当前位置:文档之家› 飞机研制中的装配过程仿真

飞机研制中的装配过程仿真

飞机研制中的装配过程仿真
飞机研制中的装配过程仿真

飞机研制中的装配过程仿真

newmaker

近年来,国内外对飞机产品数字化装配技术的研究主要集中在装配分析与仿真、装配数据管理、装配工装夹具设计制造以及自动化装配等方面。国际上以飞机和汽车为代表的大型复杂产品研制企业都已将数字化装配技术应用于生产中,取得了显著的效益,无论是B o e i n g 还是Airbus 目前基本上已实现了数字化装配。如Airbus 系列飞机壁板装配采用了以数控钻铆机为中心的柔性装配系统,从铆接过程到装配管理均实现了数字化控制。资料统计得出:典型部件装配周期缩短60%、飞机装配周期缩短10%以上、装配工艺设计周期缩短30%~50%、装配返工率减少50%、装配成本减少20%~30%,同时大大提高飞机装配质量,极大限度地满足了客户要求。

装配过程仿真是数字化装配的基础

1 数字化飞机装配与装配过程仿真

飞机产品的特点就是零件数量巨大、形状复杂、刚度低、产品结构复杂、配合关系复杂、材料种类多、工艺方法多,协调关系复杂、准确度要求高、尺寸链复杂以及工艺环节影响大。以往依靠工艺人员的经验,经常从零件、乃至工装开始就出现超差,最终累积反映在装配阶段,可能发生强迫装配,装配车间的工艺人员80%的时间用于处理超差,从而影响飞机的质量、性能和寿命。因此,应用装配过程仿真主要有以下目的:首先使得各种不协调问题暴露在真实的装配开始之前并得到解决;其次通过装配过程的仿真及其优化后,输出应用于装配生产现场的技术文档和培训文档;第三为自动钻铆等数字化装配手段和工具的应用提供技术支撑。

飞机装配是一个复杂的过程,一般用于指导装配生产的工艺文件的最终形成是根据产品的结构特征、企业的生产组织方式、人力与设备的情况、装配准确度的要求、装配基准及定位方法、装配连接技术要求、设计功能的特殊要求、尺寸及刚度要求等因素,对整个装配过程和企业资源综合优化的结果,这些都充分体现了仿真的复杂性及必要性。在进行装配过程仿真时,必须进行人体建模、飞机虚拟样机建模、设备以及工装工具建模、人机工程虚拟环境建模、仿真过程建模等,必须进行人机工效分析,进行过程仿真和优化,最后生成相关工艺文件。

2 三维装配工艺规划和过程仿真

三维装配工艺规划和过程仿真是在计算机提供的虚拟空间内,融入知识管理的概念,对产品零组件、工装、工艺过程、工具等用数字化模型表示的全部行为,为人们提供一个从产品零件开始到完成部件装配全过程的三维可视化及交互的虚拟现实环境。信息技术的高速发展为三维装配工艺规划和装配过程仿真提供了有效的手段和技术支撑。在飞机研制中通过装配过程仿真可以提前暴露并解决实际装配过程中的设计、工艺、制造等问题,采用装配过程仿真可以有效地提高产品质量、降低产品研制风险、缩短装配周期、降低研制成本。主要表现在:

·在3D 环境中模拟装配流程,以避免在装配现场发生各种预料之外的问题。

·在设计的早期阶段,就考虑产品的工艺性、装配性,可以有效地减少设计更改,降低研制成本。

·同步进行产品设计、工艺设计和工装设计,并在产品设计阶段完成所有工艺设计和制造流程的模拟与优化,真正实现面向制造的设计。

·在PPR(Product、Process 和Resource)的集成环境中,可以暴露工装设计和制造中的问题,优化工装的设计。

·减少(或消除)制造现场的返工与工程更改,以便提高产品质量。

在构型管理和工程更改的控制下,统一管理产品(Product)、工艺过程(Process)和资源(Resource)等信息、以及这些信息对象之间的相互关系,为设计、工艺、制造、生产营运、与售后服务等之间的紧密联系提供了一个共同的环境,整合并管理从概念设计到维修报废之间的产品全生命周期。

3 三维装配工艺规划和过程模拟仿真的核心

装配过程三维规划和过程仿真的核心是产品、工艺过程和资源三者的数据交互技术,也是同步支持产品设计、制造流程规划和工艺设计、并综合进行仿真验证的技术基础。独特的PPR 数据库环境支持飞机复杂的构型管理与数据有效性控制规则,支持工程更改、流程规划,资源规划和工艺设计,并保持产品工程信息之间的关联性。这种数据交互技术提供现

实可靠的方法,通过产品构型管理和数据有效性控制,直接管理产品、流程、资源等信息知识对象以及这些对象之间的关联。由于在统一的集约化数据库中可以直接定义和管理这些关联,每个工程师可以直接地观察到某一类对象的变更会对其它对象带来的影响和冲击。例如:若变更某个零件设计,哪个制造计划或工艺会受影响等等。可以充分利用P P R 对象之间的丰富关联,促使其中的任一对象均能尽早尽快进行可能的优化。

产品工艺过程和资源的数据交互支持捕捉,积累、管理并重复利用知识库案例,包括标准的设计规则、制造流程与工艺规格、资源限制、标准工时分析等等,并以知识工程为基础,提供定义和管理这些对象间相互关联的能力和环境,使得飞机研制中设计、工艺、生产制造、与企业营运等组织之间得到优化整合。

在整个产品生命周期内高效正确地管理各种并行的设计变更与工程更改,将多个业务系统之间的接口置放在以唯一数据源为基础的架构内,有效运用以唯一数据源为基础的应用程序来支持装配流程规划和工艺设计等业务,能够在产品全生命周期中快速响应设计变更和工程更改的要求,并确保工程信息和技术资料的完整性。

应用以唯一数据源为基础的产品流程资源数据库,针对各个不同的装配方案进行离散事件仿真,能够针对多产品混产情况分析评估物料流、生产效率和资源利用率。利用P P R数据库,能够进一步分析流程规划、资源配置与优先需求,以便平衡制造设施内的工作负荷,并提高人力资源使用率。

飞机装配仿真技术的关键主要可归纳为下列5 个方面:

(1)装配仿真环境的构建。仿真环境的描述与管理,装配动作与感觉信息间的相互关系,感觉信息的综合方法以及输入、输出的驱动规则等。

(2)知识驱动下约束关系的自动生成和识别。在仿真环境中对装配的零件赋予机械、物理特性,并由此形成装配过程的作用力;使微观和瞬态的分析数据在虚拟空间中展现为可视的宏观和动作过程。

