当前位置:文档之家› _环糊精衍生物的超分子体系识别机理及其在手性分离中的应用

_环糊精衍生物的超分子体系识别机理及其在手性分离中的应用

_环糊精衍生物的超分子体系识别机理及其在手性分离中的应用
_环糊精衍生物的超分子体系识别机理及其在手性分离中的应用

氨基酸与水杨醛合成一种手性希夫碱

手性希夫碱的实验合成及理论分析 【摘要】在乙醇溶液和常温条件下,直接缩合水杨醛和氨基乙酸合成了一种手性希夫碱对它进行了抽滤提纯并计算了及其产率,用了显微熔点测定仪测定熔点。 【关键词】氨基酸水杨醛手性希夫碱 1前言 希夫碱是指由含有醛基和氨基的两类物质通过缩水形成含亚胺基(-CH=N-)或甲亚胺基(-RC=N-)的一类有机化合物, 它的基本结构中含有(>C=N-), 是H.Schiff在1864年首先发现的。其杂化轨道上的氮原子上的孤对电子使得希夫碱配体具有极大的灵活性和良好的配位能力, 因而希夫碱金属配合物的研究一直受到广泛的重视。由于氨基酸Schiff碱合成相对容易, 能够选择多种胺类及带有羰基的不同醛和酮进行反应, 其特点是能够灵活地选择反应物,改变取代基给予体原子本性及其位置,可合成许多链状、环合且性能、结构不同的配体。自从六十年代末人们发现过渡金属希夫碱配合物具有生物活性以来,这个领域的研究逐渐活跃起来。希夫碱不仅可以和过渡元素形成配合物,和镧系、锕系及部分主族金属元素也能形成稳定的配合物,此外还有如Zr、Mo、Ru、Ir等贵金属。这些配合物在分析化学、立体化学、电化学、光谱学、分子自组装、超分子化学、生物化学模型系统、催化、材料、核化学化工等学科领域均具有重要意义。 近年来,对手性希夫碱配合物的研究日趋广泛,它的金属配位化合物在生物医药方面由于某些希夫碱具有特殊的生理活性,越来越引起医药界的重视。据报道,氨基酸类、缩氨脲类、缩胺类、杂环类、腙类希夫碱及其应用的配合物具有抑菌、杀菌、抗肿瘤、抗病毒等独特药用效果;催化方面希夫碱及其配合物在催化领域的应用也很广泛,概括而言,希夫碱做催化剂主要是应用于聚合反应,不对称催化环丙烷化反应以及烯烃催化氧化方面和电催化领域。分析化学方面许多希夫碱用来检测、鉴别金属离子,并可借助色谱分析、荧光分析、光度分析等手段达到对某些离子的定量分析;腐蚀方面长期以来,许多金属及其合金在工业、军事、民用等各个领域得到了广泛的应用,但是该金属及其合金在大气中、海水中很不稳定,因此研究寻找有效的缓蚀剂,引起了众多科学家的重视。希夫碱(尤其是一些芳香族的希夫碱)由于含有C=N双键,再加上含有的-OH极易与铜形成稳定的络合物,从而阻止了金属的腐蚀;光致变色方面许多共轭聚合物主链可视为扩展到生色团,它们表现出似燃料的光物理性质,如光致变色、光电导。 N-亚水杨基氨基酸希夫(Schiff) 碱配合物可以作为研究维生素B6酶反应的模型化合物, 具有催化氨基转移和外消旋作用[ 1~3], 并具有良好的抗癌、抗菌活性[ 4, 5], 因此受到化学家注意并引起人们的极大兴趣。通过对它们性质的认识有助于揭示维生素B6酶结构上的特点, 加深对其催化氨基转移机理的理解。因此,本文重述设计了L-亮氨酸与水杨醛反应合成一种手性希夫碱,其反应式: HO 甲醇 + HOC

手性分子的拆分技术

手性分子的拆分技术 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

手性分子的拆分技术 郝婷玉 57 15级材料工程 摘要:对外消旋体实施拆分是获得手性物质的重要途径。本文综述了外消旋体的拆分方法,主要有直接结晶拆分法、化学拆分法、动力学拆分法、色谱拆分法( 含毛细管电泳法) 和手性膜拆分法等五大类。其中, 包括目前作为手性拆分主要方法的色谱技术在内的前 4 类方法, 由于批处理能力小、工业放大成本高 ,不适合大规模生产 ; 相反,膜分离技术具有能耗低、易于连续操作等优点 ,被普遍认为是进行大规模手性拆分非常有潜力的方法之一,具有良好的应用前景。 关键词:手性分子;拆分;对映体;外消旋化合物 手性是自然界存在的一种普遍现象, 在药物化学领域尤为突出 ,已知药物中有 30 %~ 40 %是手性的。手性是生物体系的一个基本特征, 很多内源性大分子物质,如酶、蛋白、核酸、糖, 以及各种载体、受体等都具有手性特征。此外,手性还在医药、食品添加剂、杀虫剂、昆虫性信息素、香料和材料等领域有着深刻影响。特别是在医药行业,手性药物对映体通过与体内大分子的立体选择性结合, 产生不同的吸收、分布、代谢和排泄过程, 可能具有不同的药理毒理作用。随着医药行业对手性单体需求量的增加和对药理的探究,如何获得高纯度手性单体已成为一个令人困扰的问题。因此 ,手性药物的分离分析就显得尤为重要。随着对手性分子认识的不断深入,人们对单一手性物质的需求量越来越大,对其纯度的要求也越来越高。 单一手性物质的获得方法大致有以下三种:(1)手性源合成法:是以手性物质为原料合成其它手性化合物,这是最常用的方法。但由于天然手性物质的种类有限,要合成多种多样的目的产物会遇到很大困难,而且合成路线步骤繁多,也使得产物成本十分高昂。(2)不对称合成法:是在催化剂或酶的作用下合成得到过量的单一对映体化合物的方法。化学不对称合成高旋光收率的反应仍然有限,即使如此,所得产物的旋光纯度对于多

