当前位置:文档之家› 同轴电缆阻抗测试方法

同轴电缆阻抗测试方法

同轴电缆阻抗测试方法
同轴电缆阻抗测试方法

交流阻抗怎么测量

交流阻抗怎么测量 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 (1)交流阻抗:交流阻抗即阻抗,在电子学中,是指电子部件对交流激励信号呈现出的电阻和电抗的复合特性;在电化学中,是指电极系统对所施加的交流激励信号呈现出的电阻和电抗的复合特性。阻抗模的单位为欧姆,阻抗辐角(相角)的单位为弧度或度。 (2)交流阻抗谱:在测量阻抗的过程中,如果不断地改变交流激励信号的频率,则可测得随频率而变化的一系列阻抗数据。这种随频率而变的阻抗数据的集合被称为阻抗频率谱或阻抗谱。阻抗谱是频率的复函数,可用幅频特性和相频特性的组合来表示;也可在复平面上以频率为参变量将阻抗的实部和虚部展示出来。测量频率范围越宽,所能获得的阻抗谱信息越完整。RST5200电化学工作站的频率范围为:0.00001Hz~1MHz,可以很好地完成阻抗谱的测量。 (3)电化学阻抗谱:电化学阻抗谱是一种电化学测试方法,采用的技术是小信号交流稳态测量法。对于电化学电极体系中的溶液电阻、双电层电容以及法拉第电阻等参量,用电化学阻抗谱方法可以很精确地测定;而用电流阶跃、电位阶跃等暂态方法测定,则精度要低一些。另外,像扩散传质过程等需要用较长时间才能测定的特性,用暂态法是无法实现的,而这却是电化学阻抗谱的长项。 (4)电化学阻抗谱测量的特殊性:就测量原理而言,在电化学中测量电极体系的阻抗谱与在电子学中测量电子部件的阻抗谱并没有本质区别。通常,我们希望获得电极体系处于某一状态时的电化学阻抗谱。而维持电极体系的状态,须使电极电位保持不变。通常认为,电极电位变化50mV以上将会破坏现有的状态。因此,在电化学阻抗谱测量中,必须注意两个关键点,即:偏置电位和正弦交流信号幅度。 (5)正弦交流信号的幅度:为了避免对电化学电极体系产生大的影响以及希望其具有较好的线性响应,正弦交流信号的幅度通常可设在2~20mV之间。 (6)自动去偏:在电化学阻抗谱测量过程中,由于偏置电位不一定等于开路电位以及少量的非线性作用,在工作电极电流中还会含有直流成分。去除这个直流成分(偏流),可扩大交流信号的动态范围、提高信噪比。RST5200电化学工作站,可在测量过程中动态地调整去偏电流,使获得的阻抗谱数据更精准。另外,在软件界面的状态栏中,可实时显示工作电极的极化电流,供操作者参考。 以上为交流阻抗的相关说明,下面我们就实验设置过程中遇到的专业名词

SI9000各阻抗计算说明

阻抗培训 1.外层单端:Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) Cer:绿油的介电常数(我司按3.3MIL) Zo:由上面的参数计算出来的理论阻值

2.外层差分:Edge-Coupled Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:阻抗线间距(客户原稿) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) C3:基材上面的绿油厚度(0.50MIL) Cer:绿油的介电常数(我司按3.3MIL)

3.内层单端:Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

4.内层差分:Edge-Couled Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:客户要求的线距 T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