(3)知识驱动的装配规划技术。装配规划就是寻求一条最优的零件装配顺序序列,重点解决如何更形象地表现装配规划过程中信息的动态流动及其可视化;如何在生成装配规划过程中通过人机交互加入知识管理和融入人的智能;如何基于知识检查装配干涉和配合力分析。

(4)人的知识和技巧的映射。为了使知识和智能融入装配规划的生成,需要研究人体模型在虚拟环境中的映射,正确检测和处理人的装配动作信号。

(5)装配仿真系统的建立。虚拟装配系统由装配动作输入、虚拟装配环境、装配过程和判断装配正确性的感觉信息输出等四个子系统组成,研究其信息的集成以完成虚拟装配全过程的实施。

应用案例:某机翼中央翼组件装配工艺流程仿真

传统的2 维工艺设计模式是由工艺设计人员在头脑中抽象构建3维装配空间、设计装配顺序,最终用平面方式表述;设计质量完全取决于工艺设计人员的技术水平和工作经验。操作人员需要根据工艺设计人员编发的文件及2 维工程图纸在大脑中再次构建3 维装配空间,理解装配顺序、装配要求,这对生产操作人员的素质要求较高。

另一方面,现有C A P P 基于2维设计模式开发,不能充分利用上游产品的3 维C A D 数据,且对制造资源及装配工艺知识的描述是2 维的。因此难以保证工艺数据的准确性,工艺设计工作量大、效率低、周期长,难以实现工艺设计的继承性、规范性、标准化和最优化。

为了探索装配工艺三维数字化设计基本思路及工作流程,我们以某飞机中央翼为例,应用基于PPRHUB和知识的DELMIA 软件进行了装配过程的工艺设计、优化和仿真。

装配过程仿真在工程设计与产品制造之间提供了一个可视化的工艺设计环境,变过去工艺人员在2 维环境进行工艺工作为在3 维可视环境下真正的装配工艺流程设计,工艺人员在这个工作平台能够模拟整个装配过程,可以分析零组件在装配过程中任何一个具体的姿态,以及工装定位器、夹紧装置的使用等。装配过程可制作成A V I 文件,置于生产现场指导生产和对工人进行培训。

通过装配过程仿真,发现中央翼产品设计和工装设计需要进一步完善的地方,主要问题是:

(1)中央翼总装工作梯立柱位置不合理。操作人员是双手端着工具盒上到型架上,而图示立柱恰好挡住了操作人员上到型架上的路径。

(2)操作人员从地面上到型架上,型架地板面距地面距离约500m m,以操作人员平均身高1720m m 分析,其右腿抬得过高,此时人会失其重心,需要增设一级台阶。

(3)操作人员行走在中央翼总装型架上,不安全,存有安全隐患。工装设计应在工装上铺设地板,便于操作人员行走。

(4)操作人员要拿着工具钻进中央翼里工作,中央翼下壁板距型架地板约1350mm,操作人员很难钻进中央翼里工作。在此处工装对称两侧分别增设一个高800mm 左右活动梯,便于操作人员钻进中央翼里工作。

(5)操作人员工作姿势下,右腿与上部躯体夹角106.532°,接近极限113°,工作环境极为恶劣。应在中央翼下壁板铺厚海绵垫,改善工作环境,防止操作人员与结构直接接触,造成身体不适。

结束语

计算机仿真技术不仅可以有效地应用于飞机研制中,也可以有效地应用于制造工程与工艺设计、以模拟仿真为基础的验证优化过程、工艺指令的编制过程和制造工人的培训过程,让一个真正的无纸化信息和知识的应用变成现实。同时,也可以延伸到售后服务与维护修理作业的仿真验证过程等。

有效地运用计算机仿真技术,可以减少对物理样机的需求,降低成本,节省时间。在产品开发进程的后期结合最新的设计更改,来进行工装工具的设计制造,消除产品设计变更所带来的昂贵的工具工装的更改。在设计的早期,按照制造装配与维修工作的可操作性要求,进行设计优化和变更,因而能够减少对特殊工具工装的需求。

目前我国航空企业还都维持在传统的制造流程上,飞机装配从部件铆接过程到整机大部件对接及装配基本上还采用手工作业或人工控制。随着数字化设计、数字化制造、数字化管理的全面推广应用,航空企业迫切需要提高数字化装配水平,缩短装配周期,以满足型号快速研制的需要。(end)

飞机大战实验报告

飞机大战实验报告 专业:网络工程132班 学号:139074298 姓名:孙仁强 计算机科学与技术学院二零一六年十二月

一、软件运行所需要的软硬件环境 本系统是以Windows系统为操作平台,用Java编程语言来实现本系统所需功能的。本机器的配置如下: 处理器:CORE i7 主频:1.2Hz以上 内存:4G以上 硬盘:HHD 50G 编程语言:Java 开发环境:windows7 开发软件:Eclipse Mars 二、游戏流程 1.用户打开游戏,进入开始菜单。 2.用户点击开始游戏按钮,进入游戏界面; 3.用户通过触屏方式控制玩家飞机上下左右移动,躲避与子弹相撞; 4.游戏失败后,显示本次游戏得分,用的秒数和水平; 5.退出游戏 三、主要代码 1、准备代码设置窗口使用双缓冲使飞机不闪烁 Constant设置窗口大小 package com.ahut.准备代码; publicclass Constant { publicstaticfinalint GAME_WIDTH = 350; publicstaticfinalint GAME_HEIGHT = 600; } package com.ahut.准备代码; import java.awt.Image; import java.awt.image.BufferedImage;

import java.io.IOException; import https://www.doczj.com/doc/915299695.html,.URL; public class GameUtil { private GameUtil () {} public static Image getImage(String path) { BufferedImage bi = null; try { URL u = GameUtil.class.getClassLoader().getResource(path); bi = javax.imageio.ImageIO.read(u); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return bi; } } package com.ahut.准备代码; import java.awt.Frame; import java.awt.Graphics; import java.awt.Image; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; public class MyFrame extends Frame{ public void lauchFrame() { setSize(Constant.GAME_WIDTH, Constant.GAME_HEIGHT); setLocation(100, 100); setVisible(true); new PaintThread().start(); addWindowListener(new WindowAdapter() { @Override public void windowClosing(WindowEvent e) { System.exit(0); } }); }

