当前位置:文档之家› 激光熔覆FeNiCrAl合金涂层的组织与腐蚀性能

激光熔覆FeNiCrAl合金涂层的组织与腐蚀性能

激光熔覆FeNiCrAl合金涂层的组织与腐蚀性能
激光熔覆FeNiCrAl合金涂层的组织与腐蚀性能

激光熔覆技术介绍

激光熔覆是一种新型的涂层技术,是涉及到光、机、电、材料、检测与控制等多学科的高新技术,是激光先进制造技术最重要的支撑技术,可以解决传统制造方法不能完成的难题,是国家重点支持和推动的一项高新技术。目前,激光熔覆技术已成为新材料制备、金属零部件快速直接制造、失效金属零部件绿色再制造的重要手段之一,已广泛应用于航空、石油、汽车、机械制造、船舶制造、模具制造等行业。 为推动激光熔覆技术的产业化,世界各国的研究人员针对激光熔覆涉及到的关键技术进行了系统的研究,已取得了重大的进展。国内外有大量的研究和会议论文、专利介绍激光熔覆技术及其最新的应用:包括激光熔覆设备、材料、工艺、监测与控制、质量检测、过程的模拟与仿真等研究内容。但到目前为止,激光熔覆技术还不能大面积工业化应用。分析其原因,这里有政府导向的因素、激光熔覆技术本身成熟程度的限制、社会各界对激光熔覆技术的认可程度等因素。因此,激光熔覆技术欲实现全面的工业化应用,必须加大宣传力度,以市场需求为导向,重点突破制约发展的关键因素,解决工程应用中涉及到的关键技术,相信在不远的将来,激光熔覆技术的应用领域及其强度将不断的扩大。下面介绍激光熔覆技术几个发展的动态,以飨读者。 激光熔覆的优势 激光束的聚焦功率密度可达1010~12W/cm2,作用于材料能获得高达1012K/s的冷却速度,这种综合特性不仅为材料科学新学科的生长提供了强有力的基础,同时也为新型材料或新型功能表面的实现提供了一种前所未有的工具。激光熔覆所创造的熔体在高温度梯度下远离平衡态的快速冷却条件,使凝固组织中形成大量过饱和固溶体、介稳相甚至新相,已经被大量研究所证实。它提供了制造功能梯度原位自生颗粒增强复合层全新的热力学和动力学条件。同时激光熔覆技术制备新材料是极端条件下失效零部件的修复与再制造、金属零部件的直接制造的重要基础,受到世界各国科学界和企业的高度重视和多方面的研究。 目前,利用激光熔覆技术可以制备铁基、镍基、钴基、铝基、钛基、镁基等金属基复合材料。从功能上分类:可以制备单一或同时兼备多种功能的涂层如:耐磨损、耐腐蚀、耐高温等以及特殊的功能性涂层。从构成涂层的材料体系看,从二元合金体系发展到多元体系。多元体系的合金成分设计以及多功能性是今后激光熔覆制备新材料的重要发展方向。 最新的研究表明,在我国工程应用中钢铁基的金属材料占主导地位。同时,

铝合金的激光熔覆修复

铝合金的激光熔覆修复 郭永利梁工英’李路 (西安交通大学理学院,陕西西安710049) 摘要:通过对航空航天用超高强7050铝合金进行激光熔覆修复的实验研究,探讨了激光熔覆修复铝合金的可行性。实验采用5 kW COz连续激光器作为加热源,在惰性气体保护隔离箱中,对7050铝合金的板状试样进行了激光单道熔覆、多道搭接熔覆、多层堆积熔覆的实验研究。得到优化的激光熔覆工艺参数,制备了激光熔覆修复试样,并观察了不同激光熔覆区的微观组织以及拉伸断口形貌。实验结果表明,优化激光熔覆工艺参数是:激光功率密度为1.84×104~2.12×104 W/ cm2,扫描速度为5 mm/s,送粉量为1.8~2.4 g/min。搭接宽度为1.5 mm。采用优化工艺 参数熔覆,基底和熔覆区形成良好的冶金结合,熔覆后工件表面平整且基底没有变形。同时,采用干燥的氩气加强对激光熔池的保护可以有效消除铝合金激光熔覆中的缺陷。 关键词:激光技术;激光熔覆;修复;显微组织;铝合金 Laser Cladding Reparation of Aluminum Alloy Guo Yongli Liang Gongying Li Lu (School of Sciences,Xi’an Jiaotong University,Xi’an,Shaanxi 710049,China) Abstract :Experiment of repairing aluminum(A1)alloy 7050(AI 7050)by laser-cladding techniques was investigated.A5 kW C02 laser was used as the heat source.Experiemnts of single trace cladding,multi —trace overlapping cladding,and multi—layer cladding were performed on the Al 7050 plates shielded in a closed box with inertgas.A set of optimized laser-eladding repairation parameters for damaging Al 7050 samples were found,and the microstructures in differentcladding regions and micro-appearances of fracture surface were studied.The optimized laser-cladding repairation parameters were laser power of 1.84X104~2.12×104 W/cm2。scanning speed of 5 mm/s,powder feeding rate of 1.8~2.4 g /min,and overlapping width of 1.5mm.With the optimized repairing parameters,the cladding zone displayed a superior metallurgical bonding with its substrate,the repaired sample surface appeared smooth without any substrate distortion,and the defect formation in the cladding zone was effectively prevented by strengthening shielding of the molten pool with dry argon. Key words :laser technique; laser cladding; repairing; microstructure; A1 alloy 1引言 零件在使用过程中容易产生应力开裂、机械磨损等情形,在制造过程中也会因误加工引起缺陷,这些缺陷的存在将显著影响整个工程构件的使用性能,甚至导致报废,从而造成巨大的经济损失。面对这种情况,人们对修复技术做了大量的研究,如激光熔覆、焊接、钨极氩弧堆焊和热喷涂等。而激光熔覆修复技术以其质量高、操作方便、热影响区小等优点受到人们的普遍关注口~3]。 目前,人们对激光熔覆技术用作修复和表面改性等方面做了大量研究[4~1引,但是大都集中在钢铁材料、高温合金和钛合金领域。而铝合金在熔覆过程中易氧化、且易产生裂纹和气孔,本文研究了在惰性气体保护下,通过优化激光熔覆参数,避免了修复铝合金试样中容易出现的宏观和微观缺陷。因此,将激光熔覆修复技术应用到铝合金领域,具有广阔的发展前景。 2实验材料、装置及方法 实验选取超高强7050铝合金板材为基底材料,试样尺寸为40 mm×50 mm×10 mm,成分如表1 所示。为提高铝合金表面对激光能量的吸收,在激光熔覆前,对试样表面进行喷砂处理。熔覆材料为球形粉末,颗粒直径为50~100肛m,成分为98%A1,2%Cu(质量分数)。 表1铝合金7050的化学成分(质量分数) Table 1 Chemicalcompositionof 7050 A l-alloy (mass fraction)(%) Zn Mg Cu Zr Si Fe AI 6.2 2.25 2.3 0.1≤O.12≤O.15 Bal. 实验用的激光器为ROFIN-SINA R850型5kw横流式连续CO2激光器,该激光器稳定的输出功率

