当前位置:文档之家› 3第三章 指令系统--寻址方式

3第三章 指令系统--寻址方式

3第三章 指令系统--寻址方式
3第三章 指令系统--寻址方式

第一讲

第三章 指令系统--寻址方式

回顾: 8086/8088的内部结构和寄存器,地址分段的概念,8086/8088的工作过

程。

重点和纲要:指令系统--寻址方式。有关寻址的概念;6种基本的寻址方式及有

效地址的计算。

教学方法、实施步骤

时间分配

教学手段

回 顾 5”×2

讲 授 40” ×2

提 问 3” ×2

小 结 2” ×2 板书 计算机

投影仪 多媒体课件等

讲授内容:

3.1 8086/8088寻址方式

首先,简单讲述一下指令的一般格式:

操作码 操作数 …… 操作数

计算机中的指令由操作码字段和操作数字段组成。

操作码:指计算机所要执行的操作,或称为指出操作类型,是一种助记符。 操作数:指在指令执行操作的过程中所需要的操作数。该字段除可以是操作数本身外,也可以是操作数地址或是地址的一部分,还可以是指向操作数地址的指针或其它有关操作数的信息。

寻址方式就是指令中用于说明操作数所在地址的方法,或者说是寻找操作数有效地址的方法。8086/8088的基本寻址方式有六种。

1.立即寻址

所提供的操作数直接包含在指令中。它紧跟在

操作码的后面,与操作码一起放在代码段区域中。如图所示。

例如:MOV AX ,3000H

立即数可以是8位的,也可以是16位的。若

是16位的,则存储时低位在前,高位在后。

立即寻址主要用来给寄存器或存储器赋初值。

2.直接寻址

操作数地址的16位偏移量直接包含在指令中。它与操作码—起存放在代码段区域,操作数一般在数据段区域中,它的地址为数据段寄存器DS加上这16位地址偏移量。如图2-2所示。

例如:MOV AX,DS:[2000H];

图2-2

(对DS来讲可以省略成MOV AX,[2000H],系统默认为数据段)这种寻址方法是以数据段的地址为基础,可在多达64KB的范围内寻找操作数。

8086/8088中允许段超越,即还允许操作数在以代码段、堆栈段或附加段为基准的区域中。此时只要在指令中指明是段超越的,则16位地址偏移量可以与CS或SS或ES相加,作为操作数的地址。

MOV AX,[2000H] ;数据段

MOV BX,ES:[3000H] ;段超越,操作数在附加段

即绝对地址=(ES)*16+3000H

3.寄存器寻址

操作数包含在CPU的内部寄存器中,如寄存器AX、BX、CX、DX等。

例如:MOV DS,AX

MOV AL,BH

4.寄存器间接寻址

操作数是在存储器中,但是,操作数地址的16位偏移量包含在以下四个寄存器SI、DI、BP、BX之一中。可以分成两种情况:

(1) 以SI、DI、BX间接寻址,则

通常操作数在现行数据段区域

中,即数据段寄存器(DS)*16

加上SI、DI、BX中的16位偏移

量,为操作数的地址,

例如:MOV AX,[SI] 操

作数地址是:(DS)*16+(SI)

(2) 以寄存器BP间接寻址,则操作数在堆栈段区域中。即堆栈段寄存器(SS)*16与BP的内容相加作为操作数的地址,

例如:MOV AX,[BP] 操作数地址是:(SS)*16+(BP)若在指令中规定是段超越的,则BP的内容也可以与其它的段寄存器相加,形成操作数地址。

例如:MOV AX,DS:[BP] 操作数地址是:(DS)*16+(BP)5.变址寻址

由指定的寄存器内容,加上指令中给出的8位或16位偏移量(当然要由一个段寄存器作为地址基准)作为操作数的偏移地址。(操作数在存贮器中)可以作为寄存器变址寻址的四个寄存器是SI、DI、BX、BP。

⑴若用SI、DI和BX作为变址,则与数据段寄存器相加,形成操作数的地址即默

认在数据段;

⑵若用BP变址,则与堆栈段寄存器相加,形成操作数的地址即默认在堆栈段

例如:MOV AX,COUNT[SI];

操作数地址是:(DS)*16+(SI)+COUNT

但是,只要在指令中指定是段超越的,则可以用别的段寄存器作为地址基准。6.基址加变址寻址

把BX和BP看成是基址寄存器,把

SI、DI看着是变址寄存器,把一个基址

寄存器(BX或BP)的内容加上一个变

址寄存器(SI或DI)的内容,再加上指

令中指定的8位或16位偏移量(当然要

以一个段寄存器作为地址基准)作为操

作数的偏移地址,如图所示。

操作数在存贮器中,其偏移地址由(基址寄存器)+(变址寄存器)+相对偏移量形成

基址寄存器――BX:数据段、BP:堆栈段;

变址寄存器――SI、DI。

例如:MOV AX,[BX][SI] 或MOV AX,[BX+SI]

也可放置一个相对偏移量,如COUNT 、MASK等等,用于表示相对寻址。

MOV AX,MASK[BX][SI]

MOV BH,COUNT[DI][BP];MOV BH,COUNT[BP+DI]

若用BX作为基地址,则操作数在数据段区域

若用BP作为基地址,则操作数在堆栈段区域

但若在指令中规定段是超越的,则可用其它段寄存器作为地址基准。

P.28 表2-1 段寄存器使用的基本约定

访问存储器类型 默认段寄存器 可指定段寄存器 段内偏移地址来源

取指令码 CS 无 IP

堆栈操作 SS 无 SP

串操作源地址 DS CS、ES、SS SI

串操作目的地址 ES 无 DI

BP用作基址寄存器 SS CS、DS、ES 根据寻址方式求得有效地址

一般数据存取 DS CS、ES、SS 根据寻址方式求得有效地址

习题与思考:

1.假定DS=2000H,ES=2100H,SS=1500H,SI=00A0H,BX=0100H,BP=0010H,数据变量V AL的偏移地址为0050H,请指出下列指令源操作数是什么寻址方式?其物理地址是多少?

(1)MOV AX,0ABH (2)MOV AX,[100H]

(3)MOV AX,V AL (4)MOV BX,[SI]

(5)MOV AL,V AL[BX] (6)MOV CL,[BX][SI]

(7)MOV V AL[SI],BX (8)MOV [BP][SI],100

2.已知SS=0FFA0H,SP=00B0H,先执行两条把8057H和0F79H分别进栈的PUSH指令,再执行一条POP指令,试画出堆栈区和SP内容变化的过程示意图。(标出存储单元的地址)

第二讲

3.2 指令系统--数据传输、算术运算

回顾:8086/8088的内部结构和寄存器,8086/8088的工作过程。

8086/8088的寻址方式及操作数地址的计算。

重点和纲要:要求学生了解指令的功能,掌握数据传送类,算术运算类指令的使用方法。(掌握指令内涵,会用)

教学方法、实施步骤时间分配教学手段

回顾 5”×2

讲授 40”

×2

提问 3”

×2

小结 2”

×2

板书计算机投影仪

多媒体课件等

讲授内容:

3.2 8086/8088 指令系统

8086/8088的指令系统可以分为以下六个功能组。

1.数据传送(Data Transter) 2.算术运算(Arithmetic)

3.逻辑运算(Logic) 4.串操作(String menipulation)

5.程序控制(Program Control) 6.处理器控制(Processor Control)

一、数据传送指令

主要介绍 MOV,XCHG、堆栈和地址传送指令。

1.数据传送MOV指令

一般格式:MOV OPRD1,OPRD2

MOV 是操作码,OPRD1和OPRD2分别是目的操作数和源操作数。

功能:完成数据传送

具体来说,一条数据传送指令能实现:

⑴CPU内部寄存器之间数据的任意传送(除了代码段寄存器CS和指令指针IP以

外)。

MOV AL,BL;字节传送

MOV CX,BX;字传送

MOV DS,BX

⑵立即数传送至CPU内部的通用寄存器组(即AX、 BX、CX、DX、BP、SP、SI、DI),

MOV CL,4

MOV AX,03FFH

MOV SI,057BH

⑶CPU内部寄存器(除了CS和IP以外)与存储器(所有寻址方式)之间的数据传送。

MOV AL,BUFFER

MOV AX,[SI]

MOV [DI],CX

MOV SI,BLOCK[BP]

MOV DS,DATA[SI+BX]

MOV DEST[BP+DI],ES

⑷能实现用立即数给存储单元赋值

例如:MOV [2000H],25H

MOV [SI],35H

对于MOV 指令应注意几个问题:

①存储器传送指令中,不允许对CS和IP进行操作;

②两个操作数中,除立即寻址之外必须有一个为寄存器寻址方式,即两个存储器

操作数之间不允许直接进行信息传送;

如我们需要把地址(即段内的地址偏移量)为AREAl的存储单元的内容,传送至同一段内的地址为AREA2的存储单元中去,MOV指令不能直接完成这样的传送,但我们可以CPU内部寄存器为桥梁来完成这样的传送:

MOV AL,AREAl

MOV AREA2,AL

③两个段寄存器之间不能直接传送信息,也不允许用立即寻址方式为段寄存器赋

初值;如:MOV AX,0;MOV DS,AX

④目的操作数,不能用立即寻址方式。

2.堆栈指令

(简述堆栈的概念及存取特点,如先进后出)