建模与仿真

第1章建模与仿真的基本概念 参照P8例子,列举一个你相对熟悉的简单实际系统为例,采用非形式描述出来。 第2章建模方法论 1、什么是数学建模形式化的表示?试列举一例说明形式化表示与非形式化表示的区别。 模型的非形式描述是说明实际系统的本质,但不是详尽描述。是对模型进行深入研究的基础。主要由模型的实体、包括参变量的描述变量、实体间的相互关系及有必要阐述的假设组成。模型的非形式描述主要说明实体、描述变量、实体间的相互关系及假设等。 例子:环形罗宾服务模型的非形式描述: 实体 CPU,USR1,…,USR5 描述变量 CPU:Who,Now(现在是谁)----范围{1,2,…,5}; Who.Now=i表示USRi由CPU服务。 USR:Completion.State(完成情况)----范围[0,1];它表示USR完成整个程序任务的比例。参变量 X-----范围[0,1];它表示USRi每次完成程序的比率。 i 实体相互关系 (1)CPU 以固定速度依次为用户服务,即Who.Now为1,2,3,4,5,1,2…..循环运行。 X工作。假设:CPU对USR的服务时间固定,不(2)当Who.Now=I,CPU完成USRi余下的 i X决定。 依赖于USR的程序;USRi的进程是由各自的参变量 i 2、何谓“黑盒”“白盒”“灰盒”系统? “黑盒”系统是指系统内部结构和特性不清楚的系统。对于“黑盒”系统,如果允许直接进行实验测量并通过实验对假设模型加以验证和修正。对属于黑盒但又不允许直接实验观测的系统,则采用数据收集和统计归纳的方法来假设模型。 对于内部结构和特性清楚的系统,即白盒系统,可以利用已知的一些基本定律,经过分析和演绎导出系统模型。 3、模型有效性和模型可信性相同吗?有何不同? 模型的有效性可用实际系统数据和模型产生的数据之间的符合程度来度量。它分三个不同级别的模型有效:复制有效、预测有效和结构有效。不同级别的模型有效,存在不同的行为水平、状态结构水平和分解结构水平的系统描述。 模型的可信度指模型的真实程度。一个模型的可信度可分为: 在行为水平上的可信性,即模型是否重现真实系统的行为。 在状态结构水平上可信性,即模型能否与真实系统在状态上互相对应,通过这样的模型可以对未来的行为进行唯一的预测。 在分解结构水平上的可信性,即模型能否表示出真实系统内部的工作情况,而且是惟一表示出来。 不论对于哪一个可信性水平,可信性的考虑贯穿在整个建模阶段及以后各阶段,必须考虑以下几个方面: 1在演绎中的可信性。2在归纳中的可信性。3在目的方面的可信性。 4、基于计算机建模方法论与一般建模方法论有何不同?(P32) 经典的建模与仿真的主要研究思路,首先界定研究对象-实际系统的边界和建模目标,利用已有的数学建模工具和成果,建立相应的数学模型,并用计算装置进行仿真。这种经典的建

《飞机装配工艺》(教案)

飞机装配工艺 本课程系飞行器制造专业必修课、飞行器着机专业选修课。 《飞行器制造工程十五建设报告》摘要 项目提出的依据: 我院“飞行器制造工程”专业是国防科工委重点建设专业(见《关于确定国防科工委重点学科、重点专业点的通知》科工人[2002]536号文件),按照科工计[2003]335号“国防科学技专业建设:术工业委员会文件”的文件精神,及我院学科建设中长期发展规划。…… 将更好地培养一批紧密结合国防工业实际、面向工程一线、献身国防军工建设的高层次、高素质创新型人才; 项目主要建设内容: 本项目的主要建设内容是根据“飞行器制造工程”专业建设:“瞄准国际航空先进制造技术水平,培养创新务实人才,重点研究方向突破,适当兼顾地方建设”的要求。…… 到2010年前后,把南昌航空工业学院的“飞行器制造工程”建成整体办学实力居于全国同类专业先进水平,在部分研究领域有重要影响的专业并为国防工业建设输送大批从事工程第一线工作所需要的理论知识和实践技能的应用型、复合型的,掌握先进制造技术技能的高等工程技术人才。…… 绪论(增加) 主要内容: 一、飞机的基本组成及用途 二、飞机生产部门的组织 三、飞机研制的一般过程 四、飞机产品的特点 五、本课程的性质、学习要求和方法 六、教学大纲简介 一、飞机的基本组成及用途 1、机体结构; 2、动力装置; 3、机载设备; 4、其他主要系统。 1、飞机的机体结构 机翼、机身、尾翼、起落架。 2、飞机的动力装置 3、飞机的机载设备 需要测量的主要参数有:发动机参数;飞行参数;导航参数;座舱环境参数;飞行员生理参数;飞行员生命保障系统参数;其他系统参数。——————————————————————————————————————— (1)仪表、传感器、显示系统 压力传感器、温度传感器、高度表、空速表、大气数据系统、航向驼螺仪、驼螺地平仪、全姿态显示器、电子综合显示器等。 (2)导航系统 无线电导航设备、卫星导航设备、惯性导航设备、图像匹配导航设备、天文导航设备、组合导航设备等。 (3)自动控制系统 自动驾驶仪、自动着陆系统、电传操纵系统等。