PCB的阻抗设计

PCB的阻抗设计 1、阻抗的定义: 在某一频率下,电子器件传输信号线中,相对某一参考层,其高频信号或电磁波在传播过程中所受的阻力称之为特性阻抗,它是电阻抗,电感抗,电容抗……的一个矢量总和。 当信号在PCB导线中传输时,若导线的长度接近信号波长的1/7,此时的导线便成为信号传输线,一般信号传输线均需做阻抗控制。PCB制作时,依客户要求决定是否需管控阻抗,若客户要求某一线宽需做阻抗控制,生产时则需管控该线宽的阻抗。 当信号在PCB上传输时,PCB板的特性阻抗必须与头尾元件的电子阻抗相匹配,一但阻抗值超出公差,所传出的信号能量将出现反射、散射、衰减或延误等现象,从而导致信号不完整、信号失真。 2、计算阻抗的工具: 目前大部分人都用Polar软件:Polar Si8000、Si9000等。 常用的软件阻抗模型主要有三种: (1)特性阻抗,也叫单端阻抗;(2)差分阻抗,也叫差动阻抗;(3)共面阻抗,也叫共面波导阻抗,主要应用于双面板阻抗设计当中。

选择共面阻抗设计的原因是:双面板板厚决定了阻抗线距离,下面的参考面比较远,信号非常弱,必须选择距离较近的参考面,于是就产生了共面阻抗的设计。 3、安装软件Polar Si9000,然后打开Polar Si9000软件。熟悉一下常用的几个阻抗模型: (1)下图是外层特性阻抗模型(也叫单端阻抗模型):

(2)下图是外层差分阻抗模型: (3)内层差分阻抗模型常用以下三种:

下面是共面的常用模型: (4)下图是外层共面单端阻抗模型: (5)下图是外层共面差分阻抗模型:

4、怎样来计算阻抗? 各种PP及其组合的厚度,介电常数详见PP规格表,铜厚规则按下图的要求。

交流阻抗参数的测量和功率因数的改善东南大学

东南大学电工电子实验中心 实验报告 课程名称:电路实验 第三次实验 实验名称:交流阻抗参数的测量和功率因数的改善院(系):专业: 姓名:学号: 实验室: 103 实验组别: 同组人员:实验时间:2011/11/22 评定成绩:审阅教师:

交流阻抗参数的测量和功率因数的改善 一、 实验目的 1、 学习测量阻抗参数的基本方法,通过实验加深对阻抗概念的理解; 2、 掌握电压表、电流表、功率表和单相自耦调节器等电工仪表的正确使用方法。 二、 实验原理 对于交流电路中的元件阻抗值(r 、L 、C ),可以用交流阻抗电桥直接测量,也可以用下面两种方法来进行测量。 1. 三电压表法 先将一已知电阻R 与被测元件Z 串联,如实验内容图一(a )所示。当通过一已知频率的正弦交流信号时,用电压表分别测出电压U 、U1和U2,然后根据这三个电压向量构成的三角形矢量图和U2分解的直角三角形矢量图,从中可求出元件阻抗参数,如图一(b )所示。这种方法称为三电压表法。 由矢量图可得: 222 12 12 22cos 2cos sin r x U U U U U U U U U θθ θ --= == 111r x x RU r U RU L wU U C wRU = = = 2.三表法 图如图二所示: 首先用交流电压表,交流电流表和功率表分别测出元件Z 两端电压U 、电流I 和消耗的有功功率P ,并且根据电源角频率w,然后通过计算公式间接求得阻抗参数。这种测量方法称为三表法,它是测量交流阻抗参数的基本方法。 被测元件阻抗参数(r 、L 、C )可由下列公式确定: 2cos cos U z I P IU P r z I ?? = = == sin 1x z x L w C xw ? ==== 三、 实验内容 1、三电压表法

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

PCB的阻抗控制

浅谈PCB的阻抗控制 随着电路设计日趋复杂和高速,如何保证各种信号(特别是高速信号)完整性,也就是保证信号质量,成为难题。此时,需要借助传输线理论进行分析,控制信号线的特征阻抗匹配成为关键,不严格的阻抗控制,将引发相当大的信号反射和信号失真,导致设计失败。常见的信号,如PCI总线、PCI-E总线、USB、以太网、DDR内存、LVDS信号等,均需要进行阻抗控制。阻抗控制最终需要通过PCB设计实现,对PCB板工艺也提出更高要求,经过与PCB厂的沟通,并结合EDA软件的使用,我对这个问题有了一些粗浅的认识,愿和大家分享。 多层板的结构: 为了很好地对PCB进行阻抗控制,首先要了解PCB的结构: 通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。 通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um 或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。 多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。 当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层板叠层结构: PCB的参数: 不同的印制板厂,PCB的参数会有细微的差异,通过与上海嘉捷通电路板厂技术支持的沟通,得到该厂的一些参数数据: 表层铜箔:

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.doczj.com/doc/905052797.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

电子测量与仪器第七章 阻抗测量

第七章 阻抗测量 7.1 测量电阻、电容、电感的主要方法有那些?它们各有什么特点?对应于每一种方法举出一种测量仪器。 7.2 某直流电桥测量电阻x R ,当电桥平衡时,三个桥臂电阻分别为1R =100Ω,2R =50Ω,3R =25Ω。求电阻x R 等于多少? 7.3 判断图7.30交流电桥中哪些接法是正确的?哪些错误的?并说明理由。 解:根据电桥平衡原理, (a )241311C j R C j R ??= 2 413C R C R =,所以该电桥是正确的。 (b )241 31L j R C j R ??= 可知该式不成立,所以该电桥是错误的。 (c )244321)1(1) (R C j R C j L j R ???+=+ 4 2243231C j R R R C L C j R ??+=+ 所以只要满足2432R R C L =,4231C R C R =即4 24132R L C R C R ==,所以该电桥是正确的。 (d )2422431L L L j L j R R ???-==可知该式不成立,所以该电桥是错误的。 7.4 试推导图7.31交流电桥平衡时计算x R 和x L 的公式。若要求分别读数,如何选择标准元件? 解:3 2441)()1(C j L j R R C j R x x ???+=+ 图7.30 交流电桥的接法判断

3 34242C j R C L C j R R R x x ??+=+ 所以342C R R L x =,342C C R R x = ,选择C3,C4作为标准元件。 7.5 用替代法测量电容的方法有什么优点?为什么当C x >(C max ~C min )时必须采用串联接法测量电容?电桥平衡条件是什么?如何选择可调元件。 7.6 某交流电桥平衡时有下列参数:1Z 为1R =2000Ω与1C =0.5μF 相并联,2Z 为2R =1000Ω与2C =1μF 相串联,4Z 为电容4C =0.5μF , 信号源角频率ω=2 10rad/s ,求阻抗3Z 的元件值。 7.7 简述Q 表测量L 、C 、Q 的原理。 7.8 利用谐振法测量某电感的Q 值。当可变电容为100pF 时,电路发生串联谐振。保持频率不变,改变可变电容,半功率点处的电容分别为102pF 和98pF ,求该电感的Q 值。 解:根据Q 表串联谐振工作原理, )1(1 1C L j R Z ??-+= )1(22C L j R Z ??- += 由于C1,C2分别在半功率点时 )1(12 1C L C L ????--=- )11(211 2C C L ???+= 因为处于半功率点,所以有 R C L R 2)1(21 2=-+?? 即R C L 311 =-??,R C C C C C 321211)11(2112112=-=-+????? 所以)11(631 2C C R ??-=

特性阻抗计算公式推导过程

特性阻抗计算公式推导过程 王国海 以下内容供参考。 1.传输线模型 2 符号说明 R L G C 分布式电阻电感电导电容 3 计算过程 (1) u(△z)-u=-R*?z*i-L*△z*?i ?t i(△z)- i=-G*△z*u(△z)?c?△z??u (2) ?t (1)(2) 两边同除以△z,得到电报公式