《激光熔覆修复模具质量标准》

《激光熔覆修复模具质量标准》 一适用范围 本标准适用于模具激光熔覆工艺熔覆合金粉末材料,修复制备具有耐磨、耐腐蚀、耐热等表面功能涂层质量检验标准,以改善制品的尺寸性能。 二引用标准 GB 6462 金属和氧化物覆盖层横断面厚度显微镜测量方法 GB8642 热喷涂层结合强度的测定 GB9790 金属覆盖层及其他有关覆盖层维氏和努氏显微硬度试验GB 11374 热喷涂涂层厚度的无损测量方法 三检验项目及检验方法 3.1 外观 目检有效表面,应色调均一,熔覆表面层较平整,不允许有龟裂、疙瘩、结合力不牢以及异物的附着或其他对使用上有害的缺陷。 3.2 厚度 采用量具直接测量涂层的厚度,或用金相法测量涂层横断面的厚度,或用无损测厚仪测量。按GB6462或GB11374的规定执行。厚度应满足协议要求。 3.3 结合强度 涂层与基体的结合强度,按GB8642进行测试,应达到协议要求。 3.4硬度 耐磨用激光熔覆涂层的硬度,按GB 9790的规定测量,应符合协

议要求。 3.5 孔隙率 耐腐蚀涂层经激光熔覆后的涂层孔隙率,按铁试剂法进行检查,涂层表面应没有通向基体的气孔。 3.6 热震性 耐热涂层的抗热震性,按下述方法试验,涂层不允许有龟裂、剥离或翘起。 试验方法:用制品为试样,或采用同等材质,与制品同等条件制备试样。基体尺寸为长50mm、宽50mm,厚5~6mm。调好试验温度,然后,将试样和托架一起放入加热炉中加热,到温后保温10min取出。再一起放入常温的清水中激冷。观察试样表面涂层有无裂纹、剥离或翘起。加热炉用电阻炉,温度波动范围士5℃。托架最好用不锈钢作支架并用不锈钢丝网作支撑面。 3.7 其他性能 激光熔覆涂层的其他性能,如摩擦系数、辐射率、介电系数、对显微组织的要求等,可按协议规定的方法进行检测。 四要求检验的项目 所有的激光熔覆涂层,除外观必须符合3.1条的要求外,依其应用的不同,建议按协议检验如下的有关项目。 4.1 用于耐磨的激光熔覆涂层 要求检验厚度、结合强度和硬度。分别按3.2、3.3和3.4条的规定进行,并满足要求。

激光熔覆

第五章 激光延寿技术 5.1激光熔覆表面处理技术 2、熔覆层的气孔和裂纹问题 熔覆层中的气孔是常见的缺陷。空气和保护气中的水分以及涂层(或粉)中吸附的水分是产生气孔的主要原因。在激光加热时,金属表面的预涂层中的水将逐步分解。分解出的水分和空气及保护气中的水分可以在激光作用的高温区直接分解产生H 。 同时,涂层中的碳粉也会和金属氧化物发生氧化还原反应产生二氧化碳。 这些H 溶入过热的激光熔覆的熔池中,随后在熔池的冷却结晶过程中析出而形成气泡,这些气泡如不能上浮逸出则成为焊接气孔。由于激光熔覆速度高,熔池的体积又很小,因此熔池的冷却结晶速度极快,不利于气泡的上浮逸出。 从冶金原理知道,对于一般熔覆火花,为防止产生气孔,可以从两方向着手:第一,限制氢溶入焊接熔池,或者减少氢的来源,或者减少氢与熔池的作用时间。第二,尽量促使氢从熔池析出,即在熔池凝固之前使氢以气泡形式及时排出。可以采取的办法:减少氢的来源即是彻底清除涂层中的水分,并加强对熔池的保护;减少熔池吸氢时间也就是减少熔池的存在时间,其中焊接速度是主要参数;对表面进行激光重熔处理。产生裂纹的原因为工艺原因、显微组织因素和残余应力。可以采取合适的办法降低裂纹的发生。如选择合适的熔覆材料,使熔覆层内的残余应力降低;优化激光熔覆技术的工艺方法和参数;合理设计熔覆层等。图2(a ,b )是应用不同的掺杂和工艺参数获得熔覆层的裂纹检测。图2掺杂5%,10%合金。 HO H O H +→)(2汽2 CO M C O M y x +→+