基于DELMIA的汽车装配线建模与仿真_容芷君

2011年 第12期 物流工程与管理 第33卷 总第210期 LOGISTICS ENGINEERING AND MANAGEMENT 【收稿日期】2011-11-22 *基金项目:国家自然科学基金(NO50805108);国家自然科学基金(NO51175388)。 【作者简介】容芷君(1974-),女,博士,武汉科技大学机械自动化学院,副教授。 周燕学(1987-),男,武汉科技大学机械自动化学院,学士。 物流技术 doi:10.3969/j.issn.1674-4993.2011.12.032 基于DELMIA的汽车装配线建模与仿真* □ 容芷君,周燕学,刘 悦 (武汉科技大学 机械自动化学院 工业工程系,湖北 武汉 430000) 【摘 要】汽车装配线直接决定了汽车生产的效率,因此,对汽车装配线进行建模与仿真,优化装配流程十分必要。基于DELMIA 的DPM(Digital Process for Manufacturing)模块,对汽车装配线的装配序列规划、装配干涉以及装配路径规划进行研究,按规划的工艺流程对总装线进行模拟仿真,分析装配线的平衡率,通过仿真结果验证该装配线的可达性、可行性以及装配线的人因工效性。文中研究工作对优化及改善汽车装配过程,缩短工艺规划时间,实现汽车装配线的流水化具有一定指导意义和应用价值。 【关键词】DELMIA;装配线;建模;仿真 【中图分类号】TH69 【文献标识码】 B 【文章编号】 1674-4993(2011)12-0075-03 Modeling and Simulation of Automobile Assembly Line Based on DELMIA  □ RONG Zhi-jun, ZHOU Yan-xue, LIU Yue (Wuhan University of Science and Technology Department of Industrial Engineering,Wuhan 430000,China) 【Abstract 】The automobile assembly line has important impact on the automobile production efficiency. Therefore it is important to implement modeling and simulation of the automobile assembly line and optimize the assembly process. Based on the DPM of DELIMA, the paper studies the assembly sequence plan, assembly interference and assembly route plan. The assembly line is modeled and simulated according to the planned assembly process and the balance rate of assembly line can be analyzed. The accessibility, feasibility and economic features of the assembly line is certified with the simulation results. This paper has certain guiding significance and application value in optimizing and improving automobile assembling, shortening the process planning time and implementing the automation of automobile assembly line. 【Key words 】DELMIA; assembly line; modeling; simulation 1 装配生产线建模与仿真 汽车装配线将人和机器有效结合起来,实现汽车零部件的自动装配,在汽车生产中扮演着重要的角色。汽车装配线直接决定了汽车的生产效率。随着汽车工业和零部件工业的发展,汽车装配线技术水平也有了较大的提高,围绕汽车装配线的研究一直是汽车工业发展的一个重要内容[1-2]。装配生产线的建模与仿真能把生产资源、产品工艺数据、装备等信息动态地结合起来,通过系统活动过程来模拟装配过程,从而分析和预测装配线的效能。虚拟装配系统是装配系统向多维信息化空间的一种映射,主要包括基本模型构建、装配序列规划、路径规划、干涉检查和装配仿真等关键技术[3-4]。建立虚拟装配系统的目的是:在计算机上利用已有的虚拟装配环境,在该装配环境下能够把用户指令和各种信息及时输入到系统中,也能把虚拟环境中的序列和路径规划结果、干涉检测结果、装配仿真结果等传输给用户,实现产品的最终装配。当前有许多数字化仿真软件能有效地帮助人们实现对生产装配线的建模仿真,如DELMIA,eM-Power,ProModel, Flexsim等[5-7]。其中DELMIA解决方案涵盖汽车领域的发动机、总装和白车身,航空领域的机身装配、维修维护,以及一般制造业的制造工艺。使用户利用数字实体模型完成产品生产制造工艺的全面设计和校验。DELMIA数字制造解决方案建立于一个开放式结构的产品、工艺与资源组合模型(PPR)上,此模型使得在整个研发过程中可以持续不断地进行产品的工艺生成和验证。通过3D协同工作,PPR能够有效地支持设计变更,让参与制造设计的多人中的每个人能随时随地掌握目前的产品(生产什么)、工艺与资源(如何生产)。基于PPR集成中枢的所有产品紧密无缝地集成在一起,涵盖了各种工艺的各个方面,使基于制造的专业知识能被提取出来,并让最佳的产业经验得以重复利用。 根据虚拟装配的特点以及虚拟装配系统关键技术,将装配仿真、可达性分析等作为虚拟装配的体系结构的重要环节。基于DELMIA的虚拟装配体系结构如图1所示。在该虚拟装配环境中完成虚拟装配建模、虚拟装配序列、路径规划和装配过程仿真、干涉碰撞检测、装配可达性分析等。

MFC_陨石撞飞机实验报告

.. . .. . 一、题目 陨石撞飞机综合性实验 二、中文摘要 用MFC设计一个陨石撞飞机的平面游戏:陨石不断地向下落,飞机通过上下左右键移动以躲避陨石。当陨石碰撞了飞机时,显示提示对话框,及飞机爆炸图像。确定后在碰撞位置重新开始游戏。三次碰撞后显示提示对话框,游戏结束。 三、关键词 MFC、Bitmap、timer、键盘响应(WM_KEYDOWN) 四、前言 此程序大多代码出自参考资料,一小部分代码为搜索资料并加工完成,其功能尚有不完善之处。 五、软件开发过程 (一)、新建MFC APPWizard[exe]单文档工程文件 在Visual C++中新建一个工程,命名为Plane。工程类型为:MFC AppWizard[exe]。在MFC AppWizard-Step1对话框中设置应用程序的类型,建立一个单文档工程文件,得到一个应用程序框架文件。 (二)、添加资源:、飞机位图、陨石位图、爆炸位图。 在[插入]-[资源…]选择Bitmap选项,单击[新建]即可。绘出一个飞机,ID 为(IDB_BITMAP1)、五个陨石(IDB_BITMAP2~IDB_BITMAP6)和一个炸弹位..

专业软件工程年级、班级09级8班 课程名称计算机综合性实验实验项目陨石撞飞机 实验时间2010 年 6 月20 日 实验指导老师黄荔实验评分 图(IDB_BITMAP7),如下图。 飞机位图陨石位图爆炸位图 (三)、在planeView.h头文件中声明所需变量和函数CBitmap m_plane; //声明一个CBitmap类型的飞机变量m_plane int mx,my;//表示飞机坐标 CBitmap m_bump; //爆炸位图变量 int mpx,mpy;//表示爆炸位图的坐标 int t; //爆炸次数 //声明陨石位图的成员变量为CBitmap类型的变量 CBitmap m_stone1,m_stone2,m_stone3,m_stone4,m_stone5; //声明陨石的坐标变量为int类型: int nstone1x,nstone1y; int nstone2x,nstone2y; int nstone3x,nstone3y;

QTP测试实验报告-飞机票订票系统

QTP自动化功能测试实践 一、实验目的 1、熟悉QTP自动化功能测试流程 2、能够利用QTP进行B/S或者C/S架构程序的自动化功能测试 二、实验内容 功能测试是针对应用系统进行测试,是基于产品功能说明书,是在已知产品所应具有的功能,从用户角度来进行功能验证,以确认每个功能是否都能正常使用。本项目主要使用QuickTest对其自带的MercuryTours网站/飞机票订票系统进行功能测试,要求录制预订机票的完整过程,然后执行测试脚本并分析结果。 三、实验要求 1、独立完成; 2、提交测试脚本 3、提交测试用例说明书及缺陷报告。 四实验内容 1脚本的录制与回放测试及检查点的设置验证 脚本代码: Dialog("Login").WinEdit("Agent Name:").Check CheckPoint("Agent Name:") '验证乘客名字文本框中的值标准检查点 Dialog("Login").WinEdit("Agent Name:").Set "123456" '输入用户名 Dialog("Login").WinEdit("Password:").Set "mercury" '输入密码 Dialog("Login").WinButton("OK").Click '单击OK按钮登陆 Window("Flight Reservation").Static("Static").Check CheckPoint("Static") '检查页面中的图片元素是否加载 Window("Flight Reservation").ActiveX("MaskEdBox").Type "011218" Window("Flight Reservation").WinComboBox("Fly From:").Select "London" Window("Flight Reservation").WinComboBox("Fly To:").Select "Paris" Window("Flight Reservation").WinButton("FLIGHT").Click Window("Flight Reservation").Dialog("Flights Table").WinList("From").Select "12534 LON 08:00 AM PAR 10:00 AM AF $165.50" Window("Flight Reservation").Dialog("Flights Table").WinButton("OK").Click Window("Flight Reservation").WinEdit("Name:").Set "gcc" Window("Flight Reservation").WinEdit("Tickets:").SetSelection 0,1

