当前位置:文档之家› 清华数学实验5-线性代数方程组的数值解法

清华数学实验5-线性代数方程组的数值解法

清华数学实验5-线性代数方程组的数值解法
清华数学实验5-线性代数方程组的数值解法

(完整版)数值线性代数答案

习题1 1.求下三角阵的逆矩阵的详细算法。 [解] 设下三角矩阵L的逆矩阵为T 我们可以使用待定法,求出矩阵T的各列向量。为此我们将T按列分块如下: 注意到 我们只需运用算法1·1·1,逐一求解方程 便可求得 [注意]考虑到内存空间的节省,我们可以置结果矩阵T的初始状态为单位矩阵。这样,我们便得到如下具体的算法: 算法(求解下三角矩阵L的逆矩阵T,前代法) 3.证明:如果是一个Gauss变换,则也是一个Gauss变换。

[解]按Gauss变换矩阵的定义,易知矩阵是Gauss变换。下面我们只需证明它是Gauss 变换的逆矩阵。事实上 注意到,则显然有从而有 4.确定一个Gauss变换L,使 [解] 比较比较向量和可以发现Gauss变换L应具有功能:使向量的第二行加上第一行的2倍;使向量的第三行加上第一行的2倍。于是Gauss变换如下 5.证明:如果有三角分解,并且是非奇异的,那么定理1·1·2中的L和U都是唯一的。 [证明]设,其中都是单位下三角阵,都是上三角阵。因为A非奇异的,于是 注意到,单位下三角阵的逆仍是单位下三角阵,两个单位下三角阵的乘积仍是单位下三角阵;上三角阵的逆仍是上三角阵,两个上三角阵的乘积仍是上三角阵。因此,上述等将是一个单 位下三角阵与一个上三角阵相等,故此,它们都必是单位矩阵。即, 从而

即A的LU分解是唯一的。 17.证明定理1·3·1中的下三角阵L是唯一的。 [证明] 因A是正定对称矩阵,故其各阶主子式均非零,因此A非奇异。为证明L的唯一性,不妨设有和使 那么 注意到:和是下三角阵,和为上三角阵,故它们的逆矩阵也分别是下三角阵和上三角阵。因此,只能是对角阵,即 从而 于是得知 19.若是A的Cholesky分解,试证L的i阶顺序主子阵正好是A的i阶顺序主子阵的Cholesky因子。 [证明] 将A和L作如下分块 其中:为矩阵A和L的i阶顺序主子阵。。显然

试验5线性代数方程组的数值解法

实验6 线性代数方程组的数值解法 [实验目的] 1. 1. 学会用MATLAB 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析; 2. 2. 通过实例学习用线性代数方程组解决简化的实际问题。 [实验内容] 5-5 输电网络:一种大型输电网络可简化为图5.5(见书)所示电路, 其中R 1,R 2,…,R n 表示负载电阻,r 1,r 2,…,r n 表示线路内阻,I 1,I 2,…,I n 表示负载上的电流。设电源电压为V 。 (1)列出求各负载电阻R 1,R 2,…,R n 的方程; (2)设I 1=I 2=…=I n =I ,r 1=r 2=…=r n =r ,在r=1,I=0.5,V=18,n=10的情况下求R 1,R 2,…,R n 及总电阻R 0。 [问题分析、模型建立及求解] (1) 设电源负极为电势为0,电阻R 1上对应节点电压为V 1,对于任意节点,根据KCL 定律列出方程: 11 1++----=k k k k k k k k r V V r V V R V 而 k k k R V I =,可得: 111111)(++++--++-= k k k k k k k k k k k k R r I R r I r I R r I I k=2,3,……,n-1; k=1时 2221211R r I R r I I +- =,为与上式形式一致,化为 22212111111)(R r I R r I r I r V I +--=- k=m (12-≤≤n m )时 111111)(++++--+--+= m m m n m m m m m m m m R r I R r I r I R r I I k=n 时 n n n n n n n R r I R r I I -= --11 设以上方程组的矩阵形式为:b AR = 则 []T n R R R R 21=