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti 等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法

氨基酸总结

氨基酸的分类及其结构

甘氨酸:无手性C 颉氨酸、亮氨酸、异亮氨酸、甲硫氨酸:大脂肪侧链 脯氨酸:唯一成环氨基酸,氨基酸的侧链既与α-碳原子结合又与α-氨基N-原子结合,缺少H-bond donor,无法形成α螺旋结构 苯丙氨酸:侧链有芳香环,疏水氨基酸 络氨酸:酪氨酸的芳香环有一个羟基。与其他氨基酸侧链呈化学惰性相比,酪氨酸的羟基有化学反应性,疏水性弱。 色氨酸:吲哚基团替代丙氨酸侧链的氢原子。吲哚基团有的两个环融合在一起,一个环有NH基团。有NH故疏水性弱。 丝氨酸:侧链有极性但不带电荷。侧链有羟基与脂肪链相连。亲水,其反应活性比丙氨酸和颉氨酸大得多。 苏氨酸:侧链有极性但不带电荷。侧链有羟基与脂肪链相连。亲水,其反应活性比丙氨酸和颉氨酸大得多。有第二个不对称碳原子,但蛋白质的苏氨酸只有一种构型。 天冬酰胺、谷氨酰胺:极性但不带电荷。含酰胺的极性氨基酸 半胱氨酸:极性不带电。结构上类似苏氨酸,但是用巯基替代了羟基。巯基比羟基活泼。一对巯基靠近可以形成二硫键,稳定蛋白质的结构。 赖氨酸:带电荷的氨基酸,高度亲水,侧链长,末端是氨基,在中性pH时侧链末端带正电荷。 精氨酸:带电荷,高度亲水,侧链长,末端是胍基,在中性pH时侧链末端带正电荷。 组氨酸:带电荷,高度亲水,侧链含有咪唑基,咪唑基是芳香环,也能被质子化后带正电荷。咪唑的pKa值接近于6,在中性pH附近的溶液中咪唑基既可以质子化也可以不带电荷,实际情况取决于咪唑基团所在的局部环境。组氨酸常在酶的活性中心。在酶促反应中咪唑环既可以结合质子,有可以释放质子。 天冬氨酸:酸性氨酸。常被称为天冬氨酸盐,主要是强调在生理pH溶液中侧链基团解离,因此带负电荷。在有些蛋白质中这两种氨基酸的作用是接受质子,对蛋白质功能起重要作用。 谷氨酸:酸性氨酸。常被称为谷氨酸盐,主要是强调在生理pH溶液中侧链基团解离,因此带负电荷。在有些蛋白质中这两种氨基酸的作用是接受质子,对蛋白质功能起重要作用。 天津理工大学化学化工学院XJC编辑

手性化合物的拆分技术

手性化合物的拆分技术研究进展 许多药物具有光学活性。一般显示光学活性的药物分子,其立体结构必定是手性的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 1.生成非对映体拆分 此方法是利用外消旋混合物与手性试剂反应后生成有不同性质的非対映体,从而利用生成物的不同物理性质(溶解度、蒸汽压、结晶速率等)将其分离,再将分离后的物质分别还原成之前的対映体。 还可以使用拆分剂家族代替单一拆分剂进行拆分,所谓拆分剂家族是指有类似结构的2~3个手性剂拆分剂。组合拆分提高了产品收率和纯度。 2.动力学拆分 利用两个対映体和手性试剂发生反应的速度不一样,在混合物中添加不足量的手性试剂。一个対映体与手性试剂结合,从而得到纯的反应慢的対映体。可以分为经典动力学拆分和动态动力学拆分,动态动力学拆分是指将经典动力学拆分和底物消旋化相结合的拆分方法,理论产率可以达到100%。底物消旋化分为化学消旋化和酶消旋化,由于酶消旋化具有操作条件温和、产率高、副反应少等优点而具有广泛的工业应用价值[4]。 3.液膜拆分 将具有手性识别功能的物质溶解在溶剂中制备液膜,利用内外向间推动力(浓度差、pH 差等)使待分离物中的某种物质得到富集。液膜分离方法又分为本体液膜、乳化液膜、支撑液膜3种类型。 4.固体膜拆分 此方法是基于対映体间亲和力的差异,利用推动力(浓度差、压力差、电势差)进行分