包括入栈(PUSH)和出栈(POP)指令两类。仅能进行字运算。(操作数不能是立即数)

⑴入栈指令PUSH

一般格式:PUSH OPRD

源操作数可以是CPU内部的16位通用寄存器、段寄存器(CS除外)和内存操作数(所有寻址方式)。入栈操作对象必须是16位数。

功能:将数据压入堆栈

执行步骤为:SP=SP-2;[SP]=操作数低8位;[SP+1]= 操作数高8位例如:PUSH BX

执行过程为:SP=SP-1,[SP]=BH;SP=SP-1,

[SP]=BL,如图2-8所示。

⑵出栈指令POP

一般格式:POP OPRD

功能:将数据弹出堆栈

对指令执行的要求同入栈指令。

例如:POP AX 图2-8

POP [BX]

POP DS

3.交换指令 XCHG

一般格式:XCHG OPRD1,OPRD2

功能:完成数据交换

这是—条交换指令,把一个字节或一个字的源操作数与目的操作数相交换。交换能在通用寄存器与累加器之间、通用寄存器之间、通用寄存器与存储器之间进行。但段寄存器和立即数不能作为一个操作数,不能在累加器之间进行。

例如: XCHG AL,CL

XCHG AX,DI

XCHG BX,SI

XCHG AX,BUFFER

XCHG DATA[SI],DH

4.累加器专用传送指令

有三种,输入、输出和查表指令。前两种又称为输入输出指令。

⑴IN 指令

一般格式:IN AL,n ; B AL←[n]

IN AX,n ; W AX←[n+1][n]

IN AL,DX ; B AL←[DX]

IN AX,DX ; W AX←[DX+1][DX]

功能:从I/O端口输入数据至AL或AX。

输入指令允许把一个字节或一个字由一个输入端口传送到AL或AX中。若端口地址超过255时,则必须用DX保存端口地址,这样用DX作端口寻址最多可寻找64K个端口。

⑵ OUT 指令

一般格式:OUT n,AL ; B AL→[n]

OUT n,AX ;W AX→[n+1][n]

OUT DX,AL ; B AL→[DX]

OUT DX,AX ; W AX→[DX+1][DX]

功能:将AL或AX的内容输出至I/O端口。

该指令将AL或AX中的内容传送到一个输出端口。端口寻址方式与IN 指令相同。

⑶XLAT指令

一般格式:XLAT ;AL=(DX)×16+(BX)+(AL))

功能:完成一个字节的查表转换。

要求:①寄存器AL的内容作为一个256字节的表的下标。②表的基地址在BX 中,③转换后的结果存放在AL中. TABLE:

例如:MOV BX,OFFSET TABLE

MOV AL,8 ……

IN AL,1 第9个字符AAH

XLAT ;查表

OUT 1,AL ;(AL)= AAH表长度256本指令可用在数制转换、函数表查表、代码转换等场合。

5.地址传送指令(有三条地址传送指令)

⑴ LEA (Load Effective Address)

一般格式: LEA OPRD1,OPRD2

功能:把源操作数OPRD2的地址偏移量传送至目的操作数OPRD1。

要求:①源操作数必须是一个内存操作数,②目的操作数必须是一个16位的通用寄存器。这条指令通常用来建立串操作指令所须的寄存器指针。

例:LEA BX,BUFR;把变量BUFR的地址偏移量部分送到BX

⑵LDS (Load pointer into DS)

一般格式:LDS OPRD1,OPRD2

功能:完成一个地址指针的传送。地址指针包括段地址部分和偏移量部分。指令

将段地址送入DS,偏移量部分送入一个16位的指

针寄存器或变址寄存器。

要求:源操作数是一个内存操作数,目的操作数是

一个通用寄存器/变址寄存器。

例如:LDS SI,[BX] ;将把BX所指的32位

地址指针的段地址部分送入DS,偏移量部分送入SI。图2-9 LDS指令示意如图2-9所示。

⑶ LES (Load pointer into ES)

一般格式:LES OPRD1,OPRD2

这条指令除将地址指针的段地址部分送入ES外,与LDS类似。例如: LES DI,[BX+COUNT]

6.标志寄存器传送(有四条标志传送指令)

⑴ LAHF (LOAD AH WITH FLAG)

将标志寄存器中的SF、ZF、AF、PF和CF(即低8位)传送至AH寄存器

的指定位,空位没有定义。

⑵ SAHF (STORE AH WITH FLAG)

将寄存器AH的指定位,送至标志寄存器的SF、ZF、AF、PF和CF位(即低8位)。根据AH的内容,影响上述标志位,对OF、DF和IF无影响。

⑶ PUSHF (PUSH FLAG)

将标志寄存器压入堆栈顶部,同时修改堆栈指针,不影响标志位。

⑷ POPF (POP FLAG)

堆栈顶部的一个字,传送到标志寄存器,同时修改堆栈指针,影响标志位。

二、算术运算指令

8086/8088提供加、

减、乘、除四种基本算术操

作。这些操作都可用于字节

或字的运算,也可以用于带

符号数与无符号数的运算。

带符号数用补码表示。同时

8086/8088也提供了各种校正操作,故可以进行十进制算术运算。

参与加、减运算的操作数可如上图所示。

1.加法指令 (Addition)

⑴一般形式:ADD OPRD1,OPRD2

功能:OPRD1←OPRD1+OPRD2

完成两个操作数相加,结果送至目的操作数OPRD1。目的操作数可以是累加器,任一通用寄存器以及存储器操作数。

例如:

ADD AL,30;累加器与立即数相加

ADD BX,[3000H];通用寄存器与存储单元内容相加

ADD DI,CX;通用寄存器之间

ADD DX,DATA[BX+SI];通用寄存器与存储单元内容相加

ADD BETA[SI],DX;存储器操作数与寄存器相加

这些指令对标志位CF、DF、PF、SF、ZF和AF有影响。

⑵一般形式:ADC OPRD1,OPRD2;带进位的加法

功能:OPRD1←OPRD1+OPRD2 +CF

这条指令与上—条指令类似,只是在两个操作数相加时,要把进位标志CF 的现行值加上去,结果送至目的操作数。

ADC指令主要用于多字节运算中。若有两个四字节的数,已分别放在自FIRST和SECOND开始的存储区中,每个数占四个存储单元。存放时,最低字节在地址最低处,则可用以下程序段实现相加。

MOV AX,FIRST

ADD AX,SECOND;进行字运算

MOV THIRD,AX

MOV AX,FIRST+2

ADC AX,SECOND+2

MOV THIRD+2,AX

这条指令对标志位的影响与ADD相同。

⑶一般形式:INC OPRD ;

功能:OPRD←OPRD+1

完成对指定的操作数OPRD加1,然后返回此操作数。此指令主要用于在循环程序中修改地址指针和循环次数等。

这条指令执行的结果影响标志位AF、OF、PF、SF和ZF,而对进位标志没有影响。

如:INC AL

INC [BX]

2.减法指令(Subtraction)

⑴一般形式:SUB OPRD1,OPRD2 ;

功能:OPRD1←OPRD1-OPRD2

完成两个操作数相减,也即从OPRD1中减去OPRD2,结果放在OPRD1中。

例如: SUB CX,BX

SUB [BP],CL

⑵一般形式:SBB OPRD1,OPRD2 ;

功能:OPRD1←OPRD1-OPRD2-CF

这条指令与SUB类似,只是在两个操作数相减时,还要减去借位标志CF的现行值.本指令对标志位AF、CF、OF、PF、SF和ZF都有影响。

同ADC指令一样,本指令主要用于多字节操作数相减。

⑶一般形式:DEC OPRD ;

功能:OPRD←OPRD-1-CF

对指令的操作数减1,然后送回此操作数,

在相减时,把操作数作为一个无符号二进制数来对待。指令执行的结果,影响标志AF、OF、PF、SF和ZF.但对CF标志不影响(即保持此指令以前的值)。

例如:DEC [SI]

DEC CL

⑷一般形式:NEG OPRD

功能: (NEGDate)取补

对操作数取补,即用零减去操作数,再把结果送回操作数。

例如: NEG AL

NEG MULRE

(AL=00111100)则取补后为11000100

即00000000-00111100=11000100

若在字节操作时对-128,或在字操作时对-32768取补,则操作数没变化,但标志OF置位。

此指令影响标志AF、CF、OF、PF、SF和ZF。此指令的结果一般总是使标志CF=1。除非在操作数为零时,才使CF=0。

⑸一般形式:CMP OPRD1,OPRD2 ;

功能: OPRD1-OPRD2

比较指令完成两个操作数相减,使结果反映在标志位上,但并不送回结果(即不带回送的减法)。

例如:CMP AL,100

CMP DX,DI

CMP CX,COUHT[BP]

CMP COUNT[SI],AX

比较指令主要用于比较两个数之间的关系。在比较指令之后,根据ZF标志即可判断两者是否相等。

相等的比较:

①若两者相等,相减以后结果为零,ZF标志为1,否则为0。

②若两者不相等,则可在比较指令之后利用其它标志位的状态来确定两者的大小。

大小的比较:

如果是两个无符号数(如CMP AX,BX)进行比较,则可以根据CF标志的状态判断两数大小。若结果没有产生借位(CF=0),显然AX≥BX;若产生了借位(即CF=1),则AX<BX。

习题与思考:

1.设有关寄存器及存储单元的内容如下:

DS=2000H,BX=0100H,AX=1200H,SI=0002H,[20100H]=12H,[20101H]=34H,[20102H]=56H,[20103]=78H,[21200]=2AH,[21201H]=4CH,[21202H]=0B7H,[21203H]=65H。试说明下列各条指令单独执行后相关寄存器或存储单元的内容。

(1)MOV AX,1800H (2)MOV AX,BX

(3)MOV BX,[1200H] (4)MOV DX,1100[BX]

(5)MOV [BX][SI],AL (6)MOV AX,1100[BX][SI]

2.写出实现下列计算的指令序列。(假定X、Y、Z、W、R都为字变量)

(1)Z=W+(Z+X)(2)Z=W-(X+6)-(R+9)

3.若在数据段中从字节变量TABLE相应的单元开始存放了0~15的平方值,试写出包含有XLAT指令的指令序列查找N(0~15)中的某个数的平方。(设N的值存放在CL中)

第三讲

3.3 指令系统-算术运算、逻辑运算、控制转移

回顾:8086/8088的内部结构和寄存器,8086/8088的工作过程。

8086/8088的寻址方式及操作数地址的计算。

重点和纲要:要求学生了解指令的功能,掌握算术运算类、逻辑运算和移位指令的功能和应用。(掌握指令内涵,会用)

教学方法、实施步骤时间分配教学手段

回顾 5”×2

讲授 40”

×2

提问 3”

×2

小结 2”

×2

板书计算机投影仪

多媒体课件等

讲述内容:

3.乘法指令(分为无符号乘法指令和带符号乘法指令两类)

(1) 无符号乘法指令MUL

一般格式:MUL OPRD

完成字节与字节相乘、字与字相乘,且默认的操作数放在AL或AX中,而源操作数由指令给出。8位数相乘,结果为16位数,放在AX中;16位数相乘结果为32位数,高16位放在DX,低16位放在AX中。注意:源操作数不能为立即数。

例如:

MOV AL,FIRST;

MUL SECOND ;结果为AX=FIRST*SECOND

MOV AX,THIRD;

MUL AX ;结果DX:AX=THIRD*THIRD

MOV AL,30H

CBW ;字扩展AX=30H

MOV BX,2000H

MUL BX ;

(2) 带符号数乘法指令IMUL

一般格式:IMUL OPRD ;OPRD 为源操作数

这是一条带符号数的乘法指令,同MUL一样可以进行字节与字节、字和字的乘法运算。结果放在AX或DX,AX中。当结果的高半部分不是结果的低半部分的符号扩展时,标志位CF和OF将置位。

4.除法指令

(1) 无符号数除法指令 DIV

一般格式:DIV OPRD

(2) 带符号数除法IDIV

一般格式:IDIV OPRD

该指令执行过程同DIV指令,但IDIV指令认为操作数的最高位为符号位,

除法运算的结果商的最高位也为符号位。

在除法指令中,在字节运算时被除数在AX中;运算结果商在AL中,余数在AH中。字运算时被除数为DX:AX构成的32位数,运算结果商在AX中,余数在DX中。

例如:AX=2000H,DX=200H,BX=1000H,则 DIV BX执行后,AX=2002H ,DX=0000。

除法运算中,源操作数可为除立即寻址方式之外的任何一种寻址方式,且指令执行对所有的标志位都无定义。

由于除法指令中的字节运算要求被除数为16位数,而字运算要求被除数是32位数,在8086/8088系统中往往需要用符号扩展的方法取得被除数所要的格式,因此指令系统中包括两条符号扩展指令。

(3) 字节扩展指令CBW

一般格式:CBW

该指令执行时将AL寄存器的最高位扩展到AH,即若D7=0,则AH=0;否则AH=0FFH。

(4) 字扩展指令CWD

一般格式:CWD

该指令执行时将AX寄存器的最高位扩展到DX,即若D15=0,则DX=0;否则DX=0FFFFH。

CBW、CWD指令不影响标志位。

5.十进制调整指令

计算机中的算术运算,都是针对二进制数的运算,而人们在日常生活中习惯使用十进制。为此在8086/8088系统中,针对十进制算术运算有一类十进制调整指令。

在计算机中人们用BCD码表示十进制数,对BCD码计算机中有两种表示方法:一类为压缩BCD码,即规定每个字节表示两位BCD数;另一类称为非压缩BCD码,即用一个字节表示一位BCD数,在这字节的高四位用0填充。例如,十进制数25D,表示为压缩BCD数时为:25H;表示为非压缩BCD数时为:0205H,用两字节表示。

相关的BCD转换指令见表2-2。

例如:

ADD AL ,BL DAA

若执行前:AL=28H ,BL=68H ,则执行ADD 后:AL=90H ,AF=1;再执行DAA 指令后,正确的结果为:AL=96H ,CF=0,AF=1。

MUL BL AAM

若执行前:AL=07,BL=09,则执行MUL BL

后,AX=003FH ,再执行AAM 指令后,正确的结果为:AH=06H ,AL=03H 。

表2-2 十进制调整指令

指令格式 指令说明

DAA 压缩的BCD 码加法调整 DAS 压缩的BCD 码减法调整 AAA 非压缩的BCD 码加法调整 AAS 非压缩的BCD 码减法调整 AAM 乘法后的BCD 码调整 AAD

除法前的BCD 码调整

注意:BCD 码进行乘除法运算时,一律使用无符号数形式,因而AAM 和AAD 应固定地出现在MUL 之前和DIV 之后。

三、 逻辑运算和移位指令 包括逻辑运算、移位和循环移位指令

1.逻辑运算指令

(1) 一般格式:NOT OPRD

功能:对操作数求反,然后送回原处,操作数可以是寄存器或存储器内容。此指

令对标志无影响。例如:NOT AL

(2) 一般格式:AND OPRD1,OPRD2

功能:对两个操作数进行按位的逻辑“与”运算,结果送回目的操作数。

其中目的操作数OPRD1可以是累加器、任一通用寄存器,或内存操作数(所有寻址方式)。源操作数OPRD2可以是立即数、寄存器,也可以是内存操作数(所有寻址方式)。

8086/8088的AND 指令可以进行字节操作,也可以进行字操作。 例如: AND AL ,0FH ;可完成拆字的动作 AND S I ,SI ; 将SI 清0 (3) 一般格式:TEST OPRD1,OPRD2

功能:完成与AND 指令相同的操作,结果反映在标志位上,但并不送回。通常使

用它进行测试,

例如 若要检测 AL 中的最低位是否为1,为1则转移。可用以下指令: TEST AL ,01H

JNZ THERE

……

THERE:

若要检测CX中的内容是否为0,为0则转移。该如何做呢?

(4) 一般格式:OR OPRD1,OPRD2

功能:对指定的两个操作数进行逻辑“或”运算。结果送回目的操作数。

其中,目的操作数OPRD1,可以是累加器,可以是任—通用寄存器,也可以是一个内存操作数(所有寻址方式)。源操作数OPRD2,可以是立即数、寄存器,也可以是内存操作数(所有寻址方式)。

AND AL,0FH

AND AH,0FOH

OR AL,AH ;完成拼字的动作

OR AX,0FFFH ;将AX低12位置1

OR BX,BX ;清相应标志

(5) 一般格式:XOR OPRD1,OPRD2

功能:对两个指定的操作数进行“异或”运算,结果送回目的操作数。

其中,目的操作数OPRD1可以是累加器,可以是任一个通用寄存器,也可以是一个内存操作数(全部寻址方式)。源操作数可以是立即数、寄存器,也可以是内存操作数(所有寻址方式)。例如:

XOR AL,AL ;使AL清0

XOR SI,SI ;使SI清0

XOR CL,0FH ;使低4位取反,高4位不变

逻辑运算类指令中,单操作数指令NOT的操作数不能为立即数,双操作数逻辑指令中,必须有一个操作数为寄存器寻址方式,且目的操作数不能为立即数。它们对标志位的影响情况如下:NOT不影响标志位,其它四种指令将使CF=OF=0,AF无定义,而SF、ZF和PF则根据运算结果而定。

2.移位指令

(1)算术/逻辑移位指令

① 算术左移或逻辑左移指令

SAL/SHL OPRD,M ;