Matlab线性代数实验指导书

Matlab线性代数实验指导书 理学院线性代数课程组 二零零七年十月

目录 一、基础知识 (1) 1.1、常见数学函数 (1) 1.2、系统在线帮助 (1) 1.3、常量与变量 (2) 1.4、数组(矩阵)的点运算 (3) 1.5、矩阵的运算 (3) 二、编程 (4) 2.1、无条件循环 (4) 2.2、条件循环 (5) 2.3、分支结构 (5) 2.4、建立M文件 (6) 2.5、建立函数文件 (6) 三、矩阵及其运算 (7) 3.1、矩阵的创建 (7) 3.2、符号矩阵的运算 (11) 四、秩与线性相关性 (14) 4.1、矩阵和向量组的秩以及向量组的线性相关性 (14) 4.2、向量组的最大无关组 (14) 五、线性方程的组的求解 (16) 5.1、求线性方程组的唯一解或特解(第一类问题) (16) 5.2、求线性齐次方程组的通解 (18) 5.3、求非齐次线性方程组的通解 (19) 六、特征值与二次型 (22) 6.1、方阵的特征值特征向量 (22) 6.2、正交矩阵及二次型 (23)

一、基础知识 1.1常见数学函数 函数数学计算功能函数数学计算功能 abs(x) 实数的绝对值或复数的幅值floor(x) 对x朝-∞方向取整acos(x) 反余弦arcsinx gcd(m,n) 求正整数m和n的最大公约数acosh(x) 反双曲余弦arccoshx imag(x) 求复数x的虚部angle(x) 在四象限内求复数x的相角lcm(m,n)求正整数m和n的最小公倍 自然对数(以e为底数) asin(x) 反正弦arcsinx log(x) 常用对数(以 10 为底数) asinh(x) 反双曲正弦arcsinhx log10(x) atan(x) 反正切arctanx real(x) 求复数 x 的实部atan2(x,y) 在四象限内求反正切rem(m,n) 求正整数m和n的m/n之余数atanh(x) 反双曲正切arctanhx round(x) 对x四舍五入到最接近的整数 符号函数:求出 x 的符号ceil(x) 对x朝+∞方向取整 sign(x) conj(x) 求复数x的共轭复数 sin(x) 正弦sinx 反双曲正弦sinhx cos(x) 余弦cosx sinh(x) cosh(x) 双曲余弦coshx sqrt(x) 求实数x的平方根exp(x) 指数函数e x tan(x) 正切tanx fix(x) 对 x 朝原点方向取整 tanh(x) 双曲正切tanhx 如:输入 x=[-4.85 -2.3 -0.2 1.3 4.56 6.75],则: ceil(x)= -4 -2 0 2 5 7 fix(x) = -4 -2 0 1 4 6 floor(x) =-5 -3 -1 1 4 6 round(x) = -5 -2 0 1 5 7 1.2 系统的在线帮助 1.2.1 help 命令: 1.当不知系统有何帮助内容时,可直接输入 help以寻求帮助: >> help(回车) 2.当想了解某一主题的内容时,如输入: >> help syntax (了解Matlab的语法规定) 3.当想了解某一具体的函数或命令的帮助信息时,如输入: >> help sqrt (了解函数sqrt的相关信息) 1.2.2 lookfor 命令 现需要完成某一具体操作,不知有何命令或函数可以完成,如输入: >> lookfor line (查找与直线、线性问题有关的函数) 1.3 常量与变量

数值计算实验课题目

数值实验课试题 本次数值实验课结课作业,请按题目要求内容写一篇文章。按题目要求 人数自由组合,每组所选题目不得相同(有特别注明的题目除外)。试题如下: 1)解线性方程组的Gauss 消去法和列主元Gauss 消去法(2人)/*张思珍,巩艳华*/ 用C 语言将不选主元和列主元Gauss 消去法编写成通用的子程序,然后用你编写的程序求解下列84阶的方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 1681684 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 2)解线性方程组的平方根法(4人)/*朱春成、黄锐奇、张重威、章杰*/ 用C 语言将平方根法和改进的平方根法编写成通用的子程序,然后用你编写的程序求解对称正定方程组b Ax =,其中 (1)b 随机的选取,系数矩阵为100阶矩阵 ?????? ???? ? ? ?101 1101 1101 1101 1101110 ; (2)系数矩阵为40阶的Hilbert 矩阵,即系数矩阵A 的第i 行第j 列元素为 1 1-+= j i a ij ,向量b 的第i 个分量为∑=-+ = n j i j i b 1 1 1. 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编