环糊精作为超分子结构的构筑单元

环糊精作为超分子结构的构筑单元 刘 雪1 , 曹克玺2 , 骆定法1 , 孙德志 1 (1.聊城师范学院化学系,山东聊城252059;2.临沂兰山职工中专,山东临沂276000) 摘 要:对环糊精的来源和分子结构特点作了简单介绍,论述了环糊精及其衍生物在超分子化学领域中的地位。理论研究上,环糊精是研究弱相互作用的模型分子化合物,化学工业中环糊精及其衍生物具有广泛用途,显示出环糊精化学研究和应用的无限潜力。关键词:环糊精;超分子结构;包合物 中图分类号:TQ 463+ .3 文献标识码:A 文章编号:0367-6358(2001)06-0321-04 修稿日期:2000-11-20 作者简介:刘 雪(1966~),女,学士.主要从事无机及结构化学研究. Cyclodextrins as Building Blocks of Supramolecular Structure LIU Xue 1, CAO Ke-xi 2, LUO Ding-fa 1, SU N De-zhi 1 (De p artment of Chemis try ,Liaoch eng N ormal University ,Shandong Liaocheng 252059,China ; 2.Liny i Lanshan P olytechnic School ,Shangd ong Liny i ,276000,China ) Abstr act :Synthesis and molecular structure of cyclodextrin (CD)were briefly introduced.T he status of CDs and derivatives of CD in supramolecular stucture were described .In research areas ,CD is a type of model compound being used for the study of weak interaction .In industry ,CD can be utilized for various purposes.T his review indicates that the chemistry of cyclodextrins has potentiality is research and applica-tion Key wor ds :cyclodextrin ;supramolecular structure ;inclusion 环糊精是直链淀粉的生物降解产物,于1891年由Villiers 首次分离出来,1904年Scharidinerge 表征它们为环状低聚糖,1938年Fr eudenberg 等人把它们描述成由吡喃葡萄糖单元通过1,4-糖苷键连接构成的大环化合物 [1-3] 。自从此类化合物发现以 来,人们对它们的兴趣日益浓厚[3] 。合成化学家们对它们感兴趣,是由于它们具有良好的稳定性和可以 区域选择性修饰,从而获得许许多多很有实用价值的新型化合物;理论化学家们对它们感兴趣,是由于它们的分子具有特殊的孔结构、光学活性和拓朴结构可诱导变形性;化学、化工工作者们对此类化合物普遍感兴趣,还由于它们来源于可再生廉价原料——淀粉,并几乎无毒。近年来,人们又发现环糊精对超分子化学十分重要,它们及相应的衍生物构成一大类水溶性不同的手性主体(host )分子,这些主 体分子可用来与客体(guest)分子结合成超分子体系,从而作为研究弱相互作用的模型化合物,自1979年Saeger W 发表题为“在研究和工业中的环糊精包 合物”以来[4],又有1万多项研究工作见诸报导。1 环糊精的合成、结构和物理性质 1.1 合成 用环糊精糖基转化酶可以由直链淀粉获得相对分 子质量大小不同的环糊精和直链寡聚麦芽糖的混合 物,然后用不同的沉淀剂将特定相对分子质量的环糊精分离出来,常见的A 、B 和C 环糊精分别用1-癸醇、甲苯和十六环-8-烯-1-酮捕集、收率为50%左右。1.2 结构 首先,来源于生物物质的环糊精是旋光性的,且直链淀粉只能降解出右旋对映体的环糊精。这类大环化合物的分子(图1)为中空圆台或截头圆锥形, ? 321?第6期化 学 世 界

手性药物不对称合成90 (3)_附件

手性药物及其不对称合成 [摘要]近年来不对称合成法应用在手性药物及药物中间体的制备中,使手性药物得到了快速的发展,不少手性药物及其中间体已经实现了工业化生产。本文介绍了手性药物及获取手性药物的方法,对不对称合成法尤其是不对称催化法在手性药物工业制备中的应用进行了综述。 [关键词]手性药物;制备;不对称合成;不对称催化 Chiral Drugs and Asymmetric Synthesis Abstract: In recent years ,since the asymmetric synthesis has been used in preparation of the chiral drugs and pharmaceutical intermediates ,there has been fast development in preparation of chiral drugs ,some of which has been already synthesed in industry scale .What is chiral drugs and the ways to abtain the chiral drugs are introduced .The methods of asymmetric synthesis,especially asymmetric catalytic reaction used in synthesis chiral drugs are reviewed . Key words :chiral drugs ,preparation , asymmetric synthesis;asymmetric catalytic synthesis 1 引言 2001 年10 月10 日,瑞典皇家科学院决定将2001年度诺贝尔化学奖授予在催化不对称反应领域做出突出贡献的3 位科学家:威廉·诺尔斯,野依良治与巴里·夏普赖斯。他们利用手性催化剂大大提升了单一对映异构体的产率,为手性药物的制备以及其他行业的发展都做出了突出的贡献。【1】 2手性药物 : 手性药物(chiral drug)是指其分子立体结构和它的镜像彼此不能够重合的