图2 掺杂5%,10%合金粉末在不同功率下熔覆层裂纹检测 3、激光熔覆工艺参数与优化 脉冲激光可调参数较多,包括单脉冲能量、脉冲宽度、脉冲频率、光斑尺寸、光斑重叠率及激光扫描速度等,这些参数并不是孤立存在的,它们之间的关系以及对溶覆涂层质量的影响较复杂,因此在选择激光工艺参数时需综合考虑各参量,以获得满意的处理效果。 1.1激光工艺参数对熔覆层尺寸的影响 对工件表面进行激光溶覆处理后,表面粗糙度通常较大,因此在实际使用之前,往往需对工件表面进行磨抛处理,这就需要表面培覆层有一定的加工余量,以确保激光擦覆层在磨抛后仍有一定的强化深度。脉冲激光培覆工艺参数中对溶覆层尺寸影响最大的是单脉冲能量、脉冲频率和激光扫描速度,因此应该对这几个工艺参数与强化层尺寸之间的关系进行研究,例如采用粉体材料是50%镍+50%纳米Al 2O 3,采用单道熔覆。 1.2激光工艺参数对溶覆层表面质量的影响 脉冲激光作用下的熔覆层是由多个脉冲重叠而成,因此与连续激光熔覆相比,培覆层表面的粗链度较高,这就导致培覆后需磨抛去除的厚度较大。在激光溶覆过程中,应尽量减少磨抛去除厚度,增加表面光洁度。脉冲激光的工艺参数较多,而影响表面光洁度的主要参数是激光扫描速度和脉冲频率。 脉冲频率与激光扫描)%(560)(323C O B WO Ni a +++) %(1060)(323C O B WO Ni b +++

退火对激光熔覆FeCrNiCoMn高熵合金涂层组织与性能的影响

第41卷 第3期中 国 激 光 V ol.41,No.32014年3月 CHINESE JOURNAL OF LASERS  March,2 014退火对激光熔覆FeCrNiCoMn高熵合金涂层 组织与性能的影响 翁子清1,2 董 刚1,2 张群莉1,2 郭士锐1,2 姚建华 1,2 1浙江工业大学激光加工技术工程研究中心,浙江杭州310014 2 浙江省高端激光装备协同创新中心,浙江杭州( ) 310014 摘要 采用激光熔覆的方法在45#钢基体上制备了表面形貌良好的FeCrNiCoMn高熵合金涂层,为了研究该高熵合金涂层的抗高温软化性能,分别在550℃、700℃、900℃、1000℃、1160℃下对涂层进行了2h的退火实验。用扫描电镜(SEM)、X射线衍射仪(XRD)和显微硬度计分别研究了涂层退火前后的微观形貌、相结构及显微硬度的变化。结果表明,熔覆态涂层组织为柱状树枝晶结构,主要由面心立方固溶体(FCC)和少量体心立方固溶体(BCC)构成,其平均显微硬度为540HV0.2。550℃、700℃、900℃退火后涂层的组织长大不明显,900℃退火后涂层BCC固溶体相衍射峰变得非常明显,1000℃和1160℃退火后组织逐渐长大,相转变为单一的FCC结构。合金涂层经过不同温度退火后,显微硬度呈现先增大后减小的趋势,在900℃退火后,涂层硬度最高为665HV0.2,说明该合金涂层在低于900℃时具有良好的抗高温软化性能。 关键词 激光技术;激光熔覆;高熵合金涂层;退火;显微硬度 中图分类号 TG146.4;TG156.2 文献标识码 A doi:10.3788/CJL201441. 0303002 收稿日期: 2013-08-14;收到修改稿日期:2013-09-13基金项目:浙江省自然科学基金青年基金(LQ13E050012 )作者简介:翁子清(1989—),男,硕士研究生,主要从事激光熔覆方面的研究。E-mail:wengziqing128@163.com导师简介:姚建华(1965—),男,教授,博士生导师,主要从事激光加工技术方面的研究。E-mail:laser@zj ut.edu.cn(通信联系人)Effects of Annealing  on Microstructure and Properties of FeCrNiCoMnHigh-Entropy  Alloy Coating Prepared by Laser CladdingWeng Ziqing1,2 Dong Gang1,2 Zhang  Qunli 1,2 Guo Shirui 1,2 Yao Jianhua1, 2 1  Research Center of Laser Processing Technology and Engineering,Zhejiang University of  Technology,Hangzhou,Zhejiang  310014,China2  Zhejiang Provincial Collaborative Innovation Center of High-end Laser Manufacturing  Equipment,Hangzhou,Zhejiang 310014,烄 烆烌 烎ChinaAbstract The FeCrNiCoMn high-entropy  alloy coating with nice surface topography is prepared on 45#steel bylaser cladding.In order to study  the property of resistance to high temperature softening of the coating,theannealing experiments of coating are performed at 550℃,700℃,900℃,1000℃,1160℃for 2 h,respectively.The microstructure,phase structure and microhardness of the coatings annealed at different temp eratures areinvestigated by  scanning electron microscope(SEM),X-ray diffraction(XRD)and microhardness tester,respectively.The results show that the coating  after laser cladding is mainly composed of typical dendrites andexhibits simple face-centered cubic(FCC)and minor body-centered cubic(BCC)structure phases with averagemicrohardness of 540HV0.2.The microstructure of the coating grows up slightly after being  annealed at 550℃,700℃and 900℃.However,the coating forms relatively more BCC phase when anneals at 900℃.While at 1000℃and 1160℃,the microstructure grows up  gradually,and the phase structure transforms into single FCC structure.As the annealing temperature increases,the microhardness of the FeCrNiCoMn cladded coating increases firstly,andthen decreases,the highest microhardness is 665HV0.2after being  annealed at 900℃.It indicates that theFeCrNiCoMn high-entropy coating after laser cladding exhibits nice tempering  resistance below900℃.Key words laser technique;laser cladding;high-entropy alloy coating;annealing;microhardnessOCIS codes 160.3900;350.3390;350.38500303002- 1