?u ?z +Ri+L ?i ?t =0 (3) ?i ?z +Gu+C ?u ?t =0 (4) u(z,t)=U(z)e jωt (5) i(z,t)=I(z)e jωt (6) 由(5)(6) 计算得道下列公式 ?u(z,t)?z =dU(z)dz e jωt (7) ?u(z,t)?t =U(z) e jωt jω (8) ?i(z,t)?z =dI(z)dz e jωt (9) ?i(z,t)?t =I(z) e jωt jω (10) 将(7)(8) (9) (10) 代入公式(3) dU(z)dz e jωt +Ri+L I(z) e jωt jω=0,i 用公式(6)代入, dU(z)dz e jωt +R I(z)e jωt +L I(z) e jωt jω=0 化简得到: dU(z)dz =-(R+ jωL)I(z) (11) 同理7)(8) (9) (10)代入(4)可得 dI(z)dz =-(G+ jωC)U(z) (12) 由(11)(12) 得到 dU(z)dI(z)=(R+ jωL)I(z) (G+ jωC)U(z) (13) 交叉相乘, (G + jωC)U(z) dU(z)= (R + jωL)I(z)dI(z) 两边积分, ∫(G + jωC)U(z) dU(z)=∫(R + jωL)I(z)dI(z) 12(G + jωC)U(z)2=12(R + jωL)I(z)2 U(z)2I(z)2=(R+ jωL)(G+ jωC) 两边开根号 Z=U/I=√(R+ jωL)(G+ jωC) 假定R=0,G=0 (无损)得到特性阻抗近似公式 Z=√L C

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式 现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来和意义: 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义

我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司)=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.

PCB阻抗计算

阻抗线计算 一.传输线类型 1 最通用的传输线类型为微带线(microstrip)和带状线(stripline) 微带线(microstrip):指在PCB外层的线和只有一个参考平面的线,有非嵌入/嵌入两种如图所示:(图1) 非嵌入(我们目前常用) (图2) 嵌入(我们目前几乎没有用过) 带状线:在绝缘层的中间,有两个参考平面。如下图: (图3) 2 阻抗线 2.1差动阻抗(图4)

差动阻抗,如上所示,阻抗值一般为90,100,110,120 2.2特性阻抗(图5) 特性阻抗: 如上如所示,.阻抗值一般为50 ohm,60ohm 二.PCB叠层结构 1板层、PCB材质选择 PCB是一种层叠结构。主要是由铜箔与绝缘材料叠压而成。附图为我们常用的1+6+1结构的,8层PCB叠层结构。(图6) 首先第一层为阻焊层(俗称绿油)。它的主要作用是在PCB表面形成一层保护膜,防止导体上不该上锡的区域沾锡。同时还能起到防止导体之间因潮气、化学品等引起的短路、生产

和装配中不良操作造成的断路、防止线路与其他金属部件短路、绝缘及抵抗各种恶劣环境,保证PCB工作稳定可靠。 防焊的种类有传统环氧树脂IR烘烤型,UV硬化型, 液态感光型(LPISM-Liquid Photo Imagable Solder Mask)等型油墨, 以及干膜防焊型(Dry Film, Solder Mask),其中液态感光型为目前制程大宗,常用的有Normal LPI, Lead-free LPI,Prob 77. 防焊对阻抗的影响是使得阻抗变小2~3ohm左右 阻焊层下面为第一层铜箔。它主要起到电路连通及焊接器件的作用。硬板中使用的铜箔一般以电解铜为主(FPC中主要使用压延铜)。常用厚度为0.5OZ及1OZ.(OZ为重量单位在PCB行业中做为一种铜箔厚度的计量方式。1OZ表示将重量为1OZ的铜碾压成1平方英尺后铜箔的厚度。1OZ=0.035mm). 铜箔下面为绝缘层..我们常用的为FR4半固化片.半固化片是以无碱玻璃布为增强材料,浸以环氧树脂.通过120-170℃的温度下,将半固化片树脂中的溶剂及低分子挥发物烘除.同时,树脂也进行一定程度的反应,呈半固化状态(B阶段).在PCB制作过程中通过层压机的高温压合.半固化中的树脂完全反应,冷却后完全固化形成我们所需的绝缘层. 半固化片中所用树脂主要为热塑性树脂, 树脂有三种阶段: A阶段:在室温下能够完全流动的液态树脂,这是玻钎布浸胶时状态 B阶段:环氧树脂部分交联处于半固化状态,在加热条件下,又能恢复到液体状态 C阶段:树脂全部交联为C阶段,在加热加压下会软化,但不能再成为液态,这是多层板压制后半固化片转成的最终状态. 由于半固化片在板层压合过程中,厚度会变小,因而半固化片的原始材料厚度和压合后的厚度不一样,因而必须分清厚度是原始材料厚度还是完成厚度。另外,半固化片的厚度不是固定不变的,根据板厚、板层和板厂不同,而有所不同。上述只是一例。 同时该叠层中用了两块芯板,即core(FR-4).芯板是厂家已压合好的带有双面铜的基材,在压合过程中厚度是不变的。常见芯板见下:(表二)

