当前位置:文档之家› 指数与对数运算

指数与对数运算

指数与对数运算
指数与对数运算

一、选择题(共8小题,每小题4分,满分32分)

1、的值是()

A、B、1

C、D、2

2、设a,b,c都是正数,且3a=4b=6c,那么()

A、=+

B、=+

C、=+

D、=+

3、若a>1,b>1,p=,则a p等于()

A、1

B、b

C、log b a

D、a log b a

4、设x=+,则x属于区间()

A、(﹣2,﹣1)

B、(1,2)

C、(﹣3,﹣2)

D、(2,3)

5、若32x+9=10?3x,那么x2+1的值为()

A、1

B、2

C、5

D、1或5

6、已知2lg(x﹣2y)=lgx+lgy,则的值为()

A、1

B、4

C、D、或4

7、方程log2(x+4)=2x的根的情况是()

A、仅有一根

B、有两个正根

C、有一正根和一个负根

D、有两个负根

8、如果方程lg2x+(lg7+lg5)lgx+lg7?lg5=0的两根为α、β,则α?β的值是()

A、lg7?lg5

B、lg35

C、35

D、

二、填空题(共7小题,每小题5分,满分35分)

9、(2n+1)2?2﹣2n﹣1÷4n=_________;=_________;=_________.

10、(3+2)=_________;log89?log2732=_________;(lg5)2+lg2?lg50=_________.

11、若f(x)=4x,则f﹣1(4x)=_________,若f(x)=,且f(lga)=,则a=_________.

12、方程(4x+4﹣x)﹣2(2x+2﹣x)+2=0的解集是_________.

13、方程x lgx=10的所有实数根之积是_________.

14、不查表,求值:lg5﹣lg+lg2﹣3log32﹣1=_________.

15、不查表求值:+﹣102+lg2=_________.

三、解答题(共7小题,满分0分)

16、(1)已知log310=a,log625=b,试用a,b表示log445.

(2)已知log627=a,试用a表示log1816.

17、化简:+﹣.

18、若α、β是方程lg2x﹣lgx2﹣2=0的两根,求logαβ+logβα的值.

19、解下列方程

(1)log x+2(4x+5)﹣log4x+5(x2+4x+4)﹣1=0;

(2)32x+5=5?3x+2+2;

20、解关于x的方程.

(1)log(x+a)2x=2.

(2)log4(3﹣x)+log0.25(3+x)=log4(1﹣x)+log0.25(2x+1);

(3)+=6;

(4)lg(ax﹣1)﹣lg(x﹣3)=1.

21、若方程log2(x+3)﹣log4x2=a的根在(3,4)内,求a的取值范围.

22、已知a>0,a≠1,试求使方程有解的k的取值范围.

答案与评分标准

一、选择题(共8小题,每小题4分,满分32分)

1、的值是()

A、B、1

C、D、2

考点:对数的运算性质。

分析:根据,从而得到答案.

解答:解:.

故选A.

点评:本题考查对数的运算性质.

2、设a,b,c都是正数,且3a=4b=6c,那么()

A、=+

B、=+

C、=+

D、=+

考点:指数函数综合题。

专题:计算题。

分析:利用与对数定义求出a、b、c代入到四个答案中判断出正确的即可.

解答:解:由a,b,c都是正数,且3a=4b=6c=M,则a=log3M,b=log4M,c=log6M 代入到B中,左边===,

而右边==+==,

左边等于右边,B正确;

代入到A、C、D中不相等.

故选B.

点评:考查学生利用对数定义解题的能力,以及换底公式的灵活运用能力.

3、若a>1,b>1,p=,则a p等于()

A、1

B、b

C、log b a

D、a log b a

考点:指数式与对数式的互化。

专题:计算题。

分析:利用对数运算中的换底公式进行转化是解决本题的关键.再利用对数式和指数式之间的关系进行求解.

解答:解:由对数的换底公式可以得出p==log a(log b a),

因此,a p等于log b a.

故选C.

点评:本题考查对数的换底公式的运用,考查对数式与指数式之间的转化,考查学生的转化与化归能力.

4、设x=+,则x属于区间()

A、(﹣2,﹣1)

B、(1,2)

C、(﹣3,﹣2)

D、(2,3)

考点:对数的运算性质;换底公式的应用。

专题:计算题;函数思想。

分析:由题意把两个对数换成以为底得对数,化简后合并为一个对数,再利用函数y=的单调性,求出x的范围.