飞机装配工艺复习考试题

《飞机装配工艺》总复习 第一部分:飞机装配的基本原则和方法 1、飞机装配和通用机械产品装配的区别? 综合技术指标要求高 外形复杂,尺寸大 零部件数量多,连接面多,工艺刚性小 薄壁零件多 所用材料多 空间布局有限 2、简述集中装配原则和分散装配原则的概念、区别和应用。 集中装配原则:装配工作主要集中在部件总装型架内进行 3、简述飞机装配的两种基准。 1、以蒙皮为基准:误差积累由外向内 主要误差有:骨架零件外形制造误差,骨架装配误差,蒙皮厚度误差,蒙皮与骨架贴合误差,装配后变形误差 适用于:外形准确度要求较低的部件或者机翼高度较小,不便采用结构补偿的翼型 2、以骨架为基准:误差积累由内向外 主要误差:装配型架卡板外形误差,蒙皮与骨架贴合误差,装配后变形 适用于:外形准确度要求高的部件,且结构布置和连接通路都能满足要求 4、设计分离面和工艺分离面的定义和区别。 设计分离面:根据使用、运输、维护等方面的需要将整架飞机在结构上进行划分多个部件、段件和组件,这些部件、段件和组件之间一般采用可拆卸的连接,这样所形成的可拆卸的分离面就是设计分离面。 工艺分离面:即使飞机被划分成多个部件,这样的部件还是十分复杂的,由于部件的划分是按照功能、实用等划分的,因此在部件装配的时候还需要将部件进一步划分从而形成更小的板件、段件、组合件等等; 这些组合件在装配时一般采用不可拆卸的连接,他们之间的分离面称为工艺分离面 5、飞机装配准确度的主要技术要求。 (1)飞机空气动力外形的准确度 (2)各部件之间相对位置的准确度 (3)部件内各零件和组合件的位置准确度 定义:各零件和组合件对基准轴线的位置要求,例如大梁轴线、隔框轴线等实际装配位置相对于理论轴线的位置偏差。 (4)其他技术性能要求,例如部件功能性准确性要求,包括重量平衡、密封性、表面性等要求。 6、下面的装配件需要设计补偿环节吗?如需要,请说明理由,并设计之并在图中标示出来。

北航飞行力学实验班飞机典型模态特性仿真实验报告(精)

航空科学与工程学院 《飞行力学实验班》课程实验飞机典型模态特性仿真 实验报告 学生姓名:姜南 学号:11051136 专业方向:飞行器设计与工程 指导教师:王维军 (2014年 6 月29日 一、实验目的 飞机运动模态是比较抽象的概念, 是课程教学中的重点和难点。本实验针对这一问题,采用计算机动态仿真和在人-机飞行仿真实验平台上的驾驶员在环仿真实验,让学生身临其境地体会飞机响应与模态特性的关系,加深对飞机运动模态特性的理解。 二、实验内容 1.纵向摸态特性实验 计算某机在某状态下的短周期运动、长周期运动的模态参数;进行时域的非实时或实时仿真实验,操纵升降舵激发长、短周期运动模态,并由结果曲线分析比较模态参数;放宽飞机静稳定性,观察典型操纵响应曲线,并通过驾驶员在环实时仿真体验飞机的模态特性变化。

2.横航向模态特性实验 计算某机在某状态下的滚转、荷兰滚、螺旋模态参数;进行时域仿真计算,操纵副翼或方向舵,激发滚转、荷兰滚等运动模态,并由结果曲线分析比较模态参数。 三、各典型模态理论计算方法及模态参数结果表 1 纵向模态纵向小扰动运动方程 0000 1 00 0e p e p e p u w e u w q p u w q X X u u X X g Z Z w w Z Z Z q q M M M M M δδδδδ δδδθθ????????-???? ????????? ? ???????????=+??????????????????? ?????????????????? A =[ X

u X ?w Z u Z w 0?g Z q 0M ?u M ?w0 M q 010] =[?0.01999980.0159027?0.0426897?0.04034850?32.2869.6279 0?0.00005547?0.001893500?0.54005010] A 的特征值方程 |λ+0.0199998?0.01590270.0426897 λ+0.0403485032.2 ?869.627900.000055470.001893500λ+0.540050 ?1λ |=0 特征根λ1,2=?0.290657205979137±1.25842158268078i λ3,4=?0.00954194402086311±0.0377636398212079i 半衰期t 1/2由公式t 1/2=? ln2λ 求得,分别为 t 1/2,1=2.38475828674173s t 1/2,3=72.6421344585972s 振荡频率ω分别为 ω1=1.25842158268078rad/s ω3=0.0377636398212079rad/s 周期T 由公式T =

建模与仿真习题集

1. 以下关于神经元功能的表述中错误的是(A) A.时变特性 B.输出与输入之间有固定的时滞,取决于突触延搁 C.神经元有一定的阈值,并表现适应性 D.时间和空间加和 2.根据心肌缺血的严重程度和梗塞心肌的电气特性,可以将梗塞心肌分为三种类型,以下哪一个错误(B) A.坏死型心肌 B.病理型心肌 C.损伤型心肌 D.缺血型心肌 3.皮肤的散热可分为生理散热和物理散热,生理散热可分为血管运动和汗腺活动。 4.体温控制规律(即控制系统定律)的表达式为R—R0=—k(Ty—Ts). 5.已知呼出气体的容量Ve等于吸入气体的容量V1减去耗氧量Vo2加上二氧化碳的产生量Vco2;耗氧量等于吸入气体的氧容量减去呼出气体的氧容量(Fio2,Feo2分别表示吸入,呼出气体中的O2浓度的百分数);CO2产出量等于呼出气体的CO2容量减去吸入气体的CO2容量(Fico2,Feco2分别为吸入,呼出气体中的CO2浓度的百分比,吸入气体中的CO2可忽略不计),求耗氧率?