铝合金缺陷修补剂

铝合金缺陷修补剂 一、铝合金缺陷修补剂性能特点 ★耐高温——耐高温可达300度,瞬间最高耐受温度达330℃。 ★与金属具有较高的结合强度——适用于高温工况下各种铝质金属表面、垂直面、凸面或凹面,具有优良的物理机械性能、粘接强度、电绝缘性能、耐化学腐蚀性能、耐磨、耐老化、耐热性能、耐油、耐水及耐多种化学物质,其收缩率和吸水率低的特性。 ★固可进行各类机械加工——混合后可在常温下固化,硬化形成一种牢固 的类似金属状的材料,可进行钻孔、攻丝传统的各种机械加工及涂漆;是一种理想的冷焊剂,可替代传统的热焊接工艺,施工场所不受限制——不用电,不用火,施工比较安全;是所有工业维护部门必备的好帮手,是在条件不允许常规焊接时,取代常规焊接方法的理想材料。 ★方便快捷解决问题——本产品具有适用方便、快速、经济、耐用、可靠等特点。 二、铝合金缺陷修补剂产品用途 ★双组份,膏状,以铝粉为强化填充剂、多种合金材料、改性高温树脂和高温固化剂组成的高性能聚合耐高温铝质修补材料。通用于各种铸铝件缺陷的修补及铝质零件磨损、大孔和微孔、设备损伤的修复;如各种铝制品、容器、管路、零件、主设备的缺陷、磨损、划伤、腐蚀、断裂的修复。修复后颜色与基材基本一致。 ★高温交变、高强度冲击重载荷下设备、管路出现的漏孔、裂缝、砂眼、缺陷、断裂、损坏等进行填充与粘接补漏、焊合,螺纹翻修等用途。 ★金属零配件如:零件尺寸超差恢复尺寸、轴头、滑槽、阀们及泵体的缺陷修補工艺,修补后颜色与被修补零件基本一致。 三、铝合金缺陷修补剂使用方法 ★表面处理:表面处理对修补效果的影响很大。被修表面应打磨粗糙或喷砂处理,要打磨出基材本色,对一些特殊工况要进行特殊处理,如铸铁泵壳表层含水带锈要用火焰烧烤的方法将表层内的水分除净,然后打磨或喷砂:对一些轴类或孔类磨损尺寸的恢复,在保证足够强度的前提下,可打磨或车削粗糙的螺纹表面。导轨或缸体划伤部位要打磨出矩形槽或燕尾槽,深度要2mm以上。

《激光熔覆修复模具技术工艺规范》

《激光熔覆修复模具技术工艺规范》 激光熔覆修复模具技术是一个工艺流程系统。首先,应根据制品的服役条件或失效分析,确定对涂层的性能要求,据以选择恰当的熔覆合金材料和工艺。然后、实施激光熔覆工序施工,包括:基体的表面预处理,激光熔覆工艺及精加工,熔覆层质量检验。每道工序都必须严格按操作规程进行,检验合格,方能进行下一道工序。 一熔覆层系统设计 1.1 确定对熔覆层的功能尺寸要求 应确切了解欲激光熔覆模具的服役条件,或制品在使用过程中的失效原因,确定对熔覆层的功能尺寸要求。 1.2熔覆层材料的选择 只有熟悉并掌握丰富、全面的材料科学知识,才能做到正确合理地进行熔覆层系统设计,选择熔覆层材料。有关这方面的资料,可参考“机械制造工艺材料技术手册”第九篇“热喷涂材料技术手册”(机械工业出版社,1993,第一版)。 1.3 激光熔覆工艺选择 激光熔覆工艺的确定,应根据熔覆层材料的熔点、热导率、耐热震性及熔覆层与模具基体的结合强度要求,结合生产效率、成本等综合考虑。 二激光熔覆修复模具的基本程序 激光熔覆修复模具操作基本程序如下表:

三激光熔覆修复工艺 正确的激光熔覆工艺参数。应使被熔覆的合金粉末均匀熔覆到经预处理的基体表面上,形成优质涂层。 激光熔覆修复工艺参数的选择对激光熔覆修复过程、熔覆修复件的综合性能有着直接的重要影响。激光熔覆层的质量除了受熔覆材料和基体材料的熔点、导热系数、热膨胀系数、密度等物理性质和相互