3.《数值分析简明教程》,王能超编 3)三对角线方程组的追赶法(3人)/*黄佳礼、唐伟、韦锡倍*/ 用C 语言将三对角线方程组的追赶法法编写成通用的子程序,然后用你编写的程序求解如下84阶三对角线方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 16816 84 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值分析简明教程》,王能超编 4)线性方程组的Jacobi 迭代法(3人)/*周桂宇、杨飞、李文军*/ 用C 语言将Jacobi 迭代法编写成独立的子程序,并用此求解下列方程组, 精确到小数点后5位 ???? ? ??=????? ??????? ? ?-149012 2111221 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 5)线性方程组的Gauss-Seidel 迭代法(3人)/*张玉超、范守平、周红春*/ 用C 语言将Gauss-Seidel 迭代法编写成独立的子程序,并用此求解下列方程组,精确到小数点后5位 ???? ? ??=????? ??????? ? ?--39721 1111112 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 6)解线性方程组的最速下降法法(2人)/*赵育辉、阿热孜古丽*/ 用C 语言将最速下降法编写成通用的子程序,然后用你编写的程序求解对称

线性代数实验题04-交通网络的流量分析

数学实验报告 学号: , 姓名: , 得分: 实验内容:实验题:交通网络流量分析问题(线性方程组应用) 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。 问题:某城市有下图所示的交通图,每条道路都是单行线,需要调查每条道路每小时的车流量。图中的数字表示该条路段的车流数。如果每个交叉路口进入和离开的车数相等,整个图中进入和离开的车数相等。 求(1)建立确定每条道路流量的线性方程组; (2)分析哪些流量数据是多余的; (3)为了唯一确定未知流量,需要增添哪几条道路的流量统计。 解: (1)由题意得:x1+ x7=400 x1+ x9= x2+300 x2+100=300+ x11 x3+ x7=350+ x8 x4+ x10= x9+ x3 x11+500= x4+ x12 x8+ x5=310 x6+400= x10+ x5 x12+150= x6+290

整理得: x 1+ x 7=400 x 1- x 2+ x 9=300 x 2+ x 11=200 x 3+ x 7- x 8=350 -x 3+x 4+ x 10- x 9=0 -x 4+x 11- x 12=-500 x 5 +x 8=310 - x 5+x 6- x 10=-400 -x 6+ x 12= 140 将方程组写成矩阵向量形式为AX = b 1 0 0 0 0 0 1 0 0 0 0 0 400 x 1 1 -1 0 0 0 0 0 0 1 0 0 0 300 x 2 0 1 0 0 0 0 0 0 0 0 1 0 200 x 3 A= 0 0 1 0 0 0 1 -1 0 0 0 0 b= 350 X= x 4 0 0 -1 1 0 0 0 0 -1 1 0 0 0 x 5 0 0 0 -1 0 0 0 0 0 0 1 -1 -500 x 6 0 0 0 0 1 0 0 1 0 0 0 0 310 x 7 0 0 0 0 -1 1 0 0 0 -1 0 0 -400 x 8 0 0 0 0 0 -1 0 0 0 0 0 1 140 x 9 x 10 x 11 x 12 在MATLAB 环境中,首先输入方程组的系数矩阵A 和方程组右端向量b A=[1,0,0,0,0,0,1,0,0,0,0,0;1,-1,0,0,0,0,0,0,1,0,0,0;0,1,0,0,0,0,0,0,0,0,1,0;0,0,1,0,0,0,1,-1,0,0,0,0;0,0,-1,1,0,0,0,0,-1,1,0,0;0,0,0,-1,0,0,0,0,0,0,1,-1;0,0,0,0,1,0,0,1,0,0,0,0;0,0,0,0,-1,1,0,0,0,-1,0,0;0,0,0,0,-1,0,0,0,0,0,1] b = [400;300;200;350;0;500;310;-400;140] 解得 x 1=- x 9+500 x 2=200 x 3=- x 9+ x 10- x 12