② 算术右移指令SAR OPRD,M

③ 逻辑右移指令SHR OPRD,M

M是移位次数,可以是1或寄存器CL

这些指令可以对寄存器操作数或内存操作数进行指定的移位,可以进行字节或字操作;可以一次只移1位,也可以移位由寄存器CL中的内容规定的次数(2)循环移位指令

ROL OPRD,M ;左循环移位

ROR OPRD,M ;右循环移位

RCL OPRD,M ;带进位左循环移位

RCR OPRD,M ;带进位右循环移位

前两条循环

指令,未把标志

位CF包含在循

环的环中,后两

条把标志位CF

包含在循环的环

中,作为整个循环的一部分。

循环指令可以对字节或字进行操作。操作数可以是寄存器操作数,也可以是内存操作数。可以是循环移位一次,也可以循环移位由CL的内容所决定的次数。

左移一位,只要左移以后的数未超出一个字节或一个字的表达范围,则原数的每一位的权增加了一倍,相当于原数乘2。右移—位相当于除以2。

在数的输入输出过程中乘10的操作是经常要进行的。而X10=X*2+X*8,也可以采用移位和相加的办法来实现*10。为保证结果完整,先将AL中的字节扩展为字。

MOV AH,0

SAL AX,1 ;X*2

MOV BX,AX ;移至BX中暂存

SAL AX,1 ;X*4

SAL AX,1 ;X*8

ADD AX,BX ;X*10

例1BCD码转换为ASCII码

若在内存某一缓冲区中存放着若干个单元的用BCD码表示的十进制数。每

—个单元中放两位BCD码,要求把它们分别转换为ASCII码。高位的BCD码转换完后放在地址较高的单元。

分析:转换公式:ASCII=BCD+30H

算法:源串和目的串的表首分别设两个指针。取BCD转ASCII

后存入(先低位,后高位)

MOV SI,OFFSET BCDBUFF;设置源地址指针

MOV CX,COUNT ;设计数初值

MOV DI,OFFSET ASCBUF ;设置目的地址指针

AGAIN:MOV AL,[SI]

MOV BL,AL

AND AL,0FH ;取低位BCD码

OR AL,30H ;转换成ASCII码

MOV [DI],AL ;存入

INC DI ;修改指针

MOV AL,BL

PUSH CX

MOV CL,4

SHR AL,CL

OR AL,30H ;高位转换成ASCII码

MOV [DI],AL ;存入

POP CX

INC DI

INC SI ;修改指针

LOOP AGAIN ;重复工作

习题与思考:

1.写出实现下列计算的指令序列。(假定X、Y、Z、W、R都为字变量)

(1)Z=(W*X)/(R+6)(2)Z=((W-X)/5*Y)*2

2.假定DX=1100100110111001B,CL=3,CF=1,试确定下列各条指令单独执行后DX的值。

(1)SHR DX,1 (2)SHL DL,1

(3)SAL DH,1 (4)SAR DX,CL

(5)ROR DX,CL (6)ROL DL,CL

(7)RCR DL,1 (8)RCL DX,CL

3.试分析下列程序完成什么功能?

MOV CL,4

SHL DX,CL

MOV BL,AH

SHL BL,CL

SHR BL,CL

DL,BL

OR

4.已知程序段如下:

MOV AX,1234H

MOV CL,4

ROL AX,CL

DEC AX

MOV CX,4

MUL CX

INT 20H

试问:(1)每条指令执行后,AX寄存器的内容是什么?(2)每条指令执行后,CF,SF及ZF的值分别是什么?(3)程序运行结束时,AX及DX寄存器的值为多少?

第四讲:

3.4 指令系统-循环、子程序调用、中断、其他

回顾:8086/8088的内部结构和寄存器,8086/8088的工作过程8086/8088的寻址方式及操作数地址的计算。

重点和纲要:要求学生了解串操作指令的功能。指令系统-循环、子程序调用、中断、其他(掌握指令内涵,会用)

寻址方式及指令系统习题与解答

寻址方式及指令系统习题与解答 计算机科学与工程学院黄洪波2012年3月 一、单项选择题 1.设BX=2000H,SI=3000H,指令MOV AX,[BX+SI+8]的源操作有效地址为()。 A.5000H B.5008H C.23008H D.32008H 2.设DS=1000H,ES=2000H,BX=3000H,指令ADD AL,[BX]的源操作数的物理址为()。 A.13000H B.23000H C.33000H D.3000H 3.设DS=2000H,ES=3000H,SI=200H,指令MOV ES:[SI],AL的目的操作数的物理地址为()。 A.20200H B.30200H C.50200H D.200H 4.指令MOV MEM[BX],AX中的MEM是()。 A.原码B.反码C.补码D.移码 5.用来作为寄存器间接寻址的寄存器有()个。 A.8 B.6 C.5 D.4 6.指令MOV [BX+SI],AL中的目的操作数使用()段寄存器。 A.CS B.DS C.SS D.ES 7.指令MOV BX,[BP+5]中的源操作数使用()段寄存器。 A.CS B.DS C.SS D.ES 8.段内间接寻址只改变()中的内容。 A.CS B.IP C.CS和IP D.PSW 9.段间间接寻址只改变()中的内容。 A.CS B.IP C.CS和IP D.PSW 10.下述指令中不改变PSW的指令是()。 A.MOV AX,BX B.AND AL,0FH C.SHR BX,CL D.ADD AL,BL 11.下述指令中不影响CF的指令是()。 A.SHL AL,1 B.INC CX C.ADD [BX],AL D.SUB AX,BX 12.两个整数补码9CH和7AH相加运算后,会产生()。 A.无溢出且无进位B.无溢出但有进位

作业习题 寻址方式和指令

寻址方式和指令习题 一、选择题 1、MOVX A,@DPTR指令中源操作数的寻址方式是() (A)寄存器寻址(B)寄存器间接寻址(C)直接寻址(D)立即寻址 2、ORG 0003H LJMP 2000H ORG 000BH LJMP 3000H 当CPU响应外部中断0后,PC的值是() (A)0003H (B)2000H (C)000BH (D)3000H 3、执行PUSH ACC指令,MCS-51完成的操作是() (A)SP+1 SP (ACC)(SP)(B)(ACC)(SP)SP-1 SP (C)SP-1 SP (ACC)(SP) (D)(ACC)(SP)SP+1 SP 4、LCALL指令操作码地址是2000H,执行完相子程序返回指令后,PC=() (A)2000H (B)2001H (C)2002H (D)2003H 5、51执行完MOV A,#08H后,PSW的哪一位被置位() (A)C (B)F0 (C)OV (D)P 6、下面条指令将MCS-51的工作寄存器置成3区() (A)MOV PSW,#13H (B)MOV PSW,#18H (C)SETB PSW.4 CLR PSW.3 (D) SETB PSW.3 CLR PSW.4 7、执行MOVX A,@DPTR指令时,MCS-51产生的控制信号是()(A)/PSEN (B)ALE (C)/RD (D)/WR 8、MOV C,#00H的寻址方式是() (A)位寻址(B)直接寻址(C)立即寻址(D)寄存器寻址 9、ORG 0000H AJMP 0040H ORG 0040H MOV SP,#00H 当执行完上面的程序后,PC的值是()

8086汇编语言指令的寻址方式有哪几类

1. 8086汇编语言指令的寻址方式有哪几类?用哪一种寻址方式的指令执行速度最快? 寄存器寻址最快 7. 下面这些指令哪些是正确的?哪些是错误的?如是错误的,请说明原因。 XCHG CS , AX ;不能修改CS MOV [BX] , [1000] ;不能在两个内存单元之间直接进行数据传送 XCHG BX , IP ;不能用名字直接访问IP PUSH CS POP CS ;不允许直接修改CS值 IN BX , DX ;输入数据必须使用累加器AL或AX MOV BYTE [BX] , 1000 ;格式错误,且超范围,应为MOV word PTR [BX],1000 MOV CS , [1000];不允许直接修改CS值 20.带参数的返回指令用在什么场合?设栈顶地址为3000H,当执行RET 0006后,SP的值为多少? 利用堆栈传递参数时使用;对于近调用SP=3008H,对于远调用SP=300AH 27.设当前SS=2010H,SP=FE00H,BX=3457H,计算当前栈顶地址为多少?当执行 PUSH BX指令后,栈顶地址和栈顶2个字节的内容分别是什么? 栈顶地址:SS:SP,物理地址为:2FF00H;PUSH 完以后栈顶地址为:SS:SP=2010:FDFEH,即物理地址为:2FEFEH,内容为:57H 34H(由低地址到高地址) B P7 5. 设(DS)=3000H,(BX)=1100H,(CS)=0062H,(S1)=0002H,(31100H)=52H, (31101H)=8FH,(31162H)=6BH,(31163H)=99H,(31103H)=F6H, (32200H)=AAH,(32201H)=B6H,(32800H)=55H,(32801H)=77H,给出下列各指令执行后AX寄存器的内容: (1) MOV AX,BX (2) MOV AX,[BX] (3) MOV AX,4200H (4) MOV AX,[2800H] (5) MOV AX,1100H[BX] (6) MOV AX,[1160H+SI] 9. 分别执行下列各指令组,写出AX的内容: (1) MOV AX,93A4H NEG AX 73A4-8c5c,e689-1977 (AX)=6C5CH (2) XY DW "AB" MOV AX,XY (AX)=4142H (3) MOV AX,2B7EH MOV CX,4DB5H ADD AX,CX (AX)=7933H (4) XA DW 0BD57H MOV AX,0FBCDH AND AX,XA (AX)=B945H (5) STC MOV BX, 0B69FH MOV AX, 43A2H SBB AX, BX

实验一 指令与寻址方式认知实验(Keil)