之间的化学匹配性制约之外,主要取决于激光参数(输出功率、光斑形状和尺寸、光束输出模式)和工艺参数(扫描速度、预置粉层厚度、搭结率、预热温度及保护气体等)。 3.1 基材熔覆表面预处理 表面预处理是为了除掉基材熔覆部位的污垢和锈蚀,使其表面状态满足后续的前置熔覆材料或者同步供料熔覆的要求,主要包括喷涂表面的预处理和非喷涂表面的预处理。 ①喷涂表面的预处理。基材表面常用火焰喷涂或者等离子喷涂,因此需要进行去油和喷砂处理。 去油一般用加热法,即基材表面加热到300-450℃左右去油;也可用清洗剂去油,常用的清洗剂包括碱液、三氯乙烯、二氯乙烯等。 喷砂是为了除掉基材表面的锈蚀,并使其毛化,从而有利于喷砂粉末的附着。 经过表面预处理的零件,不宜长久放置于空气中,以防再次污染。 ②非喷涂表面的预处理。在采用勃结法预置熔覆材料或者同步法时,其表面也必须进行去油和除锈处理,但对毛化的要求没有喷涂表面那样要求严格。 3.2 激光熔覆工艺参数控制 3.2.1激光功率 激光功率是影响熔覆层质量的主要因素。功率越大,熔化的合金量越多,产生气孔的机率就越大,随着功率增加,熔覆层深度增加,周围的金属液体流向气孔而使气孔数量逐渐减少甚至得以消除,裂纹数量也逐渐减少。

激光熔覆_图文讲解

一、激光熔覆的原理 激光溶覆是利用高能激光束辐照,通过迅速熔化、扩展和凝固,在基材表面熔覆一层具有特殊物理、化学或力学性能的材料,构成一种新的复合材料,以弥补基体所缺少的高性能。能充分发挥二者的优势,克服彼此的不足。 可以根据工件的工况要求,熔覆各种(设计)成分的金属或非金属,制备耐热、耐蚀、耐磨、抗氧化、抗疲劳或具有光、电、磁特性的表面覆层。通过激光熔覆,可在低熔点材料上熔覆一层高熔点的合金,亦可使非相变材料 (AI 、Cu 、Ni 等)和非金属材料的表面得到强化。 在工件表面制备覆层以改善表面性能的方法很多,在工业中应用较多的是堆焊、热喷涂和等离子喷焊等,与上述表面强化技术相比,激光熔覆具 有下述优点: (1 )熔覆层晶粒细小,结构致密,因而硬度一般较高,耐磨、耐蚀等性能 亦更为优异。 (2 )熔覆层稀释率低,由于激光作用时间短,基材的熔化量小,对熔覆层的冲淡率低(一般仅为 5%-8%),因此可在熔覆层较薄的情况下,获得所要求的 成分与性能,节约昂贵的覆层材料。 (3 )激光熔覆热影响区小,工件变形小,熔覆成品率高。 (4 )激光熔覆过程易实现自动化生产,覆层质量稳定,如在熔覆过程中熔覆厚度可实现连续调节,这在其他工艺中是难以实现的。 由于激光熔覆的上述优点,它在航空、航天乃至民用产品工业领域中都有较广阔的应用前景,已成为当今材料领域研究和开发的热点。 激光熔覆技术应用过程中的关键问题之一是熔覆层的开裂问题,

尤其是大工件的熔覆层,裂缝几乎难以避免,为此,研究者们除了改进设备,探索合适工艺,还在研制适合激光熔覆工艺特点的熔覆用合金粉末和其他熔覆材 料。 二、激光熔覆工艺方法 激光熔覆工艺方法有两种类型: 1、二步法(预置法) 该法是在激光熔覆处理前,先将熔覆材料置于工作表面,然后采用激光将其熔化,冷凝后形成熔覆层。预置熔覆材料的方式包括: (1 )预置涂覆层:通常是应用手工涂敷,最为经济、方便、它是用粘结剂将熔覆用粉末调成糊状置于工件表面,干燥后再进行激光熔覆处理。但此法生产效率低,熔覆厚度不一致,不宜用于大批量生产。 (2 )预置片:将熔覆材料的粉末加入少量粘结剂模压成片,置于工件需熔覆部位,再进行激光处理。此法粉末利用率高,且质量稳定,适宜于一些深孔零件,如小口径阀体,采用此法处理能获得高质量涂层。 2、一步法(同步法) 这是在激光束辐照工件的同时向激光作用区送熔覆材料的工艺, 它又有两种方/法。 同步送粉法:使用专用喷射送粉装置(见图)将单种或混合粉末送入熔池,控制粉末送入量和激光扫描速度即可调整熔覆层的厚度。由于松散的粉末对激光的吸收率大,热效率高,可获得比其他方法更厚的熔覆层,容易 实现自动化。国外实际生产中采用较多。 同步送丝法:此法工艺原理虽与同步送粉法相同,但熔覆材料是预先加工成丝材或使用填充丝材。此法便利且不浪费材料,更易保证熔覆层的成分均匀性,尤其是当熔覆层是复合材料时,不会因粉末比重或粒度大小的不同而影响覆层质量,且通过对丝材进行预热的精细处理可提高熔覆速率。但是丝材表面光滑,对激光的反射较强,激光利用率相时较低;此外,线材制造过程较 复杂,且品种规格少。