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

数值线性代数二版徐树方高立张平文上机习题第三章实验报告

- 1 - 第三章上机习题 用你所熟悉的的计算机语言编制利用QR 分解求解线性方程组和线性最小二乘问题的 通用子程序,并用你编制的子程序完成下面的计算任务: (1)求解第一章上机习题中的三个线性方程组,并将所得的计算结果与前面的结果相比较,说明各方法的优劣; (2)求一个二次多项式+bt+c y=at 2 ,使得在残向量的2范数下最小的意义下拟合表3.2中的数据; (3)在房产估价的线性模型 111122110x a x a x a x y ++++= 中,1121,,,a a a 分别表示税、浴室数目、占地面积、车库数目、房屋数目、居室数目、房龄、建筑类型、户型及壁炉数目,y 代表房屋价格。现根据表3.3和表3.4给出的28组数据,求出模型中参数的最小二乘结果。 (表3.3和表3.4见课本P99-100) 解 分析: (1)计算一个Householder 变换H : 由于T T vv I ww I H β-=-=2,则计算一个Householder 变换H 等价于计算相应的v 、β。其中)/(2,||||12v v e x x v T =-=β。 在实际计算中, 为避免出现两个相近的数出现的情形,当01>x 时,令2 12221||||) (-x x x x v n +++= ; 为便于储存,将v 规格化为1/v v v =,相应的,β变为)/(221v v v T =β 为防止溢出现象,用∞||||/x x 代替 (2)QR 分解: 利用Householder 变换逐步将n m A n m ≥?,转化为上三角矩阵A H H H n n 11 -=Λ,则有

?? ? ???=0R Q A ,其中n H H H Q 21=,:),:1(n R Λ=。 在实际计算中,从n j :1=,若m j <,依次计算)),:((j m j A x =对应的)1()1()~ (+-?+-k m k m j H 即对应的j v ,j β,将)1:2(+-j m v j 储存到),:1(j m j A +,j β储存到)(j d ,迭代结束 后再次计算Q ,有??? ? ?? ??=-~001 j j j H I H ,n H H H Q 21=(m n =时1-21n H H H Q =) (3)求解线性方程组b Ax =或最小二乘问题的步骤为 i 计算A 的QR 分解; ii 计算b Q c T 11=,其中):1(:,1n Q Q = iii 利用回代法求解上三角方程组1c Rx = (4)对第一章第一个线性方程组,由于R 的结果最后一行为零,故使用前代法时不计最后一行,而用运行结果计算84x 。 运算matlab 程序为 1 计算Householder 变换 [v,belta]=house(x) function [v,belta]=house(x) n=length(x); x=x/norm(x,inf); sigma=x(2:n)'*x(2:n); v=zeros(n,1); v(2:n,1)=x(2:n); if sigma==0 belta=0; else alpha=sqrt(x(1)^2+sigma); if x(1)<=0 v(1)=x(1)-alpha; else v(1)=-sigma/(x(1)+alpha); end belta=2*v(1)^2/(sigma+v(1)^2); v=v/v(1,1); end end

线性代数实验一

数学实验(线性代数)题目 一. 用MATLAB 计算行列式 1.求矩阵10211 22323310 12 1A ????-? ?=??????的行列式的值.2。计算行列式100 110011001 a b c d --- 二.用MATLAB 计算矩阵 1.求矩阵??????????=133212321A 与矩阵???? ??????=132352423B 的和与差及53A B -. 2.求矩阵123212331A ????=??????与324253231B ????=??????的乘积.3.求矩阵112011210A -?? ??=-?? ????的逆矩阵. 4.求矩阵123421213A ????=??????和212121321B ?? ??=?? ???? 相除。 三.用MATLAB 解线性方程组 1. 求解方程组1231231 23240200 x x x x x x x x x --+=?? ++=??+-=?。 2。解方程组AX b =,其中A =212214321??????????,b =317?? ???????? .。 3.Matlab 实验题 某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元. (1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值. (2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?

线性代数齐次方程组解法

D =) () ()(0)()() (001 11112 132 3122211331221 1 312a a a a a a a a a a a a a a a a a a a a a a a a k k k k k k k k ------------ 按第一列展开,再将各列的公因子提出来 D = ) ()()() () () (121323122211331221131 2a a a a a a a a a a a a a a a a a a a a a a a a k k k k k k k k ------------ =(a 2-a 1)(a 3-a 1)…(a k -a 1) 22322 32 111 ---k k k k k a a a a a a 得到的k -1阶范德蒙德行列式,由归纳假设知其值为 ∏≤<≤-k i j j i a a 2)( 于是 D =(a 2-a 1)(a 3-a 1)…(a k -a 1) ∏≤<≤-k i j j i a a 2)(= ∏≤<≤-k i j j i a a 1)( 因此,对于任意正整数n ≥2,范德蒙德行列式的展开式都成立。 证毕 例1.14 计算n 阶三对角行列式: D n = 2 1 120000 021000 12 1000 12------ 解 由行列式的性质1.4,将D n 的第一列的每个元看成两个元之和,得