实验一指令与寻址方式认知实验 一、实验目的 1.了解单片机基本指令及其寻址方式; 2.掌握在μVision环境中查看指令操作结果的技巧。 二、实验仪器和设备 Keil软件;THKSCM-2综合实验装置; 三、实验原理及实验内容 1.示例及相关设置 (1)建立一个文件夹:lx31。 (2)利用菜单File的New选项进入编辑界面,输入下面的源文件,以lx31.asm文件名存盘到lx31文件夹中。 ORG 0000H MAIN:MOV R7,#16 MOV A,#00H MOV R0,#30H LP:MOV @R0,A INC R0 INC A DJNZ R7,LP SJMP $ END (3)在lx31文件夹下建立新工程,以文件名lx31存盘(工程的扩展名系统会自动添加)。 (4)在Project菜单的下拉选项中,单击Options for Target ‘Target1’,在弹出的窗口中要完成一下设置: ○1单片机芯片选择AT89C51选择完器件,按“确定”后会弹出一个提示信息框,提示“Copy Startup Code to Project Folder and Add File to Project?”,选择“是”。 ○2晶振频率设为11.0592MHz。 ○3Output标签下的Create HEX File前小框中要打钩。

○4在Debug标签选择Use Simulator(软件模拟)。 (5)在Project菜单的下拉选项中,单击build Target 选项完成汇编,生成目标文件(.HEX)。利用单步、执行到光标处两种方法运行程序,观察程序运行的结果。 (6)分析程序的功能,研究观察以下指令的寻址方式及其操作效果。 2.示例及相关设置 (1)建立一个文件夹:lx32。 (2)利用菜单File的New选项进入编辑界面,输入下面的源文件,以lx32.asm文件名存盘到lx32文件夹中。 ORG 0000H MOV R0,#20H MOV R1,#22H MOV A,@R0 ADD A,@R1 MOV 24H,A INC R0 INC R1 MOV A,@R0 ADDC A,@R1 MOV 25H,A SJMP $ END (3)在lx32文件夹下建立新工程,以文件名lx32存盘(工程的扩展名系统会自动添加)。 (4)在Project菜单的下拉选项中,单击Options for Target ‘Target1’,在弹出的窗口中要完成一下设置: ○1单片机芯片选择AT89C51选择完器件,按“确定”后会弹出一个提示信息框,提示“Copy Startup Code to Project Folder and Add File to Project?”,选择“是”。 ○2晶振频率设为11.0592MHz。 ○3Output标签下的Create HEX File前小框中要打钩。 ○4在Debug标签选择Use Simulator(软件模拟)。

第六章_寻址方式和指令系统

1

第 6章 寻址方式和汇编指令 第6章
6.1、寻址方式 6.2、汇编语言指令集 6.3、汇编源程序

第 6章 寻址方式和汇编指令 第6章
6 . 1 寻址方式
▲ 汇编指令是可执行指令,每条指令对应一条机器 码,用以控制处理器中的执行部件进行各种操 作。 ▲ TMS320F281X系列的汇编指令有150多条。 ▲ 它们支持各种信号处理运算,同时也提供了应用 中所需要的多级处理和过程控制功能。 ▲ 寻址方式是指寻找指令中操作数地址的方式。

第 6章 寻址方式和汇编指令 第6章
6 . 1 寻址方式
TMS320C28x指令集采用7种存储器寻址方式: ▲ 直接寻址方式 ▲ 堆栈寻址方式 ▲ 间接寻址方式 ▲ 寄存器寻址方式 ▲ 数据/程序/IO空间立即寻址方式 ▲ 程序空间间接寻址 ▲ 字节寻址方式

第 6章 寻址方式和汇编指令 第6章
6 . 1 寻址方式
F2812 的大多数指令利用操作码中的8位字段来选择寻 址方式和对寻址方式进行修改.在 F2812 指令系统中,这个8 位字段用于以下寻址方式: (1)loc16 。 为16位数据访问选择直接/堆栈/间接/寄存器寻址方
式。
(2)loc32 。 为32位数据访问选择直接/堆栈/间接/寄存器寻址方
式。
以上7种寻址方式都与“loc16/loc32”组合起来使用。

第 6章 寻址方式和汇编指令 第6章
6 . 1 寻址方式
寻址方式选择位
由 于 F2812 提 供 了 多 种 寻 址 方 式 , 因 此 用 寻 址 方 式 选 择 位 ( AMODE )来选择8位字段( loc16/loc32 )的解码。该 位属于状态寄存器ST1。寻址方式可以大致归类如下: ▲ AMODE=0——该方式是复位后的默认方式,也是F2812的C/C++编译
器使用的方式。这种方式与C2xLP CPU的寻址方式不完全兼容。数据页指针 偏移量是6位(在C2xLP CPU中是7位),并且不支持所有的间接寻址方式。
▲ AMODE=1——该方式包括的寻址方式完全与C2xLP 器件的寻址方式
兼容。数据页指针的偏移量是7位并支持所有C2xLP 支持的间接寻址方式。
对与loc16或者loc32字段,其可用的寻址方式总结如P375所示

寻址方式和指令系统

《微机原理》复习思考题第3章 8086的寻址方式和指令系统 3.1 8086汇编语言指令的寻址方式有哪几类?用哪一种寻址方式的指令执行速度最快? 3.2 直接寻址方式中,一般只指出操作数的偏移地址,那么,段地址如何确定?如果要用某个段 寄存器指出段地址,指令中应如何表示? 3.3 在寄存器间接寻址方式中,如果指令中没有具体指明段寄存器,那么,段地址如何确定? 3.4 用寄存器间接寻址方式时,BX,BP,SI,DI分别针对什么情况来使用?这四个寄存器组合 间接寻址时,地址是怎样计算的?举例进行说明。 3.5 设DS=2100H,SS=5200H,BX=1400H,BP=6200H,说明下面两条指令所进行的具体操作: MOV BYTE PTR [BP], 2000 MOV WORD PTR [BX], 2000 3.6 使用堆栈操作指令时要注意什么问题?传送指令和交换指令在涉及内容操作数时分别要注 意什么问题? 3.7 下面这些指令中哪些是正确的?哪些是错误的?如果是错误的,请说明原因。 XCHG CS, AX MOV [BX], [1000] XCHG BX, IP PUSH CS POP CS IN BX, DX MOV BYTE[BX], 1000 MOV CS, [1000] 3.8 8086系统中,当对SS和SP寄存器的值进行修改时,有什么特殊规定?这样做的原因是什么?[解答] 凡是遇到给SS寄存器赋值的传送指令时,系统会自动禁止外部中断,等到本条指令和下条指令执行之后,又自动恢复对SS寄存器赋值前的中断开放情况。这样做是为了允许程序员连续用两条指令分别对SS和SP寄存器赋值,同时又防止堆栈空间变动过程中出现中断。 3.9 以下是格雷码的编码表 0——0000 1——0001 2——0011 3——0010 4——0110 5——0111 6——0101 7——0100 8——1100 9——1101 请用换码指令和其他指令设计一个程序段,实现格雷码往ASCII的转换。 3.10 用加法指令设计一个简单程序,实现两个16位十进制数的加法,结果放在被加数单元。 3.11 为什么用增量指令或减量指令设计程序时,在这类指令后面不用进位标志CF作为判断依 据?

存储器寻址方式

存储器寻址方式 存储器寻址方式的操作数存放在主存储器中,用其所在主存的位置表示操作数。在这种寻址方式下,指令中给出的是有关操作数的主存地址信息。8088的存储器空间是分段管理的。程序设计时采用逻辑地址;由于段地址在默认的或用段超越前缀指定的段寄存器,所以采用偏移地址,称之为有效地址(Effective Address, EA) 1.直接寻址 在这种寻址方式下,指令中直接包含了操作数的有效地址,跟在指令操作码之后。其默认的段地址在DS段寄存器中,可以采用段超越前缀。 例将数据段中偏移地址2000H处的内存数据送至AX寄存器。 MOV AX, [2000H] 该指令中给定了有效地址2000H, 默认与数据段寄存器DS一起构成操作数所在存储单元的物理地址。 如果DS=1429H,则操作数所在的物理地址为1429H*16+2000H=16920H. 该指令的执行结果是将16920H单元的内容传送至AX寄存器,其中,高字节内容送AH寄存器,低字节内容送AL寄存器。

MOV AX, [2000H];指令代码:A1 00 20 例: 将附加段中偏移地址2000H 处的内存数据送至AX 寄存器。 MOV AX, ES:[2000H]; 指令代码:26 A1 00 20 变量指示内存的一个数据,直接引用变量就是采用直接寻址方式。变量应该在数据段进行定义,常用的变量定义伪指令DB 和DW 分别表示字节变量和字变量,例如 WV AR DW 1234H; 定义字变量WV AR ,它的初值是1234H 这样,标示符WV AR 表示具有初值1234H 的字变量,并由汇编程序为它内存分配了两个连续的字节单元。假设它在数据段偏移地址是0010H 。 例:将数据段的变量WV AR (即该变量名指示的内存单元数据)送至AX 寄存器。 MOV AX, WV AR; 指令功能: 上述指令实质就是如下指令: AX WV AR AX DS :[0010H]