氨基酸作为手性源在有机合成中的应用

氨基酸作为手性源在有机合成中的应用 发表时间:2018-12-24T17:14:00.553Z 来源:《基层建设》2018年第32期作者:吴法浩 [导读] 摘要:手性氨基醇是一类重要的具有光学活性的手性化合物。 南京红杉生物科技有限公司江苏南京 210000 摘要:手性氨基醇是一类重要的具有光学活性的手性化合物。由于氨基醇分子中具有良好配位能力的N原子和O原子,可与多种元素形成络合物,是合成手性催化剂或配体及某些手性化合物的重要手性源,因此被广泛应用于精细化工、材料、医药、生物学等有机合成和药物中,如苏氨醇、丙胺醇、苯丙氨醇等已被应用于多肽类药物和喹诺酮类手性药物中。手性氨基醇具有很高的立体选择性和催化效率,最成功的是广泛应用于醛的催化不对称烷基化、芳基化以及不对称迈克尔加成等一系列反应中。因此,研究手性氨基醇的合成,具有很强的实际应用价值。 关键词:氨基酸;手性源;有机合成;应用 1手性氨基酸与手性氨基酸药物中间体的合成及应用 手性氨基酸是合成多肽和内酰胺类抗生素等药物的重要原料,其在药物合成、食品添加剂、新材料合成和精细化学品的开发等方面都有巨大的应用前景。为此,中国科学院成都有机化学研究所的王立新等人在手性氨基酸及手性氨基酸合成方面做了一系列卓有成效的工作,如用固定化青霉素酶(PGA)法制备了一系列非天然手性-氨基酸;创立了高质量医药级-L-缬氨酸的固定化酶法制备新技术;抗丙肝药物特拉匹韦及伯克匹韦、抗艾药物阿扎那韦共性中间体的合成;新型抗血小板药物替卡格雷-氯吡咯雷的合成;喹诺酮抗菌药超级沙星-西他沙星的合成;“重磅炸弹”级抗糖新药—西他列汀系列药物的合成及技术开发;GABA类药物的合成;高效低毒农药L-草铵膦和DL-草铵膦的生物催化及有机合成共性关键技术开发等等[7]。该系列研究将在医药、农药、材料科学、生命科学、环境科学的研究中得到应用。 2氨基酸作为手性源在有机合成中的应用 2.1结晶拆分 结晶法具有操作简单、产品纯度高、易于实现工业化生产的优点,缺点是适用于结晶拆分的化合物较少。过去认为,适合于结晶拆分的化合物应为外消旋混合物(conglomerate),而外消旋混合物在所有晶体外消旋体中仅占5%~10%。但优先富集现象的发现,打破了这一传统观念。结晶拆分不依靠外来手性源,通过外消旋体自发结晶实现拆分,包括机械拆分外消旋混合物、优先结晶、优先富集、结晶诱导的去外消旋化和消磨诱导的去外消旋化等。其中结晶与手性位点外消旋化的结合,利于提升拆分效率、节约生产成本,相信会有巨大的应用前景。 2.1.1优先结晶 优先结晶(即为晶种法)是向外消旋混合物的过饱和溶液中加入单一对映体的晶种,诱导该对映体优先结晶析出,实现拆分。该方法的优点是不需要加入外源手性拆分剂,易于实现规模化生产。优先结晶拆分的前提条件是底物具备外消旋混合物的性质,即同手性作用大于异手性作用。因此,若要选择优先结晶拆分方法,应首先研究底物的理化性质(熔点、溶解度、晶型等),判断是否属于外消旋混合物。 2.1.2优先富集 优先富集是具有外消旋化合物性质的非外消旋体在过饱和溶液中动力学析晶,形成亚稳态晶体,在向热力学稳定的晶型转化的过程中,部分位于不规则排列区域的晶体溶于母液,使母液具有较高的ee值。优先富集应满足以下要求:①单一立体异构体的溶解度远大于外消旋体的溶解度;②结晶过程中发生固?固多晶型转化;③多晶型转化前后具有不同的晶体结构;④在晶型转化过程中产生不规则晶体;⑤热力学稳定的非外消旋晶体能够保留结晶过程中发生的对称性破缺的痕迹。 2.2化学拆分 化学拆分是利用手性拆分剂将外消旋体拆分为单一光学异构体的拆分方法。手性拆分剂可通过与外消旋体形成盐键得到非对映异构盐,根据溶解度等理化性质的差异,采用结晶方法实现拆分。当外消旋体无可离子化的基团时,手性拆分剂可通过氢键与外消旋体形成非对映异构共晶,再根据理化性质差异实现拆分;或仅与某一对映体形成单一的共晶而实现拆分。包结拆分则是利用手性拆分剂(主体)形成具有手性空穴的笼状结构,主要通过氢键作用选择性包结某一对映体(客体)。Dutch拆分和溶剂诱导的手性开关拆分则是对非对映异构体盐结晶和共晶拆分方法的完善和发展。化学拆分扩大了通过结晶方式拆分的底物范围,使该方法的应用范围更广。 2.3尼莫地平的光学活性 尼莫地平是一种双氢吡啶类钙拮抗剂,其活性名为2,6-二甲基-4-(3-硝基苯基)-1,4-二氢-3,5-吡啶二甲酸-2-甲氧基乙基酯异丙基酯,临床上主要用于治疗脑血管痉挛引起的缺血性神经损伤以及老年脑功能障碍和突发性耳聋等,研究表明,尼莫地平有两种晶形,晶形A 的空间群为P212121,晶形B为P21/C,前者是外消旋体,后者为消旋体。但关于其手性来源尚有争议。目前,国内制药企业生产的尼莫地平原料均为晶型B,但在制剂中两种晶型都有。生物学研究表明,不同来源尼莫地平药品在临床有效性上存在显著差异,这表明药物制剂的晶型种类不同可能影响药物的临床疗效。为此,山西大学的王越奎等人在第一性原理的基础上对尼莫地平分析溶液中的可能构象进行了模拟,并用含时密度泛函理论(TDFT)方法,重点分析了其构象变化对光学活性的影响,这不仅对深入了解其光学活性的起源具有重要的理论意义,而且对实验上改进实验条件,提高晶体质量等也具有一定参考价值。该研究将在医药学、结晶学、立体化学及有机分析等领域得到应用。 2.4新型手性金属配合物的设计合成 手性金属有机框架不仅具有丰富多变的空间结构,而且在不对称性催化、吸附、磁性、非线性光学、荧光等众多领域有着潜在的应用价值。手性氨基酸及其衍生物同时含有丰富的N、O配位原子,同时具有特殊的生理功能,从而表现出很大的灵活性和良好的络合性能,是合成金属有机框架的良好配体。在这当中主要用N-对苯甲酰-L-谷氨酸在常温下合成了一种新的钴配合物[Co(bzglu)(bpe) (H2O)]?H2O。其结构表征证明该配合物属三斜晶系,再通过氢键的相互作用,形成了三维超分子结构。该研究将在不对称催化、吸附、磁性及光电材料等领域得到应用。 2.5N-苯甲酰-L-谷氨酸手性银超分子配位聚合物 近年来,设计并合成手性超分子配位聚合物已成为超分子金属有机合成的一个热点,这不仅是因为它们已彰显出其迷人的结构变样性,而且在荧光、磁性、不对称催化、对称性选择分离等方面有着特殊的功能,而且在非线性光学方面也彰显出潜在的应用价值。为此,