D n = 2100 12000002100 120 00011----- +2 1 1200000 21000 12 1 00011------ 第一个行列式按第一列展开;第二个行列式从第一行开始依次加到下一行,得 D n =D n -1+ 1 110000 01000 110 00011 ---=D n -1+1 反复利用上面的递推公式,得到 D n =D n -1+1=D n -2+2=…=D 1+n -1=2+n -1=n +1 例1.15 计算n 阶行列式 D n = n a b b b a b b b a 21 (a i ≠b , i =1,2,…,n ) 解 对于这个行列式,采用一种“加边”的技巧。 D n =n a b b b a b b b a b b b 000121 第一行乘以(-1)加到其他各行上去,得

南京邮电大学 数值代数实验

数值代数实验 数值线性代数实验一 一、实验名称:矩阵的LU分解. 二、实验目的:用不选主元的LU分解和列主元LU分解求解线性方程组Ax=b, 并比较这 两种方法. 三、实验内容与要求 (1)用所熟悉的计算机语言将不选主元和列主元LU分解编成通用的子程序,然后用编写的程序求解下面的84阶方程组 将计算结果与方程组的精确解进行比较,并就此谈谈你对Gauss消去法的看法. (2)写出追赶法求解三对角方程组的过程,并编写程序求该实验中的方程组 Gauss消去法: 用消去法解方程组的基本思想是用逐次消去未知数的方法把原来方程组Ax=b化为与其等价的三角方程组,而求解三角方程组就容易了。换句话说,上述过程就是用行的初等变换将原方程组系数矩阵化为简单形式,从而将求解原方程组的问题转化为求解简单方程组的问题。 利用Gauss消去法对线性方程组Ax=b进行求解。 用MATLAB建立m文件DelGauss.m,程序如下: function x=DelGauss(a,b) [n,m]=size(a); nb=length(b); det=1; x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end

m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); end det=det*a(n,n); for k=n:-1:1 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k); End 在matlab中输入如下: 结果如下:

实验2:线性代数实验答案

撰写人姓名:撰写时间:审查人姓名: 实验全过程记录实验 名称线性代数实验 时间2学时 地点数学实验室 姓名学号 同实验者学号 一、实验目的 1、熟练掌握矩阵的基本运算; 2、熟练掌握一般线性方程组的求解; 3、掌握最小二乘法的MATLAB实现,矩阵特征值、特征向量的求解以及化二次型为标准型。 二、实验内容: 1、利用MATLAB实现矩阵的基本运算; 2、利用MATLAB求解一般线性方程组,利用最小二乘法求解超定方程组; 3、利用MATLAB化二次型为标准型。 三、实验用仪器设备及材料 软件需求: 操作系统:Windows XP或更新的版本; 实用数学软件:MATLAB 7.0或更新的版本。 硬件需求: Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、 CD-ROM驱动器、打印机、打印纸等。 四、实验原理: 线性代数理论 五、实验步骤: 1、计算下列行列式: ⑴ 4124 1202 10520 0117 ; >> A=[4 1 2 4;1 2 0 2;10 5 2 0;0 1 1 7]; >> det(A) ans =

⑵ 100 110 011 001 a b c d - - - 。 >> syms a b c d; >> A=[a 1 0 0;-1 b 1 0;0 -1 c 1;0 0 -1 d]; >> det(A) ans = a*b*c*d+a*b+a*d+c*d+1 2、设 212 122 221 A ?? ?? =?? ?? ?? ,求1098 ()65 A A A A ?=-+。 >> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8 ans = 2 2 -4 2 2 -4 -4 -4 8 3、求下列矩阵的逆矩阵: ⑴ 121 342 541 - ?? ?? - ?? ?? - ?? ; >> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8 ans = 2 2 -4 2 2 -4 -4 -4 8 >> A=[1 2 -1;3 4 -2;5 -4 1]; >> inv(A) ans =