电子测量技术期末考试复习题

一.谈判题(10分) VXXX 5,使用数字万用表进行电阻测量时,红表笔接COM 端带负电,黑表笔接V ?Ω端带正电。( X ) 6、使用指针式万用表测量多个电阻时,只需选出择合适量程档,进行一次机械调零、欧姆调零即可。 ( X ) 7、使用万用表测量过程中,若需更换量程档则应先将万用表与被测电路断开,量程档转换完毕再接入电路测量 ( V ) 8、在示波测量中,若显示波形不在荧光屏有效面积内,可通过Y 移位旋钮对被测波形幅度进行调 ( X ) 9、若要使示波器显示波形明亮清晰,可通过辉度,聚焦旋钮的调节达到要求。 ( V ) 10示波器要观察到稳定的波形,其两个偏转板上所加信号的周期y x T T ,必须满足条件 T y =nT x 。 ( ? ) 11, 逐次逼近A/D 转换的速度比积分式A/D 转换的速度慢。 ( ? ) 12, 一般规定,在300Ω的负载电阻上得到1mW 功率时的电平为零电平。 ( ? ) 13,在直流单电桥中,电源与指零仪互换位置,电桥平衡状态不变。 ( √ ) 13, 比较释抑电路的作用是控制锯齿波的幅度,实现等幅扫描,并保证扫描的稳定。 ( √ )

1、双踪示波器显示方式有1、ABCD 几种方式,其中C;方式可能产生相位误差,若要修正相位误差则应将显示方式调节到D 方式;若被测信号频率较低,则应选择 D 方式;若信号频率较高,则应选择 C 方式。 A.Y A、Y B B. Y A±Y B C.交替 D.断续 2、示波测量中,触发方式选择为CA 时,屏幕显示为一条亮线;触发方式选择为时,屏幕不显示亮线。 A.普通触发 B. 固定触发 C.自动触发 D.其它 3、根据检波器位置的不同,形成了不同的模拟电压表结构,其中 A 结构测量范围宽、测量灵敏度较低; B 结构测量范围窄、测量灵敏度较高。 A.放大—检波式 B. 检波—放大式 C.外差式 D.其它 4、数字万用表的核心是 B 。 A.AC/DC转换器 B. A/D转换器 C.D/A转换器 D.I/V转换器 5,根据测量误差的性质和特点,可以将其分为( C )三大类。 A.绝对误差、相对误差、引用误差 B.固有误差、工作误差、影响误差 C.系统误差、随机误差、粗大误差 D.稳定误差、基本误差、附加误差 6,用通用示波器观测正弦波形,已知示波器良好,测试电路正常,但在荧光屏上却出现了如下波形,应调整示波器( A )旋钮或开关才能正常观测。 A.偏转灵敏度粗调 B.Y轴位移 C.X轴位移 D.扫描速度粗调