解: Ve=V1--Vo2+Vco2 耗氧量 Vo2=Fio2 *V1--Feo2 *Ve CO2产出量 Vco2=Feco2 *Ve 联立以上三式,对时间求导,得 把V1代入耗氧量公式,求的耗氧率 1.以下不是系统概念特性的是(D) A.整体性 B.抽象性 C.模型性 D.具体性 2.人们将人体视为有三个不同层次的同心圆柱体,由里向外分别为体核,肌肉脂肪组织,皮肤,其中热容量最大的是(A) A.体核 B.肌肉脂肪组织 C.皮肤 3.写出体温控制规律(R-R0=-k(Ty-Ts)) 4生理系统建模中常用的工程方法(用频域法解线性微分方程)(系统辨识)(方式分析) 5.下图为电路的频域表示,其中各参数都采用了频域表示,求V0(t)

装配过程仿真技术小结

2 1.2装配过程仿真技术 当今世界,基于信息和知识的产品正在高速发展,这要求制造企业以最短的产品开发时间(Time)、最优的产品质量(Quality)、最低的成本(Cost)和价格及最佳的务(Service)-"TQCS"来赢得用户和市场[5]。而实现这一目标的方法,就是将系统科学、计算机科学、虚拟现实、人工智能等技术与制造技术相结合,形成全新概念的现代先进制造技术即虚拟制造。 近年来,许多国家进行了虚拟制造领域的研究与应用,特别是关于虚拟装配的研究与应用引起了人们的广泛关注。国外统计,目前制造业应用虚拟装配技术节约了25%的研制经费,并缩短了研制周期。英国Tecnomatix技术有限公司开发的计算机辅助生产工程(CAPE)产品涉及到了设计、优化、制造可行性评价等技术;华盛顿州立大学开发的虚拟装配设计环境(V ADE)允许对系统进行计划、评估和改变,并将CAD系统与沉浸式的虚拟环境紧密结合在一起[6]。这些充分证明了以获取知识为核心的现代设计方法,特别是并行设计和虚拟设计与制造技术己得到了长足的发展。 虚拟现实技术在并行工程中的应用即虚拟装配(Virtual Assembly,V A)等作为一种强有力的计算机辅助工具,适应了并行工程及其发展的需要,必将对传统制造业进行一次新的变革。 虚拟装配是虚拟制造的关键组成部分,它利用计算机工具,通过分析、预测产品模型,对产品进行数据描述和可视化,做出与装配有关的工程决策,而不需要实物产品模型作支持。它从根本上改变了传统的产品设计、制造模式,在实际产品生产之前,首先在虚拟制造环境中完成虚拟产品原型代替实际产品进行试验,对其性能和可装配性等进行评价,从而达到全局最优,缩短产品设计与制造周期,降低产品开发成本,提高产品快速响应市场变化的能力。 虚拟装配是许多技术的综合利用,例如可视化技术、仿真技术、决策理论、装配和制造过程的研究等等。仿真是实现虚拟装配的主要手段。 近年来,由于信息技术的发展,特别是高性能海量并行处理技术、可视化技术、分布处理技术、多媒体技术和虚拟现实技术的发展,使得建立人-机-环境一体化的分布的多维信息交互的仿真模型和仿真环境成为可能,仿真因此形成一些新的发展方向,如可视化仿真(visual simulation,VS)、多媒体仿真(multimedia simulation,MS)和虚拟现实仿真(virtual reality simulation,VRS)等。这3种仿真呈递进关系:可视化仿真强调可视的、灵活的仿真分析环境;多媒体仿真除可视化以外还强调多样化的多媒体集成,如音像的合成效果等;虚拟现实仿真则强调投入感、沉浸感和多维信息的人机交互性。 虚拟制造的最终实现就是要利用各种不同层次的仿真手段来模拟优化产品设计制造的过程,以达到一次设计成功的目的。仿真的基本步骤为:研究系统→收集数据→建立系统模型→确定仿真算法→建 立仿真模型→运行仿真模型→输出结果并分析。 1.2.1装配过程仿真的概念和特征 产品制造过程仿真,可归纳为制造系统仿真和加工过程仿真。虚拟制造系统中的产品开发涉及到产品建模仿真、设计过程规划仿真、设计思维过程和设计交互行为仿真等,以便对设计结果进行评价,实现设计过程早期反馈,减少或避免产品设计错误。加工过程仿真,包括切削过程仿真、装配过程仿真,检验过程仿真以及焊接、压力加工、铸造仿真等。目前上述两类仿真过程是独立发展起来的,

数据结构(C语言)实验报告_飞机订票系统

《数据结构》课程设计报告 一、订票系统 【需求分析】 本订票系统要能够实现航班情况的录入功能、航班的查询功能、订票功能、退票功能以及管理本系统的功能即能够修改航班信息。 具体分析如下: 1、录入功能 可以录入航班信息,如录入航班号,到达城市,起飞时间,飞机票数,票价。 2、查询功能 可以查询航班的各项信息,如可以查询起降时间,起飞抵达城市,航班票价,确定航班是否满仓,航班号。 3、订票功能 可以订票并且记录下乘客的相关信息如记录下乘客,,所订航班的航班号以及所订的票数。 4、退票功能 可以退票并且记录乘客的相关信息以及退票信息。 5、修改功能 可以根据需要由管理员对航班信息进行修改更正。 【概要设计】 1、算法设计:每个模块的算法设计说明如下: (1)录入模块: 查找单链表的链尾,在链尾插入一个“航班信息”的新结点。 (2)查询模块: 提供两种查方式:按航号和按航线查询,1代表按航号查询,2代表按航线查询。0则表示退出查询。 顺着单链表查找,如果与航班号(航线)一致,输出相关信息,否则,查询不成功。 (3)订票模块: 查找乘客要订的航班号,判断此航班是否有空位,有则输入乘客有关信息,订票成功,否则失败。 (4)退票模块: 输入要退票的乘客以及证件,查找乘客资料的链表中是否有这位乘客,有则删去此结点,并在空位加上1,无则退票失败。 (5)修改模块: 输入密码,确认是否有权限对航班信息进行修改,有则在航班信息链表中查找要修改的结点,进行修改,否则不能修改。 2.存储结构设计: (1)航班的信息:为了便于查找和修改,航班的情况存储结构采用单链表,每个元素表示一个航班的情况,包括航班号、起飞达到的时间、空座和目的的、票价以及限座七个数据项:

飞机装配工艺总复习题

填空题 1、机装配中,常用的定位方法用画线定位、用装配孔定位和用装配夹具(型架)定 位。 2、确定铆钉孔位置的常用方法有按画线钻孔、按导孔钻孔和按钻模钻孔。 3、飞机转配铆接中,有正铆和反铆两种锤铆方法。 4、工艺分离面的主要特点是采用不可卸连接,设计分离面的主要特点是采用可卸连接。 5、密封铆接的密封形式有自密封铆接密封、缝内密封、缝外密封和表面密封四种。 6、胶接点焊有“先胶后焊”和“先焊后胶”两种基本的工艺过程。 7、在飞机制造成批生产中,采用分散装配原则时,其协调内容一般为工件与工件之间的协 调和工件与装配夹具(型架)之间的协调。 8、飞架制造中,模线可分为理论模线和结构模线。 9、在飞机装配中有三大连接技术,分别是铆接、胶接和焊接。 10、飞机装配型架一般由骨架、定位件、夹紧件和辅助设备等部分组成。 11、飞机装配夹具除了有起定位作用外,还有校正零件形状和限制装配变形的作用。 12、在飞机装配中除了用用装配夹具(型架)作为主要定位方法外,对不太复杂得组合件或 板件可用装配孔定位的定位方法。对无协调要求及定位准确度不高的部位可采用用划线定位的方法。 13、飞机部件的对接,一般采用叉耳式及接头、围框式接头和胶接式接头等三式。 14、飞机制造中,传统方式是采用实物的模拟量协调系统,现代方式是采用数字量尺寸传递 体系。 15、装配型架的骨架的结构形式有框架式、组合式、分散式和整体底座式。 16、切面样板有切面内、切面外、反切面内和反切外面等四种。 17、胶接点焊是高剪切强度的胶接和低成本的点焊组合。 18、设计分离面是为结构和使用需要而取的,主要特点是采用可拆卸连接。 19、在飞机装配中,铆接是应用最广泛的一种连接技术。 20、机尾翼相对于机身位置准确度是通过飞机水平测量来检查的。 21、普通铆接的铆接过程是制铆钉孔、制埋头窝(对埋头铆钉而言)、放铆钉和铆接。 22、比较复杂的机身总装型架的骨架一般采用分散式。 23、胶接点焊中,胶接体现的主要特点是高剪切强度,点焊体现的主要特点是低成本。

系统建模与仿真(2)

第九讲系统建模与仿真(2) 四、仿真 1. 仿真(模拟)(Simulation)概念 1)定义 利用模型复现实际系统中发生的本质过程, 并通过对系统模型的实验来研究存在的或设计中的系统. 2)分类 物理仿真:即实物仿真, 如风洞 计算机仿真(数学仿真): 模拟数字混合 半实物仿真: 控制器(实物)+计算机上实现的控制对象 3)建模、仿真与计算机 建模与仿真的五个组成部分(实际系统、试验框架、基本模型、集总模型、计算机模型)

实际系统:行为描述(可观测变量、不可观测变量) 试验框架:假设或条件集合,同模型有效性之间相关 基本模型:在试验框架下,解释实际系统的行为 集总模型:基本模型的简化 计算机:复杂(仿真) 4)基本要素 ●对仿真问题的描述 ●行为产生器 ●模型行为及其处理 5)仿真的发展阶段 ●模型驱动的仿真 ●含实物的仿真 ●人在回路中的仿真 6)仿真的发展趋势 ●面向对象仿真 ●定性仿真 ●智能仿真 ●分布交互仿真 ●可视化仿真 ●多媒体仿真 ●虚拟现实仿真 ●Internet网上仿真

7)仿真的对象 ●系统过于复杂(如存在过多的随机因素),难以采用解析法求解 时,通过仿真可得到系统的动态特征。 ●系统实际运行费用过高或无法作实际运行时,借助仿真可以得到 系统的有关参数。 优化设计、安全性和经济性、预测、完善系统模型、重复实验 8)仿真的一般过程 9)仿真的分类

●物理仿真,模拟机仿真,数字仿真,数字机与模拟机混合仿 真,仿真器仿真 ●连续和离散系统仿真 ●静态和动态系统仿真 ●稳态和终态仿真 ●确定性和随机性仿真 10)仿真的输出类型 ●确定型和随机型 ●连续观测值和离散观测值 ●连续分布和离散分布观测值 ●一元和多元输出 ●稳态型仿真和终止型仿真输出 11)仿真的局限性 1) 往往只能得到特解,而得不到通解 2) 结果往往是间接的,而不是直接的 12)仿真的技术工具 连续系统仿真:DYNAMO, CSMP 离散事件系统仿真:GPSS, SIMSCRIPT, SIMULA, GPSS-F 混合仿真:GASP-IV

飞机装配工艺

飞机装配与一般机械的转配有些不同,但飞机装配和一般机械的装配究竟有什么的不同?下面就简单的介绍一下: 1.、一般机械的装配工作占产品劳动总量的20%,而飞机装配占劳动总量的50%——60%,而且质量要求高,技术难度大 2、飞机装配使用了许多复杂的装配型架,飞机制造的准确度很大程度上取决与装配的准确度,而一般机械主要取决于零件制造的准确度。 3、飞机装配采用许多复杂的型架 4、飞机装配中零件数量,零件大,刚度小,产量比通用机械小 5、通用机械用公差配合制度来保证装配精度,飞机是以采用模线样板法。 不太适合自动化 工艺分离面:为了满足生产工艺,结构件间的分离面 设计分离面:设计的时候这个位置是可以拆装的,这些部件形成的课拆卸的分离面 第一章飞机装配过程和装配方法 飞机结构的分解: 装配过程:一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机。 机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用 装配基准 以骨架外形为基准 大梁和翼肋的定位,铺上蒙皮,用橡皮绳或钢带紧压在骨架上,骨架蒙皮的铆接误差组成: 1、骨架零件制造的外形误差 2、骨架的装配误差 3、蒙皮的厚度误差 4、蒙皮和骨架由于贴合不紧而产生的误差 5、装配连接的变形误差 为提高外形准确度必须提高零件的制造准确度、骨架装配的准确度,装配时将蒙皮紧贴在骨架上。 以蒙皮外形为基准误差积累是有外向内 隔框按型架定位,通过撑杆将蒙皮紧贴在型架卡板上,通过补偿件将骨架与壁板连接。 误差组成: 1、装配型架卡板的外形误差 2、蒙皮和卡板外形之间由于贴合不紧而产生的误差 3、装配连接的变形误差 装配定位:要确定零件、组合件、板件、锻件之间的相对位置。 对定位的要求: 1、保证定位符合图纸和技术条件所规定的准确度要求 2、定位和固定要操作简单可靠