数值计算实验课题目

数值实验课试题 本次数值实验课结课作业,请按题目要求内容写一篇文章。按题目要求人数自由组合,每组所选题目不得相同(有特别注明的题目除外)。试题如下: 1)解线性方程组的Gauss 消去法和列主元Gauss 消去法(2人)/*张思珍,巩艳华*/ 用C 语言将不选主元和列主元Gauss 消去法编写成通用的子程序,然后用你编写的程序求解下列84阶的方程组 ??????????? ??=??????????? ????????????? ? ?141515151576816816816816816848382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 2)解线性方程组的平方根法(4人)/*朱春成、黄锐奇、张重威、章杰*/ 用C 语言将平方根法和改进的平方根法编写成通用的子程序,然后用你编写的程序求解对称正定方程组b Ax =,其中 (1)b 随机的选取,系数矩阵为100阶矩阵 ?????????? ? ??1011101110111011101110 ; (2)系数矩阵为40阶的Hilbert 矩阵,即系数矩阵A 的第i 行第j 列元素为 11-+=j i a ij ,向量b 的第i 个分量为∑=-+=n j i j i b 1 11. 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编

3.《数值分析简明教程》,王能超编 3)三对角线方程组的追赶法(3人)/*黄佳礼、唐伟、韦锡倍*/ 用C 语言将三对角线方程组的追赶法法编写成通用的子程序,然后用你编写的程序求解如下84阶三对角线方程组 ?????????? ? ??=??????????? ????????????? ??141515151576816816816816816848382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值分析简明教程》,王能超编 4)线性方程组的Jacobi 迭代法(3人)/*周桂宇、杨飞、李文军*/ 用C 语言将Jacobi 迭代法编写成独立的子程序,并用此求解下列方程组, 精确到小数点后5位 ????? ??=????? ??????? ??-1490122111221321x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 5)线性方程组的Gauss-Seidel 迭代法(3人)/*张玉超、范守平、周红春*/ 用C 语言将Gauss-Seidel 迭代法编写成独立的子程序,并用此求解下列方 程组,精确到小数点后5位 ????? ??=????? ??????? ??--397211111112321x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 6)解线性方程组的最速下降法法(2人)/*赵育辉、阿热孜古丽*/ 用C 语言将最速下降法编写成通用的子程序,然后用你编写的程序求解对称

线性方程组的直接解法 实验报告

本科实验报告 课程名称:数值计算方法B 实验项目:线性方程组的直接解法 最小二乘拟合多项式 实验地点:ZSA401 专业班级:学号:201000 学生姓名: 指导教师:李志 2012年4月13日

线性方程组的直接解法 一、实验目的和要求 实验目的:合理利用Gauss 消元法、LU 分解法或追赶法求解方程组。 实验要求:利用高斯消元法,LU 分解法或追赶法进行编程,求解题中所给的方程组。 二、实验内容和原理 实验内容:合理利用Gauss 消元法、LU 分解法或追赶法求解下列方程组: ① ?? ?? ? ?????=????????????????????13814142210321321x x x ②??? ? ?? ??????=????????????????????? ?? ? ??--?-2178.4617.5911212592.1121130.6291.513 14 .59103.043 2115x x x x ③?? ??? ??? ? ???????----=????????????????????????????????-55572112112112121 n n x x x x (n=5,10,100,…) 实验原理:这个实验我选用的是高斯消元法。高斯消元法:先按照 L ik =a ik^(k-1)/a kk^(k-1) , a ij^(k)=a ij^(k-1)-l ik a kj^(k-1) [其中k=1,2,…,n-1;i=k+1,k+2,…,n;j=k+1,k+2,…,n+1] 将方程组变为上三角矩阵,再经过回代,即可求解出方程组的解。 三.计算公式 通过消元、再回代的求解方法称为高斯消元法。特点是始终消去主对角线 下方的元素。 四、操作方法与实验步骤 #include "Stdio.h" #define N 3 main() { double a[N][N+1],b[N]; int i,j,k,x=0; for(i=0;i

线性代数实验作业

线性代数实验作业 14B09125 李强 实验一:交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。 问题:某城市有下图所示的交通图,每条道路都是单行线,需要调查每条道路每小时的车流量。图中的数字表示该条路段的车流数。如果每个交叉路口进入和离开的车数相等,整 求(1)利用上面的观测数据,建立关于各个路口交通流量的线性方程组,并用MATLAB 软件求解; (2)分析在建立的方程组中,哪些方程是多余的,进而判断哪些流量数据是多余的; (3)为了唯一确定未知交通流量,还需要增加哪几条道路的流量统计。 程序:A=zeros(9,12); A(1,1)=1;A(1,7)=1;A(2,1)=1;A(2,2)=-1;A(2,9)=1; A(3,2)=1;A(3,11)=-1;A(4,3)=1;A(4,7)=1;A(4,8)=-1; A(5,3)=-1;A(5,4)=1;A(5,9)=-1;A(5,10)=1; A(6,4)=-1;A(6,11)=1;A(6,12)=-1;A(7,5)=1;A(7,8)=1; A(8,5)=-1;A(8,6)=1;A(8,10)=-1;A(9,6)=-1;A(9,12)=1; A=sym(A) b=[400,300,200,350,0,-500,310,-400,140]'; B=[A,b]; C0=rref(B) d=1:13; d(6)=12;d(12)=6;d(7)=9;d(9)=7;d(8)=10;d(10)=8; B1=B(:,d); C1=rref(B1);