电子测量作业

第一章 1.12 数字电压表测量,且R 1、R 2都在30 K 可忽略电压表接入对输出电压的影响,则有: 1 11R U E R r = + 222R U E R r =+ 所以:12121221 () R R U U RU R U -r = - 1.13 用题1.l0所示的测量电路,现分别用MF -20晶体管电压表的6 V 档和30V 档测量负载R L 上电阻U o ,已知电压表的电压灵敏度为20kΩ/V(由此司算出各档量程电压表输入电阻R v =电压灵敏度×量程),准确度等级为 2.5级(准确度等级s 表示仪表的满度相对误差不超过s %,即最大绝对误差为Δx m =±s%·x m 。试分别计算两个量程下的绝对误差和相对误差。 解:6V 档时: Rv 1=120K Ω R 外1=30//120=24 K Ω 124 5 2.22230x U V ?= =+24 Δx 11=Ux 1-A =2.222-2.5=-0.278V Δx 12=±2.5%×6=±0.15V 111120.482x x x V ???=+= 110.428 2.5 x y A ???= 100%=100%=17% 30V 档时:

Rv 2=30×20=600K Ω R 外2=30 //600=28.57 K Ω 228.57 5 2.24430x U V ?= =+28.57 Δx 21==2.244-2.5=-0.06V Δx 22=±2.5%×30=±0.75V Δx 2=0.81V 20.86 2.5 y ?= 100%=32.4% 第二章 2.10 现校准一个量程为100 mV ,表盘为100等分刻度的毫伏表,测得数据如下: 求:① 将各校准点的绝对误差ΔU 和修正值c 填在表格中; ② 10 mV 刻度点上的示值相对误差r x 和实际相对误差r A ; ③ 确定仪表的准确度等级; ④ 确定仪表的灵敏度。 解:② r x =0.1/10×100%=1% r A =0.1/9.9×100%=1.01% ③ 因为:Δx m =-0.4 mV r m =-0.4/100=-0.4% 所以:s =0.5 ④ 100/100=1 mV 2.14 某1 4 2 位(最大显示数字为19 999 )数字电压表测电压,该表2V 档的工作误差为 ±

电感阻抗的计算公式

电感阻抗的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此:电感量(mH) = 阻抗(ohm) ÷(2*3.14159) ÷ F (工作频率) = 360 ÷(2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH

PCB阻抗计算参数说明

阻抗计算: 1.介电常数& Er (介电常数)就目前而言通常情况下选用的材料为FR-4,该种材料的& 特性为随着加载频率的不同而变化,一般情况下Er的分水岭默认为1 GHZ(高频)。 目前材料厂商能够承诺的指标<(1MHz),根据我们实际加工的经验,在使用频率为1GHZ以下的其Er认为4. 2左右。一的使用频率其仍有下降的空间。故设 计时如有阻抗的要求则须考虑该产品的当时的使用频率。 我们在长期的加工和研发的过程中针对不同的厂商已经摸索出一定的规律和计算公式。 (全部为1GHz状态下) 2.介质层厚度H H (介质层厚度)该因素对阻抗控制的影响最大故设计中如对阻抗的宽容度 很小的话,则该部分的设计应力求准确,FR-4的H的组成是由各种半固化片组合而成的(包括内层芯板),一般情况下常用的半固化片为: 1080 厚度0.075MM、 7628 厚度0.175MM、 2116 厚度0.105MM。 3.线宽W 对于W1、W2的说明:

I Base copper thk A For inner layer For outer layer H OZ 0.5MIL 0.8MIL 1 OZ 1.0MIL 1.2MIL 2OZ 1.5MIL 1.6MIL 此处的W=W1, W1=W2. 规则:W1=W-A W—-设计线宽 A—— tch loss见上表) 走线上下宽度不一致的原因是:PCB板制造过程中是从上到下而腐蚀,因此腐蚀出来的线呈梯形。 4.绿油厚度:因绿油厚度对阻抗影响较小,故假定为定值。 5.铜箔厚度 外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、10Z 2OZ(1OZ约为35um或三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近 10Z左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小, 但由于蚀刻的原因,一般会减少几个um。

电缆的阻抗原理与计算(摘录)