激光熔覆技术分析与展望讲解

激光熔覆技术分析与展望 作者:张庆茂激光熔覆是一种新型的涂层技术,是涉及到光、机、电、材料、检测与控制等多学科的高新技术,是激光先进制造技术最重要的支撑技术,可以解决传统制造方法不能完成的难题,是国家重点支持和推动的一项高新技术。目前,激光熔覆技术已成为新材料制备、金属零部件快速直接制造、失效金属零部件绿色再制造的重要手段之一,已广泛应用于航空、石油、汽车、机械制造、船舶制造、模具制造等行业。为推动激光熔覆技术的产业化, 作者:张庆茂 激光熔覆是一种新型的涂层技术,是涉及到光、机、电、材料、检测与控制等多学科的高新技术,是激光先进制造技术最重要的支撑技术,可以解决传统制造方法不能完成的难题,是国家重点支持和推动的一项高新技术。目前,激光熔覆技术已成为新材料制备、金属零部件快速直接制造、失效金属零部件绿色再制造的重要手段之一,已广泛应用于航空、石油、汽车、机械制造、船舶制造、模具制造等行业。 为推动激光熔覆技术的产业化,世界各国的研究人员针对激光熔覆涉及到的关键技术进行了系统的研究,已取得了重大的进展。国内外有大量的研究和会议论文、专利介绍激光熔覆技术及其最新的应用:包括激光熔覆设备、材料、工艺、监测与控制、质量检测、过程的模拟与仿真等研究内容。但到目前为止,激光熔覆技术还不能大面积工业化应用。分析其原因,这里有政府导向的因素、激光熔覆技术本身成熟程度的限制、社会各界对激光熔覆技术的认可程度等因素。因此,激光熔覆技术欲实现全面的工业化应用,必须加大宣传力度,以市场需求为导向,重点突破制约发展的关键因素,解决工程应用中涉及到的关键技术,相信在不远的将来,激光熔覆技术的应用领域及其强度将不断的扩大。下面介绍激光熔覆技术几个发展的动态,以飨读者。 激光熔覆的优势 激光束的聚焦功率密度可达1010~12W/cm2,作用于材料能获得高达1012K/s的冷却速度,这种综合特性不仅为材料科学新学科的生长提供了强有力的基础,同时也为新型材料或新型功能表面的实现提供了一种前所未有的工具。激光熔覆所创造的熔体在高温度梯度下远离平衡态的快速冷却条件,使凝固组织中形成大量过饱和固溶体、介稳相甚至新相,已经被大量研究所证实。它提供了制造功能梯度原位自生颗粒增强复合层全新的热力学和动力学条件。同时激光熔覆技术制备新材料是极端条件下失效零部件的修复与再制造、金属零部件的直接制造的重要基础,受到世界各国科学界和企业的高度重视和多方面的研究。 目前,利用激光熔覆技术可以制备铁基、镍基、钴基、铝基、

铝合金表面激光熔覆Cu基复合涂层的组织及摩擦磨损性能

铝合金表面激光熔覆!"基复合涂层的 组织及摩擦磨损性能 #$%&’()&"%)"&*+,-.&$%)$’,/0*+&1&’2*&)$*(’34+(*&!5+- !"/6+(*!’72’($)*!’+)$,8’,95955’:;"&3+%* 董世运<韩杰才<杜善义=哈尔滨工业大学复合材料研究所<哈尔滨>?@@@>A B C D E;F$/:",?@@@>@N合金表面成功获得了球形颗粒体增强的过饱和 =!"@N合金表面耐磨性的提高作用很大O磨损过程中@N合金主要发生了粘附磨损<出现了脱层现象Q熔覆层材料发生了粘附磨损和磨粒磨损O 关键词L激光熔覆Q铜Q复合材料Q组织Q摩擦Q磨损 中图分类号L K E>?Q K D R N S文献标识码L9文章编号L>@@>/N T U>=R@@>A@R/@@R V/@N W X Y Z[\]Z L=!"@N^$+5+(*&%5+--$,82&’%*((’,)F*6+($(’37*)+()+65*5$_"$-(*2+&+)$’,$,!"/6+(* 7*5)‘K F*%’72’($)*0+(&*$,3’&%*-6:$,($)"(2F*&$%+52+&)$%5*(‘.&$%)$’,+,-0*+&)*()’3)F*%’+)/ $,80+(7+-*a K F*&*("5)((F’0)F+))F*=!"@N‘K F$(%’,)&$6")*()’F$8F F+&-,*((’3)F*%’72’($)*+,-*c$()*,%*’3)F*&*$,3’&%*-(2F*&$%+52+&)$%5*(<+,-+5(’)’2’’&7")"/ +5(’5"6$5$):’3!"+,-.*‘B"&$,8)F*3&$%)$’,+,-0*+&)*()@N+55’:7+$,5:",-*&8’(+-F*($^* 0*+&+,--*5+7$,+)$’,0F$5*)F*5+(*&%5+-%’72’($)*",-*&+-F*($^*0*+&+,-+6&+($^*0*+&‘ d e fg h[i Y L5+(*&%5+-Q%’22*&Q%’72’($)*Q7$%&’()&"%)"&*Q3&$%)$’,Q0*+& 铝合金工作温度范围小P硬度低P耐磨性差O铜基合金或复合材料导热性好P摩擦系数小<具有良好的减磨耐磨性能<因而在工业中得以广泛应用O激光熔覆为铝合金表面改性开辟了一条新途径<同时<也成为制备铜基合金或复合材料的一种新工艺O目前<各国学者对铝合金表面激光熔覆铜合金及碳化物增强铜基复合材料涂层的工艺和组织特征已进行了大量研究j>k l m O!"与#’T m O因此<在铝合金表面激光熔覆含有一定量的D$<#’V‘@D$.*!’?@k rT R@目O然后<用有机粘结剂把混合粉末均匀预涂于清洁的M4>@N合金试样=尺寸为?@77sT@77sT@77A表面<预涂层厚度为>77O 采用工业应用?b t横流连续波!C R 激光器扫描辐照预涂粉末层<应用功率为R b t<光斑宽度为R77<扫描速度为>@77u(r>O最终<获得了表面光洁P均匀连续的熔覆层<并且熔覆层与基材呈良好的冶金结合O n‘v测试方法 把激光熔覆试样沿横断面截开<制成金相试样<用光学显微镜P扫描电镜=配备有能谱分析仪A和电子探针仪观察涂层的组织特征<分析其成分组成O把熔覆层表面磨平并抛光<制成摩擦磨损试样O摩擦磨 V R材料工程w R@@>年R期万方数据

