矩的相互作用,导致原子光谱精细结构. 下面判断正确的是: A.论述甲正确,论述乙错误; B.论述甲错误,论述乙正确; C.论述甲,乙都正确,二者无联系; D.论述甲,乙都正确,二者有联系. 二、填充题(每空2分,共20分) 1.氢原子赖曼系和普芳德系的第一条谱线波长之比为(). 2.两次电离的锂原子的基态电离能是三次电离的铍离子的基态电离能的()倍. 3.被电压100伏加速的电子的德布罗意波长为()埃. 4.钠D 1 线是由跃迁()产生的. 5.工作电压为50kV的X光机发出的X射线的连续谱最短波长为()埃. 6.处于4D 3/2 态的原子的朗德因子g等于(). 7.双原子分子固有振动频率为f,则其振动能级间隔为(). 8.Co原子基态谱项为4F 9/2 ,测得Co原子基态中包含8个超精细结构成分,则Co核自旋I=(). 9.母核A Z X衰变为子核Y的电子俘获过程表示()。 10.按相互作用分类, 粒子属于()类.

原子物理知识点讲解

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最大初动能与入射光的强度无关,只随着入射光频率的增大而增大。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U0。回路中的光电流随着反向电压的增加而减小,当反向电压 1 U0满足:-mv max =eU o,光电流将会减小到零,所以遏止电压与入射光的频率有2 关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率, 无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长, 实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子? 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv的整数倍,hv称为一个能量量子。即能量是一份一份的。其中v辐射频率,h是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量&跟光的频率v成正比。;=hv,其中:h是普朗克常量,v是光的频率。 三、光电效应方程 1、逸出功VW.电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。

原子物理学平时测验题

原子物理平时测试题(20分) 1、 简述α粒子散射实验。 答:α粒子轰击Au 箔,在金箔的周围以R 为半径做一个圆形轨道,装上可以绕以金箔为圆心滑动的望远镜,物镜上涂上ZnS 薄层【α粒子碰撞到ZnS 上会有荧光】. 实验用准直的α射线轰击厚度为微米的金箔,发现绝大多数的α粒子都照直穿过薄金箔,偏转很小,但有少数α粒子发生角度比汤姆孙模型所预言的大得多的偏转,大约有1/8000 的α粒子偏转角大于90°,甚至观察到偏转角等于150°的散射,称大角散射……这证明了金箔上有能使α粒子完全反弹的一个正电荷组成的核心——这是卢瑟福提出原子核式模型的重要实验依据。 2、 写出氢原子光谱的前面五个线系的波数表达式,简述氢原子光谱的特点。 赖曼系 巴尔末系 帕邢系 布喇开系: 普丰特系: 光谱特点: (1)光谱的线状的。 (2)谱线间有一定的关系,谱线构成一个个的谱线系,不同的线系也有共同的光谱项。 (3)每一条谱线的波数都可以表达为二光谱项之差。 3、 简述经典理论在解释原子核核式结构模型时遇到的困难。 答:按照经典电动力学,当带电粒子有加速度时,就会辐射;而发出来的电磁波的频率等于辐射体运动的频率。 (1)原子稳定结构的困难。卢瑟福将行星模型用于原子世界,虽然都受平方反比有心力支配,但电子带-e 电荷,轨道加速运动会向外辐射电磁能,这样电子将会在10-9s 时间内连续缩小,落入核内,正负电荷中和,原子宣告崩溃(塌缩)。原子的半径按照这种理论应该为10-15米,而不是10-10米。 但现实世界原子是稳定的。 (2)原子线状光谱的困难。按照经典电动力学,原子所发出来的光的频率等于原子中电子运动的频率。那么如果电子轨道连续缩小,其运动的频率就会连续增大,那么所发光的频率就是连续变化的,原子的光谱应该是连续光谱。但实验发 ,3,2),111(~22=-=n n R H ν ,5,4),131(~2 2=-=n n R H ν ,6,5),141(~22=-=n n R H ν ,7,6),151(~22=-=n n R H ν,...5,4,3121~2 2=??????-=n n R H ν

原子物理学期末考试试卷(E)参考答案

《原子物理学》期末考试试卷(E)参考答案 (共100分) 一.填空题(每小题3分,共21分) 1.7.16?10-3 ----(3分) 2.(1s2s)3S1(前面的组态可以不写)(1分); ?S=0(或?L=±1,或∑ i i l=奇?∑ i i l=偶)(1分); 亚稳(1分)。 ----(3分) 3.4;1;0,1,2 ;4;1,0;2,1。 ----(3分) 4.0.013nm (2分) , 8.8?106m?s-1(3分)。 ----(3分) 5.密立根(2分);电荷(1分)。 ----(3分) 6.氦核 2 4He;高速的电子;光子(波长很短的电磁波)。(各1分) ----(3分) 7.R aE =α32 ----(3分) 二.选择题(每小题3分, 共有27分) 1.D ----(3分) 2.C ----(3分) 3.D ----(3分) 4.C ----(3分) 5.A ----(3分) 6.D 提示: 钠原子589.0nm谱线在弱磁场下发生反常塞曼效应,其谱线不分裂为等间距的三条谱线,故这只可能是在强磁场中的帕邢—巴克效应。 ----(3分) 7.C ----(3分) 8.B ----(3分) 9.D ----(3分)