解答:解:由题意,x=+=+=;

∵函数y=在定义域上是减函数,且,

∴2<x<3.

故选D.

点评:本题考查了换低公式和对数的运算性质的应用,一般底数不同的对数应根据式子的特点换成同底的对数,再进行化简求值.

5、若32x+9=10?3x,那么x2+1的值为()

A、1

B、2

C、5

D、1或5

考点:有理数指数幂的运算性质。

专题:计算题;换元法。

分析:由题意可令3x=t,(t>0),原方程转化为二次方程,解出在代入x2+1中求值即可.

解答:解:令3x=t,(t>0),

原方程转化为:t2﹣10t+9=0,

所以t=1或t=9,即3x=1或3x=9

所以x=0或x=2,所以x2+1=1或5

故选D

点评:本题考查解指数型方程,考查换元法,较简单.

6、已知2lg(x﹣2y)=lgx+lgy,则的值为()

A、1

B、4

C、D、或4

考点:对数的运算性质。

分析:根据对数的运算法则,2lg(x﹣2y)=lg(x﹣2y)2=lg(xy),可知:x2+4y2﹣4xy=xy,即可得答案.

解答:解:∵2lg(x﹣2y)=lg(x﹣2y)2=lg(xy),

∴x2+4y2﹣4xy=xy

∴(x﹣y)(x﹣4y)=0

∴x=y(舍)或x=4y

∴=

故选C.

点评:本题主要考查对数的运算性质.

7、方程log2(x+4)=2x的根的情况是()

A、仅有一根

B、有两个正根

C、有一正根和一个负根

D、有两个负根

考点:对数函数的图像与性质;指数函数的图像与性质。

专题:数形结合。

分析:方程log2(x+4)=2x的根的情况转化为函数图象的交点问题,画图:y1=log2(x+4),y2=2x的图象.

解答:解:采用数形结合的办法,画图:y1=log2(x+4),y2=2x的图象,

画出图象就知,该方程有有一正根和一个负根,

故选C.

点评:本题将零点个数问题转化成图象交点个数问题,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质.

8、如果方程lg2x+(lg7+lg5)lgx+lg7?lg5=0的两根为α、β,则α?β的值是()

A、lg7?lg5

B、lg35

C、35

D、

考点:一元二次方程的根的分布与系数的关系;对数的运算性质。

专题:计算题。

分析:由题意知,lgα,lgβ是一元二次方程x2+(lg7+lg5)x+lg7?lg5=0的两根,依据根与系数的关系得lgα+lgβ=﹣(lg7+lg5),再根据对数的运算性质可求得α?β的值.

解答:∵方程lg2x+(lg7+lg5)lgx+lg7?lg5=0的两根为α、β,

∴lgα,lgβ是一元二次方程x2+(lg7+lg5)x+lg7?lg5=0的两根,

∴lgα+lgβ=﹣(lg7+lg5),

∴lgαβ=﹣lg35,

∴α?β的值是.

故选D.

点评:本题是一元二次方程与对数运算交汇的题目,考查学生整体处理问题的能力,本题容易出现的错误是,误认为方程lg2x+(lg7+lg5)lgx+lg7?lg5=0的两根为α、β,则α?β=lg7?lg5,导致错选A.

二、填空题(共7小题,每小题5分,满分35分)

9、(2n+1)2?2﹣2n﹣1÷4n=21﹣2n;=;=.

考点:有理数指数幂的运算性质。

分析:利用有理指数幂的运算化简(2n+1)2?2﹣2n﹣1÷4n,用对数性质化简后两个代数式.

解答:解:(2n+1)2?2﹣2n﹣1÷4n=22n+2﹣2n﹣1﹣2n=21﹣2n

故答案为:

点评:本题考查有理指数幂的运算性质,对数的运算性质,是基础题.

10、(3+2)=﹣2;log89?log2732=;(lg5)2+lg2?lg50=1.

考点:对数的运算性质。

专题:计算题。

分析:第一个式子:找出和的联系,利用对数的运算法则求解即可;

第二个式子:利用换底公式化为同底的对数进行运算,注意到8和32可化为2的幂的形式,9和27 化为3 的幂的形式.

第三个式子:2=,50=5×10,都转化为lg5的形式,可得出结果.