激光熔覆工艺参数对熔覆层表面平整度的影响

第37卷 第1期中 国 激 光 Vol.37,No.12010年1月 CHIN ES E J OURNAL OF LAS ERS J anuary ,2010 文章编号:025827025(2010)0120296206 激光熔覆工艺参数对熔覆层表面平整度的影响 朱刚贤 张安峰 李涤尘 (西安交通大学机械制造系统工程国家重点实验室,陕西西安710049) 摘要 为了获得平整的熔覆层表面质量,对316L 不锈钢激光熔覆工艺参数对熔覆层表面平整度、平宽比(表面平整度与单层熔覆宽度比值)及平高比(表面平整度与单层熔覆高度的比值)的影响进行了实验研究。分析了单层熔覆宽度、单层熔覆高度与轨迹间的中心距及搭接率之间的相互关系,并进行了单层熔覆宽度、单层熔覆高度及表面平整度的测试。实验结果表明,随激光功率增大、送粉量增大及扫描速度的减低,熔覆层表面的平整程度降低;随载气流量增大,熔覆层表面的平整程度先增加后降低。 关键词 激光技术;激光熔覆;成形质量;工艺参数;表面平整度 中图分类号 TN249;T G 39 文献标识码 A doi :10.3788/CJL 20103701.0296 Ef f ect of P r oces s P a r a met e rs on S u rf ace S m oot h nes s i n L as e r Cl a ddi n g Zhu Gangxian Zhang Anf eng Li Dichen (St a te Key L abor a tor y f or Ma n uf act u ri ng S yste ms Engi neeri ng ,Xi ′a n J i aotong U niversit y , Xi ′a n ,S ha a nxi 710049,Chi n a ) Abs t r act To obtain the smooth surface quality of cladding layer ,the effects of p rocess parameters on surface smoothness and the ratios of the width and height of cladding layer to surface smoothness were studied by experiments in laser cladding.The relationships of the height and width of cladding layer with center distance and overlapping ratio were analyzed ,and the height ,width and surface smoothness of cladding layer were tested.The experimental results indicate that the degree of surface smoothness decreases with the increase of laser power and powder mass flow rate and the reducing of t raverse speed ;the degree of surface smoothness firstly increased then decreased with the growth of carrier gas flow rates. Key wor ds laser technique ;laser cladding ;forming quality ;p rocess parameters ;surface smoothness 收稿日期:2009202209;收到修改稿日期:2009203227 基金项目:国家973计划(2007CB707704)、国家自然科学基金(50675171)和长江学者和创新团队发展计划 (PCSIR T0646)资助课题。 作者简介:朱刚贤(1980—),男,博士研究生,主要从事复杂构件的高能束控形控性制造方面的研究。E 2mail :gxzhu2005@https://www.doczj.com/doc/995551246.html, 导师简介:李涤尘(1964—),男,博士,教授,主要从事快速成形制造、生物制造和复合材料成形等方面的研究。E 2mail :dcli @https://www.doczj.com/doc/995551246.html, (通信联系人) 1 引 言 激光熔覆技术是利用高能激光束为热源,以预 置或同步供给方式在基材表面添加金属粉末(丝)使之具有优异的耐磨、耐蚀及耐热等性能的表面改性技术。在激光熔覆过程中,激光、粉末材料及基体间相互作用形成熔覆层是一个较复杂的熔化2凝固冶金过程,这就导致熔覆层的成形质量很难得到准确控制。提高熔覆层的成形质量一直是国内外关注的 热点和追求的直接目标,而加工工艺参数(如激光功 率、扫描速度、送粉量及载气流量等)对熔覆层成形质量起决定性作用,在已有的研究中主要关注的是送粉量、激光功率、扫描速度、保护气流量等加工参数对熔覆层成形宽度、高度的影响规律,也有研究搭接率对表面成形质量的影响[1~7],而熔覆层的表面平整度作为衡量熔覆层成形质量的一个重要指标,目前尚缺乏系统的研究。本文在扫描路径一定的条

高速激光熔覆加工参数

高速激光熔覆相关技术参数介绍 高速激光熔覆是一种快速激光表面处理技术,主要涉及技术参数分为两个方面,一是激光熔覆过程中,设备的调试设置参数,称为加工参数;二是熔覆完成后,对熔覆效果质量的测评衡量参数,称为检测参数。 加工参数主要包括激光功率、光斑形状、光斑尺寸、加工距离、搭接率、熔覆速度、送粉方式、保护气气压共8项关键参数。 (1)激光功率,激光器单位时间内输出的能量。高速激光熔覆一般用KW级激光器,如ZKZM-2KW和ZKZM-4KW在市场上推广应用较多,可满足大部分的领域使用需求。 (2)光斑形状,常见的光斑形状分圆形和矩形两种,用户根据加工对象特点选择使用。 (3)光斑尺寸,光斑尺寸主要影响光功率密度,即单位面积的光能量大小,同等功率条件下,光斑尺寸越小,光功率密度越大,高功率密度光斑适宜熔覆高熔点的金属粉末。 (4)加工距离,指激光出光口距基体表面的距离。加工距离过远,金属粉末容易发散,粉末利用率低;加工距离近,激光熔覆头受激光辐射表面温度过高,严重造成粉末堵塞。 (5)搭接率,搭接率是影响熔覆层表面粗糙度的主要因素,搭接率提高,熔覆层表面粗糙度降低。但搭接部分的均匀性很难得到保证。每道熔覆层之间相互搭接区域的深度与每道熔覆层正中的深度有所不同,从而影响了整个熔覆层。高速熔覆的搭接率高达70%-80%(普通熔覆的搭接率为30%-50%)。 (6)熔覆速度,熔覆线速度和熔覆面积速率均可表示熔覆速度大小。中科中美高速激光熔覆实测线速度为30m/min-100m/min,在熔覆厚度0.2-0.5mm时,熔覆效率每小时0.7-1.2平方米。 (7)送粉方式,高速激光熔覆送粉方式主要有环形送粉和中心送粉两种方式,中心送粉较环形送粉粉末利用率高,但设计难度较大,光束需呈环形围绕送粉管一周,目前市场上环形送粉应用较多。 (8)保护气气压,保护气压力大小加工时可调。保护气一般使用氮气或氩气,主要用于送粉以及在激光熔覆熔池周围形成保护区域,减少氧化。