指令格式及寻址方式

指令格式及寻址方式 一、指令格式 指令的表示方法称为指令格式,它包括指令的长度和指令内部信息的安排等内容。一条指令一船由两部分组成,即操作码和操作数。操作码用来规定指令进行什么操作,而操作效则表示指令操作的对象。操作数可以直接是一个数(立即数),也可以是一个数据所在的空间地址,即在执行指令时从指定的地址空间取出操作数。 单片机中的指令并不是固定的长度,对于不同的指令,指令的字节数不同。MC5—5l 单 片机用机器语言表示的指令格式按字节划分,有一字节指令、两字节指令和三字节指令三种。 1.一字节指令 一字节指令中的8位二进制代码既包含操作码的信息,也包含操作数的信息。在一字节指令中,有些指令的指令码中隐合着对某一寄存器的操作,NXP代理商无需再具体指定操作数。例如数 据指针DPTR加1指令;INC DPTR,其指令码为: 另外有些指令的操作数在通用寄存器中,由指令码中的rrr三位的不同编码来指定该 寄存器。例如:寄存器向氮加器A传送数据指令:MOV A,Rn,其指令码为: 其中,高5位表示操作内容——传送,最低三位rrr的不同二进制编码用来表示从哪一个寄 存器取数。 2.二字节指令。 二字节指令中的第一个字表尔操作码,第二个字节表示操作数,这里的操作数既可能是立即数,也可能是地址。其指令格式为: 3.三字节指令 三节节指令中,第一字节表示操作码,另两个字节是操作数,其指令格式为

绝大多数指令执行时都需要使用操作数,因此如何寻找存放操作数的单元地址和提取操作数就变得十分重要。Atmel代理所谓寻址方式就是如何找到存放操作数的地址,把操作数提取出来 的方法。 寻址方式与计算机的存储器空间结构有关,寻址方式越多,则计算机的功能越强,灵活性也越大,能更有效地处理各种数据,但指令系统也会相应的复杂。 MCS-51单片机共有七种寻址方式。下面分别加以介绍。 1.寄存器寻址 寄存器寻址是将所选定的工作寄存器组中的8个工作寄存器(R0—R7)的内容作为操 作数。指令操作码的低三位的不同组合分别代表R0—R7中的某一个。A、B、DPTR和C(位累加器)也能作为寄存器来寻址。例如: 这里源操作数和目标操作数均采用寄存器寻址.寄存器中的内容为操作数。 2.直接寻址 在直接寻址方式中、操作数由指令中的一个8位地址单元所指定。只有内部RAM中的00H~7FH地址单元和80H~FFH地址中的专用寄存器可直接寻址,且直接寻址是访问专 用寄存器的唯一方法。 采用直接寻址方式的指令是双字节指令,第一个字节是操作码,第二个字节是内部RAM的低128字节或专用寄存器的地址。例如: 此例中,源操作数采用直接寻址方式,表示把内部RAM中30H单元的内容送入A。指令代码为E5H、30H。 3.寄存器间接寻址 在寄存器间接寻址方式个,指令中给出的杏存器的内容为操作数的地址,而不是操作数本身。内部RAM和外部RAM都可以间接寻址。 当访问内部RAM或外部RAM的低256字节时,间址寄存器可以是选中寄存器组中的R0或R1,即内R0或R1间接给出操作数所在的地址‘ 当访问外部RAM时,16位间址寄存器只能使用16位数据指针寄存器DPTR,这时可对整个外部RAM空间(64KB)寻址。 PUSH和POP指令的执行也采用寄存器间接寻址,这时堆栈指针SP用作间址寄存 器。堆栈指针可驻留在内部RAM的任何地方;例如:

指令与寻址方式习题

指令与寻址方式习题解答 1.试分别说明下列各指令中源操作数和目的操作数使用的寻址方式:(1)AND AX,0FFH (2)AND BL,[OFFH] (3)MOV DS,AX (4)CMP [SI],CX (5)MOV DS:[0FFH],CL (6)SUB [BP][SI],AH (7)ADC AX,0ABH[BX] (8)OR DX,-35[BX][DI] (9)PUSH DS (10)CMC 答:目的操作数源操作数 (1)寄存器直接寻址立即数寻址 (2)寄存器直接寻址直接寻址 (3)寄存器直接寻址寄存器直接寻址 (4)寄存器间接寻址寄存器直接寻址 (5)直接寻址寄存器直接寻址 (6)基址变址寻址寄存器直接寻址 (7)寄存器直接寻址寄存器相对寻址 (8)寄存器直接寻址基址变址相对寻址 (9)无寄存器直接寻址 (10)隐含寻址 2.试分别指出下列各指令语句的语法是否有错,如有错,指明是什么错误。 (1)MOV [BX][BP],AX (2)TEST [BP],BL (3)ADD SI,ABH (4)AND DH,DL (5)CMP CL,1234H (6)SHR [BX][DI],3 (7)NOT CX,AX (8)LEA DS,35[SI] (9)INC CX,1 (10)P USH 45[DI] 答:(1)应将BP,BX其中之一该为SI或DI (2)正确 (3)ABH改为0ABH (4) (5)是字操作,CL改为CX (6)移位数大于1时,应用CL (7)NOT指令只有一个操作数 (8)LEA指令的源操作数应为一内存单元地址

(9)此指令不用指出1 (10)45改为45H 3.下面两条指令执行后,标志寄存器中CF,AF,ZF,SF和OF分别是什么状态? MOV DL,86 ADD DL,0AAH 答: 0101,0110 + 1010,1010 = 1,0000,0000 CF=1 AF=1 ZF=1 SF=1 OF=1 4.在8086/8088CPU中可用于作地址指针的寄存器有哪些? 答:有BX,CX,DX,BP,SI,DI (IP,SP,) 5.已知(DS)=09lDH,(SS)=1E4AH,(AX)=1234H,(BX)=0024H,(CX)=5678H,(BP)=0024H,(SI)=0012H,(DI)=0032H,(09226H)=00F6H,(09228H)=1E40H,(1E4F6H)=091DH。下列各指令或程序段分别执行后的结果如何? (1)MOV CL,20H[BX][SI] (2)MOV [BP][DI],CX (3)LEA BX,20H[BX][SI] MOV AX,2[BX] (4)LDS SI,[BX][DI] MOV [SI],BX (5)XCHG CX,32H[BX] XCHG 20H[BX][SI],AX 答(1) (CX)=56F6H; (2) (09226H)=5678H; (3) (AX)=1E40H; (4) (1E4F6H)=0024H; (5) (09226H)=1234H,(AX)=5678H. 6.已知(SS)=09l 5H,(DS)=0930H,(SI)=0A0H,(DI)=1C0H,(BX)=80H,(BP)=470H。现有一指令“MOV AX,OPRD”,如源操作数的物理地址为095C0H,试用四种不同寻址方式改写此指令(要求上述每个已知条件至少要使用一次)。 答:(1)MOV AX,[BP] (2)MOV AX,[BP+DI+80H] (3)MOV AX,[DI+0100H] MOV AX,[SI+0220H] (4)MOV AX,[02C0H] 7.试按下列要求分别编制程序段: (1)把标志寄存器中符号位SF置‘1’。 (2)寄存器AL中高低四位互换。 (3)由寄存器AX,BX组成一个32位带符号数(AX中存放高十六位),试求这个数的负数。 (4)现有三个字节存储单元A,B,C。在不使用ADD和ADC指令的情况下,实现(A)+(B)=>C。 (5)用一条指令把CX中的整数转变为奇数(如原来已是奇数,则CX中数据不变,如原来是偶数,则(CX)+1形成奇数)。 答:(1)MOV AH, 80H SAHF

MCS-51单片机的寻址方式和指令系统

MCS-51单片机指令系统与汇编语言程序设计 伪指令............................................. (2) MCS-51单片机的寻址方式 (4) MCS-51单片机的指令系统 (7) 数据传送指令 (8) 算数运算指令 (10) 逻辑运算及移位指令 (12) 控制转移指令 (13) 位操作指令 (18)

指令格式:指令的表示方式称为指令格式,它规定了指令的长度和内部信息的安排。完整的指令格式如下: [标号:] 操作码 [操作数] [,操作数] [;注释] 标号: 代表指令的具体地址 操作码: 又称助记符,英文缩写 操作数: 操作数中常数可以用二、八、十、十六进制表示,如果用十六进制表示,最高位用A以上的数开头时,前面须加0,否则机器不识别 注释:增加程序的可读性 伪指令 (1)定位伪指令ORG 格式:ORG n 其中:n通常为绝对地址,可以是十六进制数、标号或表达式。 功能:规定编译后的机器代码存放的起始位置。在一个汇编语言源程序中允许存在多条定位伪指令,但每一个n值都应和前面生成的机器指令存放地址不重叠。 例如程序:ORG 1000H START:MOV A,#20H MOV B,#30H ┇ (2)结束汇编伪指令END 格式:[标号:] END [表达式] 功能:放在汇编语言源程序的末尾,表明源程序的汇编到此结束,其后的任何内容不予理睬。 (3)赋值伪指令EQU 格式:字符名称x EQU 赋值项n 功能:将赋值项n的值赋予字符名称x。程序中凡出现该字符名称x就等同于该赋值项n,其值在整个程序中有效。赋值项n可以是常数、地址、标号或表达式。在使用时,必须先赋值后使用。 “字符名称”与“标号”的区别是“字符名称”后无冒号,而“标号”后面有冒号。 (4)定义字节伪指令DB