解答:解:==,所以

=﹣2;

log89?log2732==

(lg5)2+lg2?lg50=(lg5)2+lg?lg5×10=(lg5)2+(1﹣lg5)?(1+lg5)=1

故答案为:﹣2;;1

点评:本题考查对数的运算、对数的换底公式等知,属基本运算的考查.在运算时,要充分利用对数的运算法则.11、若f(x)=4x,则f﹣1(4x)=x,若f(x)=,且f(lga)=,则a=10或.

考点:反函数;函数的值;对数的运算性质。

专题:计算题。

分析:(1)本题可由原函数f(x)的解析式先求出反函数f﹣1(x)的解析式,最后将自变量取值4x代入反函数f﹣1(x)的解析式,结合对数函数运算性质可得答案,

(2)由自变量求解函数值可得x与a的等式,进而用自变量x表示a后代入函数解析式,从而可得仅含变量x的方程,由此解出x的值.

解答:(1)由f(x)=4x得f﹣1(x)=log4x,所以f﹣1(4x)=log44x=x,

故答案为x

(2)令x=lga得a=10x所以f(lga)=f(x)====,故x2﹣x=解得x=1或﹣,代入a=10x,所以a=10或

故答案为10或

点评:第一小题主要考查反函数知识和对数函数的运算性质,是对基础知识的考查,第二小题在考查函数值的基础之上,主要考查对数与指数之间的互化,以及指数幂运算性质,其中包括对解一元二次方程等基础的考查,难度较大.

12、方程(4x+4﹣x)﹣2(2x+2﹣x)+2=0的解集是{0}.

考点:指数函数综合题。

分析:本题形式可以观察出,此方程是一个复合函数型的方程,需要先解外层的方程,求出内层的函数值,再解内层方程,求出方程的解,并写成解集的形式.

解答:解:令t=2x+2﹣x>0,则4x+4﹣x=t2﹣2

原方程可以变为t2﹣2t=0,故t=2,或者t=0(舍)

故有2x+2﹣x=2即(2x)2﹣2×2x+1=0

∴(2x﹣1)2=0

∴2x=1即x=0

故方程的解集为{0}

故应填{0}

点评:本题考查解指数与一元二次函数复合的方程,所用的方法为换元法,此类方程的特点是由外而内,逐层求解.13、方程x lgx=10的所有实数根之积是1.

考点:对数的运算性质。

分析:方程两边取对数,化简方程,然后求解即可.

解答:解:方程x lgx=10的两边取常用对数,可得lg2x=1,∴lgx=±1,所以x=10或x=

实数根之积为1.

故答案为:1

点评:本题考查对数的运算性质,是基础题.

14、不查表,求值:lg5﹣lg+lg2﹣3log32﹣1=﹣3.

考点:对数的运算性质。

分析:根据对数运算法则且lg5=1﹣lg2,可直接得到答案.

解答:解:∵lg5﹣lg+lg2﹣3log32﹣1

=1﹣lg2﹣lg2+lg2﹣2﹣2=0

故答案为:0.

点评:本题主要考查对数的运算法则,属基础题.

15、不查表求值:+﹣102+lg2=﹣190.

考点:指数函数综合题;对数函数图象与性质的综合应用。

专题:计算题。

分析:根据换底公式和对数的定义化简得到即可求出值.

解答:解:++102+lg2=﹣2﹣102×2=9﹣2﹣200=﹣193

故答案为﹣193.

点评:考查学生灵活运用换底公式的能力,运用指数函数和对数定义的能力.

三、解答题(共7小题,满分0分)

16、(1)已知log310=a,log625=b,试用a,b表示log445.

(2)已知log627=a,试用a表示log1816.

考点:换底公式的应用;对数的运算性质。

分析:(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,

把lg3、lg2的表达式代入即可用a,b表示log445.

(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816 的式子.

解答:解:(1)∵log310=a,∴a=,∵log625=b===,

∴lg2=,

log445=====.

(2)∵log627=a=,∴lg3=,

∴log1816===.

点评:本题考查换底公式及对数运算性质,体现解方程的思想.

17、化简:+﹣.

考点:根式与分数指数幂的互化及其化简运算。

专题:计算题。

分析:利用立方差,立方和公式,把3个分式的分子分别化成因式乘积的形式,然后化简,即可得到结果.

解答:解:+﹣=+﹣

=

=﹣

点评:本题考查根式与分数指数幂的互化及其化简运算,是基础题.

18、若α、β是方程lg2x﹣lgx2﹣2=0的两根,求logαβ+logβα的值.