C=C1(:,d) r_B=rank(B) for i=1:9 B_=B;B_(i,:)=[]; r2=rank(B_); A_=B_(:,1:end-1); r1=rank(A_); r(i)=(r1==r2 & r1==8); end r A = [ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] [ 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0] [ 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0] [ 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0] [ 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, -1] [ 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] [ 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0] [ 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1] C0 = [ 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1,0,500] [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1,0,200] [ 0, 0, 1, 0, 0, 0, 0, 0, 1, -1, -1, 1,500] [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 500] [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, -1, 260] [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, -140] [ 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -100] [ 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0,1, 50] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] C = [ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 400] [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 200] [ 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 350] [ 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 360] [ 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 310] [ 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 140] [ 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, -1, 0, 100] [ 0, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 0, 90] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] r_B = 8 fori = 1 2 3 4 5 6 7 8 9

线性方程组的直接解法及matlab的实现

本科毕业论文 ( 2010 届) 题目线性方程组的直接解法及matlab的实现 学院数学与信息工程学院 专业数学与应用数学 班级2006级数学1 班 学号0604010127 学生姓名胡婷婷 指导教师王洁 完成日期2010年5月

摘要 随着科技技术的发展及人类对自然界的不断探索模拟.在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题! 本文的主要内容是对线性方程组求解方法的探讨,主要介绍了四种求解线性方程组的方法,第一种是教科书上常见的消元法,我们称之为基本法.第二种方法是标准上三角形求解法,即将增广矩阵经过初等变换后化成标准上三角形,然后求解.它改进了一般教科书上的常见方法,与常见方法比较有如下优点:1)规范了自由未知量的选取;2)只用矩阵运算;3)减少了计算量.第三种方法是对特定的方程组(系数矩阵A为n阶对称正定矩阵,且A的顺序主子式均不为零.)的求解方法进行描述,并且为这种线性方程的求解提供了固定的公式化的方法.第四种方法是对现在实际问题中常常会遇到的系数矩阵为三对角矩阵的方程组的求解方法.同时给出这几种方法的数值解法(matlab程序),由于运用电脑软件求解,所以必须考虑计算方法的时间、空间上的效率以及算法的数值稳定性问题,所以针对不同类型的线性方程组有不同的解法.但是,基本的方法可以归结为两大类,即直接法和迭代法. 关键词 高斯消去法;三角分解法;乔莱斯基分解法;追赶法

Abstract Systems of linear equations are associated with many problems in engineering and scinence ,as well as with applications of mathematics to the social sciences and the quantitative study of business and economic problems. The main content of this article is the method for solving linear equations, we introduce four methods for solving linear equations in this paper. The first is the elimination method which is commonly found in textbooks, and we call the Basic Law. The second method is Standard on the triangle Solution, that first change Augmented matrix into standards in primary triangle, and then solving. It improves the general textbook on common methods, compared with the common method has the following advantages:1) Specification of the free choice of unknowns; 2)Only matrix operations;3) Reduce the computation. The third method describes a way to solve a Specific equations(N coefficient matrix A is symmetric positive definite matrix, and A are not zero-order principal minor), And for this linear equation provides a fixed formulaic approach. The fourth method is to present practical problems often encountered in the coefficient matrix is tridiagonal matrix method for solving the equations. These methods are given numerical solution of (matlab program), As the use of computer software to solve, it is necessary to consider ways of computing time and space efficiency and numerical stability of algorithms, Therefore, different types of linear equations have a different solution. However, the basic method can be classified into two categories, namely direct methods and iterative methods. Key words Gaussian elimination; Triangular decomposition; Cholesky decomposition method; Thomas algorithm

相关主题
文本预览
相关文档 最新文档