氨基酸概述

第三节氨基酸 氨基酸是一类具有特殊重要意义的化合物。因为它们中许多是与生命活动密切相关的蛋白质的基本组成单位,是人体必不可少的物质,有些则直接用作药物。 α-氨基酸是蛋白质的基本组成单位。蛋白质在酸、碱或酶的作用下,能逐步水解成比较简单的分子,最终产物是各种不同的α-氨基酸。水解过程可表示如下: 蛋白质→月示→胨→多肽→二肽→α-氨基酸 由蛋白质水解所得到的α-氨基酸共有20多种,各种蛋白质中所含氨基酸的种类和数量都各不相同。有些氨基酸在人体内不能合成,只能依靠食物供给,这种氨基酸叫做必需氨基酸(见表18-3,*)。 一、氨基酸的构造、构型及分类、命名 (一)氨基酸的构造和构型 分子中含有氨基和羧基的化合物,叫做氨基酸。 由蛋白质水解所得到的α-氨基酸,可用通式表示如下: 除甘氨酸(R=H)外,所有α-氨基酸中的α碳原子均是手性碳,故有D型与L型两种构型。天然氨基酸均为L-氨基酸。 L-氨基酸 (二)α-氨基酸的分类和命名 氨基酸有脂肪族氨基酸、芳香族氨基酸和杂环氨基酸。 在α-氨基酸分子中可以含多个氨基和多个羧基,而且氨基和羧基的数目不一定相等。因此,天然存在的α-氨基酸常根据其分子中所含氨基和羧基的数目分为中性氨基酸、碱性氨基酸和酸性氨基酸。所谓中性氨基酸是指分子中氨基和羧基的数目相等的一类氨基酸。但氨基的碱性和羧基的酸性不是完全相当的,所以它们并不是真正中性的物质,只能说它们近乎中性。分子中氨基的数目多于羧基时呈现碱性,称为碱性氨基酸;反之,氨基的数目少于羧基时呈现酸性,称为酸性氨基酸。