1_寻址方式与基本指令实验

2.1 寻址方式与基本指令实验 2.1.1 实验目的 1、熟悉80x86寻址方式及基本指令的功能,进一步理解和巩固课堂学习内容。 2、掌握汇编语言程序设计上机过程, 掌握汇编语言源程序结构,为后续汇编语言程序设计打好基础。 3、熟悉Microsoft的DEBUG或Borland的Turbo DEBUG调试工具的使用方法 2.1.2 实验预习要求 1、认真阅读本书第一部分第1章,熟悉汇编语言程序设计上机步骤。 2、认真阅读本书第三部分,熟悉DEBUG调试工具的使用方法。 3、复习80x86操作数寻址方式及基本指令(数据传送、算术运算和逻辑运算等)。 4、了解实验内容,并在实验前根据课堂所学知识回答有关问题(个别取决于程序实际运行环境的问题除外),以便在实验时进行验证。 2.1.3 实验内容 1、读懂下列源程序,使用EDIT生成名为EX11.ASM的源程序,汇编生成EX11.OBJ文件和EX11.LST 文件,连接生成EX11.EXE文件;用EDIT打开EX11.LST文件,了解.LST文件包含的信息;使用DEBUG调试工具单步执行EX11.EXE程序,注意观察IP值的变化,并回答下列问题。 (1)程序装入后,代码段寄存器CS的内容为13FD________H,代码段第一条可执行指令MOV A X, DATA对应的机器代码为B8FC13__________H,它是一个_3_______字节指令,注意观察 执行该指令时IP值的变化情况,该指令源操作数DATA的寻址方式是(立即数寻址_),其值为__13FC________。 (2)执行完MOV DS, DATA指令后,数据段寄存器DS的内容为_13FC_______H,源程序在数据段中定义的数据82H、68H和88H被装入的存储单元的物理地址分别为_13FC0_______H、13FC1________H和13FC2________H。 (3)程序中第一条ADD AL, [BX] 指令对应的机器代码为_0207_________H,它是一个_2_______字节指令,注意观察执行该指令时IP值的变化情况;该指令中源操作数的寻址方式为_寄存器间接寻址_________,该操作数所在存储单元的逻辑地址(DS): (BX)为_13FC:0001_________,其物理地址为_13FC1_________H;执行完该指令后(AL)=_EA_____H,CF=_NC_____,OF=NV______,ZF=NZ______,SF=NG______,AF=NA______,PF=PO______;若两操作数为无符号数,计算结果是否正确__正确_____?若两操作数为带符号数,计算结果是否正确__正确______?若计算结果正确,结果是正数还是负数(正数)? (4)执行完第二条ADD AL, [BX] 指令后(AL)=__72____H,CF=CY______,OF=OV______,ZF=NZ______,SF=PL______,AF=AC______,PF=PE______;若两操作数为无符号数,计算结果是否正确__正确_____?若两操作数为带符号数,计算结果是否正确_不正确_______? (5)指令MOV SUM, AL中目的操作数的寻址方式为__寄存器直接寻址________。该指令执行完后,注意观察(DS):0003H单元中值的变化,该单元的值变为_00_______H。 DA TA SEGMENT NUM DB 82H, 68H, 88H SUM DB ? DA TA ENDS CODE SEGMENT ASSUME CS:CODE, DS:DATA START: MOV AX, DA TA

单片机的指令和寻址方式

单片机的指令和寻址方式 单片机要正常运作,事先需编制程序,再把程序放入存贮器中,然后由CPU 执行该程序。程序是由指令组成的,指令的基本组成是操作码和操作数。单片机的品种很多,设计时怎样表示操作码和操作数,都有各自的规定,再有指令代码也各不相同,因此,必须对所选单片机的全部指令,也就是所谓指令系统,有足够的了解。各个系列的单片机虽然有不同的指令系统,但也有其共同性。掌握一种单片机的指令系统,对其它系列单片机可以起到触类旁通的作用。MCS-51 单片机应用广泛,派生品种多,具有代表性,所以,这里以MCS-51 系列的指令系统为例说明指令的组成和应用。1、MOV A,#20H 这条指令表示把20H 这个数送入累加器A 中(一个特殊功能寄存器)。 2、ADD A,70H 这条指令表示把累加器A 中的内容(在上例中送入的#20H)和存贮器中 地址为70H 单元中的内容(也是一个数字),通过算术逻辑单元(英文缩写为ALU)相加,并将结果保留在A 中。这里MOV、ADD 等称为操作码,而 A、#20H、70H 等均称为操作数。在汇编语言程序中,操作码通常由英文单词缩写而成,这样有助于记忆,所以又称助记符。如MOV 就是英文单词MOVE 的缩写,含有搬移的意思;而ADD 即为英文单词,其意为相加。因此,对于 略懂英语的用户,掌握单片机指令的含意是较为方便的。操作数有多种表示法,如以上的#20H 称为立即数,即20H 就是真正的操作数。而70H 是存贮器中某个单元的地址,在该单元中,放着操作数(比如说是3AH),ADD A,70H 不是将70H 和A 中的内容相加,而是从存贮器70H 单元中将3AH 取出和A 中的内容相加。由上可知,要找到实际操作数,有时就要转个弯,甚至转几个弯,这个过程称为寻址,MCS-51 共有7 种寻址方式,现介绍如下:

MIPS基本指令和寻址方式

MIPS 基本指令和寻址方式: MIPS 是典型的RISC 处理器,采用32位定长指令字,操作码字段也是固定长度,没有专门的寻址方式字段,由指令格式确定各操作数的寻址方式。 MIPS 指令格式一般有三种格式: R-型指令格式 I-型指令格式 J-型指令格式 R _Type 指指指指 26 21 16 11 6 31 OP : 操作码 rs : 第一个源操作数寄存器 rt : 第二个源操作数寄存器(单目原数据) rd : 结果寄存器 shamt :移位指令的位移量 func : 指令的具体操作类型 特点:R-型指令是RR 型指令,其操作码OP 字段是特定的“000000”,具体操作类型由func 字段给定。例如:func=“100000”时,表示“加法”运算。 R[rd] ← R[rs] + R[rt] I _Type 指 指指指 26 21 1631 15 特点:I-型指令是立即数型指令 双目运算: R[rt] R[rs](OP )SignExt(imm16) Load 指令: Addr ← R[rs] + SignExt(imm16) 计算数据地址 (立即数要进行符号扩展) R[rt] ← M[Addr] 从存储器中取出数据,装入到寄存器中

Store 指令: Addr ← R[rs] + SignExt(imm16) M[Addr] ← R[rt] J _Type 指令格式 2631 6bit 26bit 25 特点:J-型指令主要是无条件跳转指令,将当前PC 的高4位拼上26位立即数,后补两个“0”, 作为跳转目标地址。 j L //goto L 指指指指指指指指指 jal L //$ra 指PC+4;goto L 指指指指指指指指指 R 型指令: 定点运算: add / addu , sub / subu , sra , mult/multu , div/divu 逻辑运算: and / or / nor , sll / srl 比较分支: beq / bne / slt / sltu 跳转指令: jr I 型指令: 定点运算: addi / addiu 逻辑运算: andi / ori 比较分支: slti / sltiu 数据传送: lw / sw / lhu / sh / lbu / sb / lui J 型指令: j / jal

7种寻址方式

七种寻址方式 1、(直接寻址方式) 指令所要的操作数存放在内存中,在指令中直接给出该操作数的有效地址,这种寻址方式为直接寻址方式。在通常情况下,操作数存放在数据段中,所以,其物理地址将由数据段寄存器DS和指令中给出的有效地址直接形成,但如果使用段超越前缀,那么,操作数可存放在其它段。例:假设有指令:MOV BX, [1234H],在执行时,(DS)=2000H,内存单元21234H的值为5213H。问该指令执行后,BX的值是什么?解:根据直接寻址方式的寻址规则,把该指令的具体执行过程用下图来表示。从图中,可看出执行该指令要分三部分: 由于1234H是一个直接地址,它紧跟在指令的操作码之后,随取指令而被读出;访问数据段的段寄存器是DS,所以,用DS的值和偏移量1234H 相加,得存储单元的物理地址:21234H;取单元21234H的值5213H,并按“高高低低”的原则存入寄存器BX中。所以,在执行该指令后,BX的值就为5213H。由于数据段的段寄存器默认为DS,如果要指定访问其它段内的数据,可在指令中用段前缀的方式显式地书写出来。下面指令的目标操作数就是带有段前缀的直接寻址方式。 MOV ES:[1000H], AX 直接寻址方式常用于处理内存单元的数据,其操作数是内存变量的值,该寻址方式可在64K字节的段内进行寻址。注意:立即寻址方式和直接寻址方式的书写格式的不同,直接寻址的地址要写在括号“[”,“]”内。在程序中,直接地址通常用内存变量名来表示,如:MOV BX, VARW,其中,VARW是内存字变量。试比较下列指令中源操作数的寻址方式(VARW是内存字变量): MOV AX, 1234H MOV AX, [1234H] ;前者是立即寻址,后者是直接寻址 MOV AX, VARW MOV AX, [VARW] ;两者是等效的,均为直接寻址 2、(寄存器间接寻址方式) 操作数在存储器中,操作数的有效地址用SI、DI、BX和BP等四个寄存器之一来指定,称这种寻址方式为寄存器间接寻址方式。该寻址方式物理地址的计算方法如下:

第3章 寻址方式和指令系统作业

一、选择题 1.寄存器间接寻址方式中,要寻找的操作数位于( B )中。 A.通用寄存器 B.内存单元 C.段寄存器 D.堆栈 2.下列指令中正确的是( C )。 A.MOV AL,BX B.MOV CS,AX C.MOV AL,CL D.MOV [BX],[SI] 3.下列指令中错误的是( C )。 A.MOV AX,1234H B.INC BX C.SRL AX,2 D.PUSH DX 4.设(SP)=1010H,执行POP AX后,SP中的内容为( B )。 A.1011H B.1012H C.1OOEH D.100FH 5.给定(AL)=80H,(CL)=02H,指令SHR AL,CL执行后的结果是(B )。 A.(AL)=40H B.(AL)=20H C.(AL)=C0H D.(AL)=E0H 6.将AX清零并使CF位清零,下面指令错误的是( A )。 A.SUB AX,BX B.XOR AX,AX C.MOV AX,0 D.AND AX,0OOOH 二、填空题 2.寻址的含义是指_寻找操作数的过程_;8086指令系统的寻址方式按照大类可分为_与操作数有关的寻址方式、与I/O端口有关的寻址方式_;其中寻址速度最快的是_立即数寻址_。 4.堆栈是一个特殊的_存储器区域_,其操作是以_2字节单元_为单位按照__先进后出_原则来处理;采用_SP_指向栈顶地址,入栈时地址变化为_SP<=(SP)-2_。 5.I/O端口的寻址有_直接端口寻址和间接端口寻址_两种方式;采用8位数时,可访问的端口地址为_0~255_;采用16位数时,可访问的端口地址为_0~65535_。 三、分析计算题 1.指出如下指令中源操作数和目的操作数的寻址方式: (1)MOV AX,100H (2)MOV CX,AX (3)ADD [SI],1000 (4)SUB BX,[SI+100] (5)MOV [BX+300],AX (6)AND BP,[DI] 解: 源操作数的寻址方式目的操作数的寻址方式 (1)MOV AX,100H 立即数寄存器 (2)MOV CX,AX 寄存器寄存器 (3)ADD [SI],1000 立即数寄存器间接 (4)SUB BX,[SI+100] 变址寄存器 (5)MOV [BX+300],AX 寄存器变址 (6)AND BP,[DI] 寄存器间接寄存器 2.分析如下指令的正误,对错误指令说明出错误原因并加以收正: (1)MOV [1200],23H (2)MOV 1020H,CX (3)MOV [1000H],[2000H] (4)MOV IP,O00H

第四章 指令与寻址方式习题解答 (2)

1. 假定(BX)=637DH,(SI)=2A9BH,位移量D=3237H,试确定在以下各种寻址方式下的有效地址是什么? (1)立即寻址 (2)直接寻址 (3)使用BX的寄存器寻址 (4)使用BX的间接寻址 (5)使用BX的寄存器相对寻址 (6)基址变址寻址 (7)相对基址变址寻址 答:(1)立即数寻址的有效地址是当前IP的内容; (2)直接寻址,若使用位移量D=3237H进行,则有效地址为3237H; (3)使用BX的寄存器寻址时,操作数在BX寄存器中,因此无有效地址; (4)使用BX的间接寻址时,有效地址在BX寄存器中,即有效地址=637DH; (5)使用BX的寄存器相对寻址的有效地址=(BX)+D=637DH+3237H=95B4H; (6)基址变址寻址的有效地址=(BX)+(SI)=637DH+2A9BH=8E18H; (7)相对基址变址寻址的有效地址=(BX)+(SI)+D=C050H; 2. 写出把首地址为BLOCK的字数组的第6个字送到DX寄存器的指令。要求使用以下几种寻址方式: (1)寄存器间接寻址 (2)寄存器相对寻址 (3)基址变址寻址 答:(1)使用寄存器间接寻址,把首地址为BLOCK的字数组的第6个字送到DX寄存器的指令为: MOV BX,BLOCK ADD BX,12 MOV DX,[BX] (2)使用寄存器相对寻址,把首地址为BLOCK的字数组的第6个字送到DX寄存器的指令为: MOV BX,BLOCK MOV DX,[BX+12] (3)使用基址变址寻址,把首地址为BLOCK的字数组的第6个字送到DX寄存器的指令为: MOV BX,BLOCK MOV SI,12 MOV DX,[BX+SI] 3. 现有(DS)=2000H,(BX)=0100H,(SI)=0002H,(20100H)=12H,(20101H)=34H,(20102H)=56H,(20103H)=78H,(21200H)=2AH,(21201H)=4CH,(21202H)=B7H,(21203H)=65H,试说明下列各条指令执行完后AX寄存器的内容。 (1)MOV AX,1200H

单片机实验-寻址方式和指令系统实验指导书

实验6. 寻址方式和指令系统 一.实验目的 1.了解MSP430G2xxx汇编格式指令和常用寻址方式 2.了解C语言函数调用过程 3.通过反汇编了解C编译器实现初始化变量的方法 4.掌握计算机中数的表示和编码 二. 实验任务 1.汇编格式指令和寻址方式的学习(可在simulator下完成) L6_1.c源程序见下,建立C项目,进入DEBUG状态,点击view/disassembly,在反汇编窗口得到L6_1.c汇编格式指令的程序代码,如图6-1和图6-2,阅读该程序的汇编格式代码,思考: 1) 程序用到了哪些指令? 2) 程序用到了哪几种寻址方式? 3)用单步执行命令F11,跟踪函数delay的调用和返回,用view/register和view/ memory查看堆栈指针SP和堆栈内的内容,记录堆栈指针SP和堆栈内容的变化; 4) 修改l6_1.C,将变量i定义为全局变量,通过反汇编的代码,比较与定义为局部变 量的不同; 5) 修改L6_1.C, 将变量i的类型从 unsigned int 类型,改为unsigned long 类型, 反汇编看看函数delay的代码发生了什么变化?程序执行的结果有什么不同?为什么?(需在实验板上运行)。 L66__1.c程序清单(提供电子版)

图6-1 L6-1.c程序中main函数的反汇编代码 图6-2 L6_1.c程序中delay函数的反汇编代码 2. 了解C语言程序的执行过程(可在simulator 方式下完成) 指令计数寄存器PC决定CPU取指令的地址,所以PC寄存器的内容决定了程序的流程。已知MSP430G2xxx单片机复位后, PC寄存器从存储器0xFFFE~0xFFFFH单元获取一个字内容作为执行第一条指令的地址。以L4_1.C的项目为例,请问实验中查看到该地址的值是多少?程序执行的第一条指令是什么指令?main函数的入口是单片机上电就被执行的第一条语句吗? 说明:如图6-3,可在项目设置option/Debugger/set up中,去除对run to前的选项,再将程序下载到单片机中,观察当前上电复位PC的值与0xFFFE~0xFFFF存储单元内容的关系,对比不去除run to前的选项的不同。 图6-3 C语言程序下载后程序运行的停止处设置(注意Run to 的选项)

指令格式和寻址方式

“指令格式和寻址方式”实验报告 姓名:朱蕾 学号:1107830133 以对源文件EXAMPLE 。EXE 进行操作为例 1 连接并生成扩展名为.EXE 可执行文件的操作 2 对可执行文件进行调试的操作: 3 用反汇编命令“U 代码段地址:起始偏移地址”显示出程序的表示符 程序的起始地址是0BB9H :001BH 4程序的起始地址是 0BB9H :001BH 进入C 盘根目录 13C4为段地址 第二列是代码段地址;第 三列是段内偏移地址 基址变址寻址:基址 寄存器的代码BX,变址寄存器的代码SI.

5 --D DS :0000;功能:显示内存中的数据命令 格式:D 数据段地址:存放数据的偏移地址 6-G=CS :0000 001B ; 功能:连续执行程序命令 格式:代码段地址:指令的起始偏移地址 指令的结 束偏移地址 7 –D DS :0000;功能:显示内存中的数据命令 格式:数据段地址:存放数据的偏移地 8 –R IP 指令的结束移地址 指令的起始偏移地址 立即寻址:CPU 直接将内存中的立即数4C00寄存在AX 中。 显示修改前得数据 输入修 改得数据

9 -T 单步执行程序命令(执行一条指令) 10 -T3 执行3条指令 11 -R 查看寄存器的数据命令 12 -R AX 查看和修改寄存器的数据命令 13 -D DS:0000 观察内存中的数据 14 -F DS:0000 0030 DF;对内存单元填充数据 -D DS:0000;观察内存中的是数据 显示修改后的数据。 寄存器直接寻址:将AX 的值赋给DS. 此三条指令均为寄存器直接寻址 AX 寄存器的数据命令变为FFFF,其他保持不变 第一列为数据段地址,第二列为偏移首地址,第三列为偏移末地址,第四列为填充的数据。

相关主题
文本预览
相关文档 最新文档