三.计算题(共5题, 共52分 ) 1.解: 氢原子处在基态时的朗德因子g =2,氢原子在不均匀磁场中受力为 z B z B z B Mg Z B f Z d d d d 221d d d d B B B μμμμ±=?±=-== (3分) 由 f =ma 得 a m B Z =±?μB d d 故原子束离开磁场时两束分量间的间隔为 s at m B Z d v =?=??? ? ? ?212 22 μB d d (2分) 式中的v 以氢原子在400K 时的最可几速率代之 m kT v 3= )m (56.010400 1038.131010927.03d d 3d d 232 232B 2 B =??????=?=??= --kT d z B kT md z B m s μμ (3分) 由于l =0, 所以氢原子的磁矩就是电子的自旋磁矩(核磁矩很小,在此可忽略), 故基态氢原子在不均匀磁场中发生偏转正好说明电子自旋磁矩的存在。 (2分) ----(10分) 2.解:由瞄准距离公式:b = 22a ctg θ及a = 2 1204z z e E πε得: b = 20012*79 **30246e ctg MeV πε= 3.284*10-5nm. (5分) 22 22 ()()(cot )22 (60)cot 30 3:1(90)cot 45 a N Nnt Nnt b Nnt N N θ σθπθπ?=?==?==? (5分) 3.对于Al 原子基态是2P 1/2:L= 1,S = 1/2,J = 1/2 (1分) 它的轨道角动量大小: L = = (3分) 它的自旋角动量大小: S = = 2 (3分) 它的总角动量大小: J = = 2 (3分) 4.(1)铍原子基态的电子组态是2s2s ,按L -S 耦合可形成的原子态: 对于 2s2s 态,根据泡利原理,1l = 0,2l = 0,S = 0 则J = 0形成的原子态:10S ; (3分) (2)当电子组态为2s2p 时:1l = 0,2l = 1,S = 0,1 S = 0, 则J = 1,原子组态为:11P ; S = 1, 则J = 0,1,2,原子组态为:30P ,31P ,32P ; (3分) (3)当电子组态为2s3s 时,1l = 0,2l = 0,S = 0,1 则J = 0,1,原子组态为:10S ,31S 。 (3分) 从这些原子态向低能态跃迁时,可以产生5条光谱线。 (3分)

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的 ______________模型. 2.物理学家________用___粒子轰击金箔的实验叫 __________________。 3. 实验结果:绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转;极少数的α粒子甚至被____. 4. 实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存 在着对 α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比 α粒子大很多的物体运动时,受到该物体很大的斥 力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小 的核,叫 ________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋 转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B . 极少数α粒子穿过金箔时有较大的偏转 ,有的甚至被反 弹 C.绝大多数α粒子穿过金箔时有较大的 偏转 D. α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模 型。如图 1-1所示表示了 原子核式结构模型的 α粒子散射图景。图中实 线表示 α粒子的运动轨迹。其中一个 c α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下 列判断正确的是 ( ) a b A .α粒子的动能先增大后减小 原子核 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 α粒子 D .电场力对α粒子先做正功后做负功 图1-1 二玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列 __________的能量状态中,在 这些状态中原子是 _______的,电子虽然绕核运动, 但不向外辐射能量.这些状态叫做 ________. ⑵跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于 ______子的不同轨道 .原子的定态是不连续的,因此电子的可能轨道也是不 连续的. 3.氢原子的能级公式和轨道 公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级 公式为 :______________; 对应的轨道公式为: r n n 2 r 1。其中n 称为量子数,只能取正.E1=-13.6eV ,r1=0.53×10-10m .

原子物理学杨福家第一章答案

第一章习题1、2解 1.1 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。电子质量用m e表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: 2 2 2 2 1 2 1 2 1 v m V M V M e + ' = α α(1) ? θ α α cos cos v m V M V M e + ' =(2) ? θ α sin sin 0v m V M e - ' =(3) 作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e(4) ) sin( sin ? θ ? α α+ ='V M V M(5)

再将(4)、(5)二式与(1)式联立,消去V’与v , 化简上式,得 (6) θ?μ?θμ222sin sin )(sin +=+ (7) 视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令 θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0 (1) 若 sin θ=0, 则 θ=0(极小) (8) (2)若cos(θ+2φ)=0 则 θ=90o-2φ (9) 将(9)式代入(7)式,有 θ ?μ?μ2202)(90si n si n si n +=-

由此可得 θ≈10-4弧度(极大) 此题得证。 1.2(1)动能为5.00MeV的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几? 要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值. 其他值 解:(1)依 金的原子序数 Z2=79 答:散射角为90o所对所对应的瞄准距离为22.8fm. (2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出) 从书后物质密度表和原子量表中查出 Z Au=79,A Au=197, ρAu=1.888×104kg/m3

相关主题
文本预览
相关文档 最新文档