氨基酸的系统命名方法与羟基酸一样,但天然氨基酸常根据其来源或性质多用俗名。例如胱氨酸是因它最先来自尿结石;甘氨酸是由于它具有甜味而得名(见表18-3)。 表18-3 常见的α-氨基酸

浅谈手性化合物与现代医学

浅谈手性化合物与现代医学 一、手性化合物简介 手性化合物(chiral compounds)是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物。判断分子有无手性的可靠方法是看有没有对称面和对称中心。 手性问题与我们的日常生活密切相关。天然存在的手性化合物品种很多,并且通常只含有一种对映体,手性问题还牵涉到农业化学、食品添加剂、饮料、药物、材料、催化剂等诸多领域。它的研究已经成为科学研究和很多高科技新产品开发的热点。在过去20年里,手性研究具有戏剧性的发展,已从过去的少数几个专家的学术研究发展到大面积科学研究的需要,在一些领域并已带来了巨大的经济效益。物质的手性已经变成越来越需要考虑的问题,其对我们的日常生活正在起到越来越重要的作用。 手性化合物主要从天然来源、不对称合成和外消旋体拆分3个方面得到。由天然来源获得手性化合物,原料丰富,价廉易得,生产过程简单,产品的纯度一般都较高,因此很多量大的产品都是从天然物中获得。在药物工业中由于对手性药物的要求不断增加,其大大激发了不对称有机合成的发展,使一些生物技术、生物催化剂也迅速扩展到该领域产生纯的的手性中间体和手性产品。 二、手性药物 由于自然界的生命体存在有手性,因而也就产生了手性药物。手性药物指分子结构中存在手性因素的药物。通常是指由具有药理活性的手性化合物组成的药物,或者是只含有效对映体或是以有效对映体为主的药物。按药效方面的简单划分,手性药物可能存在以下几种不同的情况:①只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用或活性很小。②一对对映体中的两个化合物具有等同或近乎等同的同一药理活性。③一对对映体具有完全不同的药理活性。 ④一对对映体之间一个有药理活性,另一个不但没有活性,甚至表现出一定的毒副作用。⑤一对对映体之间药理活性相近,但存在个体差异。⑥一对对映体中,一个有活性,另一个却发生拮抗作用。 三、手性药物未来展望 手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予在分子不对称催化反应中做出杰出贡献的三位科学家。目前,世界单一对映体手性药物的销售额持续增长。1998年销售额已达到964亿美元。2000年的销售额为1330亿美元,并估计2008年达到2000亿美元。手性药物以其疗效高、毒副作用小、用药量少的优点满足了市场的需求,因而成为未来新药研发的方向。

环糊精与双酚A的分子识别研究

环糊精与双酚A的分子识别研究 分别利用β-环糊精、2-羟丙基-β-环糊精、γ-环糊精和2,6-二甲基-β-环糊精对环境内分泌干扰素分子双酚A进行包合,采用Hildebrand-Benesi方程和紫外可见分光光度计测定了环糊精包合双酚A过程的结合常数;同时利用范特霍夫方程获得4种环糊精与双酚A结合的熵变和焓变数据,根据不同环糊精分子与双酚A分子结合的热力学信息,明确了环糊精与双酚A的分子识别机制。结果表明:当常温(20 ℃)时,包结常数大小顺序为β-环糊精>γ-环糊精>2-羟丙基-β-环糊精>2,6-二甲基-β-环糊精,在双酚A与环糊精的包合过程中,空间位阻效应是主要影响因素,尺寸匹配为次要影响因素;在不同环糊精与双酚A的包合过程中,其熵变ΔS>0,其焓变ΔHγ-环糊精>2-羟丙基-β-环糊精>2,6-二甲基-β-环糊精。这可能是因为β-环糊精和γ-环糊精均无分支存在,空间位阻相对最小,而2-羟丙基-β-环糊精只含有1个羟丙基,空间位阻相对于含有2个甲基的2,6-二甲基-β-环糊精要小;在双酚A与环糊精的包合过程中,空间位阻效应是主要影响因素;此外虽然β-环糊精和γ-环糊精均无分支,但是β-环糊精和γ-环糊精的内腔尺寸具有一定的差别,尺寸匹配也是影响包合的因素之一,综合两方面的因素,Ka(β-环糊精)>Ka(γ-环糊精)。 2.2 环糊精与双酚A结合过程中焓变和熵变的测定及讨论 上述对于环糊精Ka的测定均是在室温下进行的,而Ka与温度有一定的关系。本节通过变温控制来测定不同温度下的Ka,再通过范特霍夫方程拟合得出其热力学常数(熵变和焓变)。 表2和图2分别是在20、30、40、50、60 ℃时BPA和β-环糊精形成包结物其紫外可见吸收光谱吸光度及拟合曲线(λex=194 nm,BPA=4.4×10-5 mol/L)。根据H-B方程可确定BPA和β-CD形成1:1包结物,且Ka分别为1.99×105 L/mol、1.22×105 L/mol、9.05×104 L/mol、6.26×104 L/mol和4.80×104 L/mol。 依据测定的β-环糊精与双酚A的包合物于不同温度下在相对最大吸收波长处的吸光度A,利用-RTlnKa=ΔH-TΔS拟合可得到其ΔH=-28 560 J,ΔS=3.596 J/K。如表3和图3所示。 同理,γ-环糊精形成包结物后,拟合得其ΔH=-193 30 J,ΔS=34.153 J/K;2,6-二甲基-β-环糊精形成包结物后,拟合得其ΔH=-3 368.7 J,ΔS=76.105 J/K;2-羟丙基-β-环糊精形成包结物后,拟合得其ΔH=-259 62 J,ΔS=7.783 8 J/K。 由试验结果可知:不同环糊精与双酚A的包合过程中,其熵变ΔS>0,且焓变ΔHγ-环糊精>2-羟丙基-β-环糊精>2,6-二甲基-β-环糊精。在双酚A与环糊精的包合过程中,空间位阻效应是其主要影响因素,尺寸匹配也有一定影响。 (2)不同环糊精与双酚A的包合过程中,其熵变ΔS>0,且β-环糊精2-羟丙基-β-环糊精>γ-环糊精>2,6-二甲基-β-环糊精。升高温度,平衡向逆反应方向