电缆的阻抗原理与计算(摘录) 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频

下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。

特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416 L=单位长度电缆的电感量

电子测量 第2章 习题参考答案

第二章误差与测量不确定度 2.10用图2.22中(a )、(b )两种电路测电阻R x ,若电压表的内阻为R V ,电流表的内阻为R I ,求测量值受电表影响产生的绝对误差和相对误差,并讨论所得结果。 图2.22 题2.10图 解:(a)v X v x v x x R R R R I I R R I V R += = = )//(' ? R=V X X x x R R R R R +- =-2' R r = %10011100 100 ?+ - =?+- =??X V V X X X R R R R R R R 在R v 一定时被测电阻R X 越小,其相对误差越小,故当R X 相对R v 很小时,选此方法测量。 (b)I x I x x R R I R R I I V R +=+?= = ) (' I x x R R R R =-=?' R r 0 100 100 ?= ??= X I X R R R R 在R I 一定时,被测电阻R X 越大.其相对误差越小,故当R X 相对RI 很大时,选此方法测量。 2.11 用一内阻为R i 的万用表测量下图所示电路A 、B 两点间电压,设E =12V ,R1=5k Ω ,R2=20k Ω,求: (1)如E 、R1、R2都是标准的,不接万用表时A 、B 两点间的电压实际值U A 为多大? (2)如果万用表内阻R I =20k Ω,则电压U A 的示值相对误差和实际相对误差各为多大? (3)如果万用表内阻R I =lM Ω,则电压U A 的示值相对误差和实际相对误差各为多大? (a ) (b ) R 1 5K Ω

交流阻抗测试

对电化学电池使用一正弦信号激励,然后分析产生的电流,这是最早用来测量快速电子转移反应速率常数的一种方法.在任何快速反应的测量中,无论采用什么技术,都必须在短时间得到有关信息,否则扩散,而不是动力学,成为速率决定过程.交流电桥一度曾是可用来在毫秒及更短时间量程上测量的唯一仪器方法,利用平衡下的电化学电池作为wheatstone电桥的未知臂,从而建立了目前的交流电技术和分析方法的基础.现代仪器方法位交流电测量比手动平衡电桥迅速得多,因此可在动态而不是平衡条件下连续记录交流电参数,例如在循环伏安法或极谱实验中.在时间量程的另一端,交流电技术在腐蚀腐蚀研究中现在是重要的,在这方面,快速响应不如常见的涉及表面和溶液反应的复杂过程的全面分析来得重要.这里现代计算方法在交流电方法得应用中是必不可少的. 8.2 电化学电池阻抗的测量 在任何交流电方法中有几个共同性问题的考虑要记住. (a)激励信专的频率 如果交流电方法作为判别性方法使用,则频率范围应该尽可能宽.在理想中这意味着,如果所有理论工具已齐备,包括Kramers-Krong 分析法(见下文),那么频率范围在6到7个10倍频,如10-2到105Hz 的潜力应充分使用. (b)线性. 专虑到基元反应步骤的速率是指数性依赖斤电位的,电化学过程在本质上是非线性的。然而最充分发展的交流电理论全是线件理论, 这意味着要使用它们就要将激励信号幅但保持得足够小,以使体系成 为非常近似于线性.(即可以应用Butlter-V olmer方程式的线性近似 式,见式(1.34).)振幅容许值随试验的体系和频率领改变,但一般规 则是,峰—峰幅值不超过l0mV,除非有某种特别指明可以安全地这样 做,而且即使是这—低水平的扰动,也可能产生问题.非线性是通过在 电池响应中而产生激励信号的谐被而表现出来的,因此可以用频谱分 析仪之类的检测系统来检洲它们的存在相测迢它们的帕值.应该按常 规地使用示波器来监测电池电流中的交流成分,而由正弦波响应的可 见畸变作为表示任何显著的非线性的方法.进一步的简单检查是用不 问激励幅值进行分析,响应的如何差异都意味着非线性已成为问题. (c)谬误的响应 众所用知,交流电技术易于因测量回路中的谬误效应而产生歪曲.不易设计一种恒电位仪,在高频时不发生相位移而仍具有足够高的增 益.接线与地和接线本身之间的杂散电容,以及接线和电池内部结构 的自感应在很高的频率时总是一个问题. 设计良好的电池可以帮助在一定程度上减轻这些问题,应该对下列几点加以注意.工作电极相对电圾应该对称放置,以便提供非常均 匀的电流分布.Luggin毛细管应该靠近工作电极,但不要靠很大近, 这样可尽可能减小末补偿的Ohm电阻,但又避免了引起不规则电流 分布的屏蔽效应.毛细管最好应该是直而短的,但口径不要太细,否则 其电阻将是高的.参考电极本身的电阻应尽可能地低,并通过一个用 短导线与之相连的高输入阻抗的单位增益放大器来对之进行缓冲,以 便将参考回路的RC时间常数降到最小(参见第十一章).