激光熔覆Alx CrFeCoCuNi高熵合金涂层的显微组织与性能研究-

文章编号:1001-9731(2016)06-06167-06 激光熔覆Al x CrFeCoCuNi高熵合金涂层的 显微组织与性能研究? 郑必举,蒋业华,胡文,刘洪喜 (昆明理工大学材料科学与工程学院,昆明650093) 摘要:采用CO2激光熔覆技术在AISI1045钢基底上制备了Al x CrFeCoCuNi涂层.通过改变Al的含量来研究其对显微组织和耐磨性能的影响.涂层的微观结构二化学成分和相结构分别通过扫描电镜二能谱和X射线衍射进行了分析.研究结果表明,Al x CrFeCoCuNi高熵合金涂层主要包括熔覆层二结合区和热影响区.熔覆层和基底具有很好的冶金结合.熔覆层主要由等轴晶和柱状晶组成.XRD分析可知,由于高熵效应使得Al x CrFe-CoCuNi高熵合金涂层相结构主要为简单面心和体心立方结构.Al x CrFeCoCuNi的表面硬度最高可以达到758Hv,是基底的3倍,而且显微硬度随着Al含量的增加而升高.Al含量高的涂层具有高的硬度,从而提高了耐磨性能. 关键词:高熵合金;磨损;显微硬度;激光熔覆 中图分类号: TG156.99文献标识码:A DOI:10.3969/j.issn.1001-9731.2016.06.030 0 引言 几百年来,传统的合金体系通常是以一个元素为 主元,例如铁合金二铝合金和钛合金等,主要元素含量 通常占到50%(原子分数)以上,再添加少量其它元素来改变结构和性能,但是由于固溶度的原因导致添加 元素的量是有限的.为了解决这个限制,中国台湾学 者叶均蔚在1995年打破了传统观念,提出了新的合金设计概念[1-3].高熵合金被定义为,合金至少包含5种元素,且每种元素的含量在5%~35%(原子分数).这种合金凝固后由于高熵效应主要形成简单的固溶相,而不是复杂的脆性相.通过成分优化后的高熵合金具有高强度二低电阻率二优异的耐磨性能和抗腐蚀性能[4-6]. 现在,制备高熵合金的主要方法是真空电弧熔炼 制备块状铸锭[7-12].这种技术限制了铸锭的尺寸,因为形成简单固溶相的高熵合金要求较高的冷却速率.另外,高熵合金里含有多种贵金属,大块材料的成本很高.因此,在低成本钢基底上制备高熵合金涂层可以扩大其应用.在激光熔覆过程中,冷却速率可以达到103~106K/s,而且这个过程也是原位合成.更重要的是,激光熔覆涂层与基底为冶金结合,具有较小的热变形和非平衡反应[13-15]等优点.所以激光熔覆制备的高熵合金涂层对其扩大应用范围具有重要意义.在本文中,通过激光熔覆技术来制备Al x CrFeCoCuNi高熵合金涂层,研究了Al含量对涂层质量二微观结构二显微硬度和耐磨性能的影响.1实验 AISI1045钢基底试样尺寸为30mm?30mm?3mm.基底先用600~2000#砂纸研磨,然后将其在氢氧化钠溶液中清洗20min,从而去除表面上的污垢或油脂,最后用去离子水彻底冲洗.实验所用Cu二Ni二Co二Fe二Cr二Al粉末(99.99%)的颗粒尺寸平均为55μm,将其以等摩尔比进行充分混合,并加入聚乙烯醇溶液制备成熔覆膏,然后在基底表面上涂敷约0.8mm的预置层,干燥约36h.实验所用CO2激光器的波长为10.6μm;光斑直径为700μm.焦点定在样品的表面以上5mm,扫描速度为1mm/s,激光功率密度固定为800J/cm2. 高熵合金熔覆层的物相组成由X射线衍射仪进行分析;电镜(JSM-5310二日本)及其能谱仪定性分析了涂层微观结构和化学成分;HXD-1000维氏显微硬度计来测量高熵合金熔覆层横截面的显微硬度,在样品表面取5个不同地方进行测量,然后取平均值;以销盘式磨损试验装置进行滑动磨损试验,长度为20mm 和直径为4mm的销样在硬度为600Hv的钢盘上以速度为3.14m/s进行实验.用单位滑动距离的磨损体积损失来计算磨损率,直到总的磨损时间达到50min.2结果与讨论 2.1涂层的显微组织 激光加工参数对涂层的质量二微观形貌和性能有重要的影响.因此,本文试样的涂层都是在最优激光 76160 郑必举等:激光熔覆Al x CrFeCoCuNi高熵合金涂层的显微组织与性能研究 ?基金项目:云南省教育厅资助项目(KKJA201351004);昆明理工大学分析测试基金资助项目(20130197) 收到初稿日期:2015-05-10收到修改稿日期:2015-08-15通讯作者:郑必举,E-mail:zhen g bi j u@g mail.com 作者简介:郑必举(1982-),男,山西大同人,副教授,博士,主要从事激光表面改性研究.

相关主题
文本预览
相关文档 最新文档