建模与仿真

实验设计(论文)报告 课题名称:单一生产线建模与仿真 学校: 系别: 班级: 姓名: 学号: 日期: 2011年 4 月 16 日

摘要:针对传统数值方法难以求解复杂排队系统模型的问题,采用新一代面向对象的Simio仿真软件进行建模和仿真分析。采用Simio 软件构建序列表和运输器的仿真模型,认识关于SOURCE,SERVER,SINK 等对象的更多建模知识,对基于部件类型的处理时间及单个发生器和多种处理类型进行设定,然后对模型进行统计分析,并对系统的方案进行思考和改进。分析结果表明,利用Simio软件可方便地对各领域的模型及其相关问题进行建模仿真,具有较大的应用潜力。 关键词:实体序列表;运输器;处理时间;发生器

目录 一.序言 1.1 Simio系统仿真背景 1.2 系统建模与仿真现状分析 1.3 本课题的研究意义 二.Simio系统仿真的模型 2.1 模型的选择 2.2 建立模型 2.2.1系统模型 2.2.2建立模型的步骤 三.仿真的运行与调整 3.1 仿真的运行 3.2 仿真的调整 3.2.1 能力选择调整 3.2.2 参数选择的调整 四.结论分析 五.建议

一、序言 1.1背景 Simio是由一个极富行业经验的团队所创造的。本软件的缔造者C. Dennis Pegden博士拥有30年以上的仿真经验,是公认的行业领军人物。当前在仿真软件市场份额上领先的SLAM和Arena就是在他的领导下研发的。团队的其他成员的背后同样也闪耀着一连串仿真行业突破性进展的光芒。正是这样一个团队,现在聚集到一起,集中他们的全部智慧以及总计超过100年的仿真经验为你创造出了下一代的仿真工具,也许是最好的仿真工具Simio。 作为仿真工具的革命性进展,Simio完全是从零开始开发的。它采用了继“面向事件”和“面向过程”之后的“面向对象”的建模方法,并支持这三种建模方法的无缝衔接。Simio还同时支持离散和连续系统建模,以及基于“智能主体”(Agent-Based)的大规模应用。这些不同的建模范式可以在同一个模型中自由地揉合。 1.2 Simio系统建模与仿真现状分析 当前,仿真技术已经成为分析、研究各种复杂系统的重要工具,它广泛应用于工程领域和非工程领域。仿真可定义为:在全部时间内,通过对系统的动态模型性能的观测来求解问题的技术。对复杂物流系统进行仿真,起目的是通过仿真了解物料运输、存储动态过程的各种统计、动态性能。但由于现代生产物流系统具有突出的离散性、随机性的特点,因此人们希望通过对生产物流系统的计算机辅助设计及仿真

四旋翼飞行器仿真-实验报告

动态系统建模仿真实验报告(2) 四旋翼飞行器仿真 姓名: 学号: 指导教师: 院系: 2014.12.28

1实验容 基于Simulink建立四旋翼飞行器的悬停控制回路,实现飞行器的悬停控制; 建立GUI界面,能够输入参数并绘制运动轨迹; 基于VR Toolbox建立3D动画场景,能够模拟飞行器的运动轨迹。 2实验目的 通过在 Matlab 环境中对四旋翼飞行器进行系统建模,使掌握以下容: 四旋翼飞行器的建模和控制方法 在Matlab下快速建立虚拟可视化环境的方法。 3实验器材 硬件:PC机。 工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 4.1四旋翼飞行器 四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。四个旋翼位于一个几何对称的十字支架前,后,左,右四端,如图 1 所示。旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。 图1四旋翼飞行器旋转方向示意图

在图 1 中, 前端旋翼 1 和后端旋翼 3 逆时针旋转, 而左端旋翼 2 和右端的旋翼 4 顺时针旋转, 以平衡旋翼旋转所产生的反扭转矩。 由此可知, 悬停时, 四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。 4.2建模分析 四旋翼飞行器受力分析,如图 2 所示 图2四旋翼飞行器受力分析示意图 旋翼机体所受外力和力矩为: 重力mg , 机体受到重力沿w z -方向; 四个旋翼旋转所产生的升力i F (i= 1 , 2 , 3 , 4),旋翼升力沿b z 方向; 旋翼旋转会产生扭转力矩i M (i= 1 , 2 , 3 , 4)。i M 垂直于叶片的旋翼平面,与旋转矢量相反。 力模型为:2i F i F k ω= ,旋翼通过螺旋桨产生升力。F k 是电机转动力系数, 可取826.1110/N rpm -?,i ω为电机转速。旋翼旋转产生旋转力矩Mi(i=1,2,3,4),

浅谈飞机总装自动化装配生产线[1](精)

Equipment Manufactring Technology No.10,2011 飞机自动化装配是实现缩短生产周期、降低成本、提高生产效率目标的重大关键技术。由于现代飞机都有较高的寿命要求,因而装配精度和装配品质起着重要的作用。一架飞机所用的连接件少则数十万件,多则上百万件,从减重、防腐、抗疲劳、密封、安装等方面出发,采用自动装配技术不仅可实现对不开敞、难加工部位的装配,而且还能有效提高装配效率和装配品质,降低装配成本,改变传统的装配方式,这是手工装配所不能完成的。 1国外飞机自动化装配技术的发展 国外飞机装配技术,基本上经历了传统的手工装配、半机械化装配、机械化装配和自动化装配的过程。上世纪中期,一些航空制造业巨头,如波音、空客等花大力气,投入巨资研究了以自动化装配为基本单元的飞机移动总装配生产线,并很快取得了令人瞩目的成功。先进的飞机装配技术和生产管理模式,彻底改变了人们的飞机装配制造理念,大幅度提高了飞机装配品质和效率。 波音公司最先尝试并探讨了改变传统装配方法的途径,从最初利用共用定位来减少工装,广泛采用自动化装配站到实现柔性化装配,最终形成移动生产线,这个发展过程,使飞机装配技术发生了革命性的变化。通过模块化装配、自动化装配站、脉动式生产线、移动生产等飞机总装技术,波音777飞机的研制,使研制周期缩短50%,出错返工率减少75%,成本降低25%,成为自动化装配技术在飞机制造中应用的标志和典范。 2国内飞机总装配技术发展现状 国内飞机总装,通常采用固定机位装配方式,即人、物、设备、工装等围绕着飞机转。整个总装过程,基本上是全部依靠人工装配,所用的工装主要是工作梯,测量设备落后、效率低下。虽然近年来国内也开展了一些相关技术的研究和应用探索,局部装配环节采用了一些数字化装配技术,但总体上与航空工业发达国家相差甚远。远远不能满足新型号的要求。这种差距,综合体现在以下4个方面:

相关主题
文本预览
相关文档 最新文档