PCB线路板阻抗计算公式

P C B线路板阻抗计算公 式 -CAL-FENGHAI.-(YICAI)-Company One1

PCB线路板阻抗计算公式 现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来和意义: 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8

下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )= g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε"?Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有. 传输线特性阻抗的计算 首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2个参考地,如下图所示

解析交流阻抗及其测量过程中的各种名词

交流阻抗的测量方法 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 (1)交流阻抗:交流阻抗即阻抗,在电子学中,是指电子部件对交流激励信号呈现出的电阻和电抗的复合特性;在电化学中,是指电极系统对所施加的交流激励信号呈现出的电阻和电抗的复合特性。阻抗模的单位为欧姆,阻抗辐角(相角)的单位为弧度或度。 (2)交流阻抗谱:在测量阻抗的过程中,如果不断地改变交流激励信号的频率,则可测得随频率而变化的一系列阻抗数据。这种随频率而变的阻抗数据的集合被称为阻抗频率谱或阻抗谱。阻抗谱是频率的复函数,可用幅频特性和相频特性的组合来表示;也可在复平面上以频率为参变量将阻抗的实部和虚部展示出来。测量频率范围越宽,所能获得的阻抗谱信息越完整。 RST5200电化学工作站的频率范围为:0.00001Hz~1MHz,可以很好地完成阻抗谱的测量。 (3)电化学阻抗谱:电化学阻抗谱是一种电化学测试方法,采用的技术是小信号交流稳态测量法。对于电化学电极体系中的溶液电阻、双电层电容以及法拉第电阻等参量,用电化学阻抗谱方法可以很精确地测定;而用电流阶跃、电位阶跃等暂态方法测定,则精度要低一些。另外,像扩散传质过程等需要用较长时间才能测定的特性,用暂态法是无法实现的,而这却是电化学阻抗谱的长项。

(4)电化学阻抗谱测量的特殊性:就测量原理而言,在电化学中测量电极体系的阻抗谱与在电子学中测量电子部件的阻抗谱并没有本质区别。通常,我 们希望获得电极体系处于某一状态时的电化学阻抗谱。而维持电极体系的状态,须使电极电位保持不变。通常认为,电极电位变化50mV以上将会破坏现有的状态。因此,在电化学阻抗谱测量中,必须注意两个关键点,即:偏置电位和正弦交流信号幅度。 (5)正弦交流信号的幅度:为了避免对电化学电极体系产生大的影响以及希望其具有较好的线性响应,正弦交流信号的幅度通常可设在2~20mV之间。 (6)自动去偏:在电化学阻抗谱测量过程中,由于偏置电位不一定等于开路电位以及少量的非线性作用,在工作电极电流中还会含有直流成分。去除这个直流成分(偏流),可扩大交流信号的动态范围、提高信噪比。RST5200电化学工作站,可在测量过程中动态地调整去偏电流,使获得的阻抗谱数据更精准。另外,在软件界面的状态栏中,可实时显示工作电极的极化电流,供操作者参考。 以上为交流阻抗的相关说明,下面我们就实验设置过程中遇到的专业名词作简要概述,以便使用者更好的了解交流阻抗方法。

相关主题
文本预览
相关文档 最新文档