β- 环糊精在分子组装中的应用

β- 环糊精在分子组装中的应用 摘要:本文综述了β-环糊精及其衍生物在分子组装中的应用。 关键词:β-环糊精;分子组装 自20纪初环糊精(CDS)被分离得到以来,人们对其研究不断取得新的进展。不仅提高了CDs的产量,而且对天然CDs进行了结构改造,合成了一系列具有独特性能的CDs衍生物。目前,CDS除了在医药工业方面有广泛的用途外,还在食品、化装品、环境保护、色谱分析等方面也得到了应用。继续深人研究CDs及其包合物,对今后更好的利用CDs有极其重要的意义。 环糊精(cyclodextrins,简称CDs)是由 环糊精葡萄糖转移酶(cGT)作用于淀粉或麦 芽糖溶液制得的一系列聚合程度不等的环 状低聚糖。常见的环糊精有3种,被命名为 分别含有6个、7个和8个葡 萄糖单元。环糊精分子呈空心圆台结构 (见图1)。分布于圆台边缘的羟基(葡萄糖单元2位、3位仲羟基位于广口端,6位伯羟基处于窄口端)使CD易溶于水,而其内空腔由于C—H键和醚键的覆盖而呈疏水性,这正是疏水性客体分子能自发进入环糊精内部疏水性空腔,从而形成主.客体包合物的基础。作为主体的CD 与客体分子形成包合物的基本条件除尺寸的匹配外,一般还与主客体分子间的相互作用有关,如疏水作用、范德华力、氢键、偶极.偶极相互作用、电荷转移作用等。 王杰等[5]综合论述了环糊精包合作用为驱动力组装大分子网络的两种主要方法。将带有环糊精支化基团的高分子长链与带有客体基团的高分子长链的在溶液中混合,由于环糊精与客体基团间的包合作用,可以组装成具有交联结构的超分子网络[6-7]。由于环糊精具有疏水的空腔,某些高分子长链可以穿过其空腔,通过非共价键连接在一起,形成多聚准轮烷(polypseudorotaxane)[8],长链两端用大基团封闭后可形成多聚轮烷(polyrotaxane),形状类似于一串“项链”。环糊精多聚轮烷分子管道表面具有大量的醇羟基,多个分子管道之

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展 摘要:简要阐述了手性药物的世界销售市场。综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。 关键词:手性药物; 外消旋体; 手性拆分 自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。 不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。1985~2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势; 2005年世界药物的销售总额为6 020亿美元,而手性药物的销售总额为 2 250亿美元,占全球制药市场销售总额的37% , 2010年可望超过 5 000亿美元[ 4 - 6 ]。总之, 手性药物大量增长的时代已经来临,手性药物制备技术的发展亦日趋完善,这为以制备和生产手性药物为主要内涵的手性工业的建立和发展奠定了基础。 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。手性药物的化学控制技术可分为普通化学合成、不对称合成和手性源合成3类;手性药物的生物控制技术包括天然物的提取分离技术和控制酶代谢技术。以前手性化合物为原料,经普通化学合成可得到外消旋体,再将外消旋体拆分制备手性药物中间体或手性药物,这是工业生产手性药物的主要方法。1985~2004年上市的58个含有一个手性中心的手性药物中,有27个手性药物是通过手性拆分法生产的[ 4 ]。 1结晶法拆分 结晶法拆分包括直接结晶法拆分( direct crys ta llization resolution )和非对映异构体拆分( dias te reom er crys tallization resolution) ,分别适用于外消旋混合物( conglom e rate)和外消旋化合物( racem ic compound)的拆分。在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%。外消旋化合物较为常见,大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围。 对于外消旋化合物,可采用与另一手性化合物(即拆分剂, reso lving agent)形成非对映异

F-E-03_聚乙烯醇与环糊精分子组装行为

聚乙烯醇与环糊精分子组装行为 高婷,郭敏杰*,樊志,么敬霞,郭艳玲 (天津科技大学理学院, 天津, 300457) 关键词:聚乙烯醇环糊精分子组装 分子组装聚合物是单体之间经可逆的和方向性的次价键相互作用连接而成的聚合物[1]。分子组装聚合物的合成过程涉及互补单体通过分子识别的选择性非共价键合、链生长(组分沿一定方向的序列键合)和链终止[2]。分子组装聚合物主要是由氢键等非共价键作用形成的,主要可以分为:氢键型[3]、配位作用型(或称金属型)[4]、π-π堆叠型[5]、离子型[6]和混杂型[7]分子组装聚合物。环糊精及其衍生物是一类重要的超分子主体化合物,其分子具有“内疏水、外亲水”独特的空间结构,使其对许多的分子具有包合作用。本文对聚乙烯醇(PVA)与γ–环糊精(γ–CD)在水溶液中的自组装行为进行了实验研究。 实验选取两种不同的聚乙烯醇分别与γ–环糊精进行分子组装:PVA I,分子量9000~10000,醇解度为98%;PV AⅡ,分子量为22000~26000,醇解度为98%。实验将得到的两种包合产物分别进行了旋光度测试,并分别进行了红外谱图分析和热重分析。 聚乙烯醇、γ–环糊精和组装体的旋光度值如表1所示,从表1中可以看出PVA 与γ-CD包合产物与PV A、γ-CD、PV A与γ-CD混合物的旋光度有明显的不同。 表1 聚乙烯醇和环糊精组装前后的旋光度变化 Table 1 the optical rotation between mixture and inclusion complex of PV A and γ-CD γ–CD and PV AⅠγ–CD and PV AⅡ γ–CD PV AⅠPV AⅡ Mixture Inclusion complex Mixture Inclusion complex Molecular weight 1294 9000 26000 ————Optical rotation(α)0.175 0 0 0.175 0.085 0.175 0.065 Specific optical rotation [α]D20 +175°0 0 +175°+85°+175°+65°Temperature of decomposition (℃) 300.4 262.5 275.5 262.5 287.3 275.5 295.6 *通讯联系人,国家自然科学基金资助项目(No. 20704031),天津市教育委员会科学基金资助项目(No. 20060515),天津科技大学科学基金资助项目(No.20060420)

手性化合物合成方法

在有机合成中产生手性化合物的方法有4种: 1.使用手性的底物 2.使用手性助剂 3.采用手性试剂 4.使用不对称催化剂 常常需要使用天然产物,如:氨基酸、生物碱、羟基酸、萜、碳水化合物、蛋白质等。 1.使用手性的底物 这种方法局限于比较有限的天然底物 如图,该化合物的硼氢化反应中,由于羟基的作用产生另外新的立体中心(反应从分子的背后发生) 以下两个反应,第一个是由于羧基的控制得到相应的手性产物..另一个则是由于反应中间体烯醇阴离子的构象决定了构型 2.使用手性助剂 如图,在第一步使用LDA去质子化时,为了使得上边的醇锂和下边的烯醇锂相距最远,Z-异构体占优势,在下一步与EtI的反应中得以产生了立体中心。 类似地,用烯醇锆替代烯醇锂(使用LDA,ZrCp2Cl2)确保烯醇的构型,再和醛反应产生不对称中心。 这些反应多数通过手性助剂的金属原子和底物中已有手性的O、N等原子络合,之后再加入其他试剂实现不对称中心的形成。这其中手性唑啉环是一个非常不错的手性助剂,它水解后可以生成一个羧基(潜在官能团) 另外一个试剂是手性的3-烷基哌嗪-2,5-二酮(一个环状二肽,可由两个氨基酸环合生成),如图 在羰基的α位进行不对称烷基化使用的是以下两种试剂A和B(B称为SAMP),如图,对环己酮的反应中采用A得到S异构体而采用B得到R异构体.

在氨基的α位进行不对称烷基化使用的试剂如下二图,用胺和它们作用后再用LDA、MeI甲基化,最后用N2H4脱去助剂得到产物. 还有一些有趣的反应如脯氨酸的α烷基化,涉及到一个立体化学的"存储"问题,经历了一个消失和再产生的过程:: 手性亚砜的作用:分离得到手性亚砜试剂和卤代烷作用后在下一步反应中诱导手性基团的产生,Al/Hg可以方便地除去亚砜基团。 3.采用手性试剂 通过铝锂氢化物与手性二胺或氨基醇作用可以得到一个用于不对称还原的试剂。如图。 利用α-蒎烯和9-BBN作用得到的试剂是一个很好的不对称还原试剂.如图 不对称硼氢化反应也是一个很好的构造立体化学中心的反应。这里需要利用α-蒎烯(图中的反应是针对三取代烯烃的,对于双取代烯烃应采用条件温和的双取代硼烷)

相关主题
文本预览
相关文档 最新文档