考点:对数的运算性质;一元二次方程的根的分布与系数的关系。

专题:计算题。

分析:利用对数的原式法则化简方程;将方程看成关于lgx的二次方程,利用根与系数的关系得lgα+lgβ=2,lgα?lgβ=﹣2;利用换底公式将待求的式子用以10为底的对数表示,将得到的等式代入求出值.

解答:解:原方程等价于lg2x﹣2lgx﹣2=0

∵α,β是方程的两个根

所以lgα+lgβ=2,lgα?lgβ=﹣2

所以=

即logαβ+logβα=﹣3

点评:本题考查对数的运算法则、考查二次方程根与系数的关系、考查对数的换底公式.

19、解下列方程

(1)log x+2(4x+5)﹣log4x+5(x2+4x+4)﹣1=0;

(2)32x+5=5?3x+2+2;

考点:对数的运算性质;有理数指数幂的运算性质。

专题:计算题;转化思想;换元法。

分析:(1)应用对数换底公式,换元法,解一元二次方程,然后还原对数解答即可.

(2)直接换元,解一元二次方程,然后再解指数方程即可.

解答:解:(1)log x+2(4x+5)﹣log4x+5(x2+4x+4)﹣1=0

化为log x+2(4x+5)﹣2[log x+2(4x+5)]﹣1﹣1=0

令t=log x+2(4x+5)

上式化为:

当log x+2(4x+5)=﹣1时解得x=﹣1或x=都不符合题意,舍去.

当log x+2(4x+5)=2时有x2=1,解得x=﹣1(舍去),x=1

(2)32x+5=5?3x+2+2

令t=3x+2上式化为3t2﹣5t﹣2=0解得t=﹣(舍去),t=2

即3x+2=2 x+2=log32

所以x=

点评:本题考查对数的运算性质,有理指数幂的运算,考查学生换元法,转化思想,注意方程根的验证,是中档题.20、解关于x的方程.

(1)log(x+a)2x=2.

(2)log4(3﹣x)+log0.25(3+x)=log4(1﹣x)+log0.25(2x+1);

(3)+=6;

(4)lg(ax﹣1)﹣lg(x﹣3)=1.

考点:对数的运算性质。

专题:计算题。

分析:利用等价转化思想将这些方程都转化为与之等价的代数方程,通过求解代数方程达到求解该方程的目的.注意对数中真数大于零的特点.

(1)要注意对数式与指数式的转化关系;

(2)利用对数运算性质进行转化变形;

(3)注意到两项的联系,利用整体思想先求出整体,进一步求出方程的根;

(4)利用对数的运算性质进行转化与变形是解决本题的关键.注意对字母的讨论.

解答:解:(1)该方程可变形为2x=(x+a)2,即x=1﹣a±(当a≤时),当x=1﹣a﹣时,x+a=1﹣<0,故舍去.因此该方程的根为x=1﹣a+(当a≤时),当a>时,原方程无根.

(2)该方程可变形为log4=log4,即,整理得x2﹣7x=0,解出x=0或者x=7(不满足真数大于0,舍去).故该方程的根为x=0.

(3)该方程变形为=6,即

,令,则可得出t+,解得

t=3±2=,因此x=±2.该方程的根为±2.

(4)原方程等价于,由得出ax﹣1=10x﹣30,该方程当a=10时没有根,当a≠10时,x=,要使得是原方程的根,需满足ax﹣1>0,且x﹣3>0.解出a∈(,10).因此当a∈(,10)时,原方

程的根为x=,当a∈(﹣∞,]∪[10,+∝)时,原方程无根.

点评:本题考查代数方程的求解,注意方程的等价变形,注意对数形式方程的真数大于零的特征,注意对所求的根进行检验,对含字母的方程要注意讨论.

21、若方程log2(x+3)﹣log4x2=a的根在(3,4)内,求a的取值范围.

考点:对数的运算性质;对数函数图象与性质的综合应用。

专题:计算题;函数思想。

分析:应用对数的运算性质,log4x2=log2x,将方程变形,转化为求函数a=的值域,通过的取值范围,

确定a的取值范围.

解答:解:∵3<x<4,方程即:log2(x+3)﹣log2x=a,

=a

∵=1﹣,

<<1,

∴0<1﹣<,

∴﹣∞<a<﹣2

点评:本题体现函数与方程的数学思想,应多加注意.

22、已知a>0,a≠1,试求使方程有解的k的取值范围.

考点:对数函数图象与性质的综合应用。

专题:计算题。

分析:由题设条件可知,原方程的解x应满足,当(1),(2)同时成立

时,(3)显然成立,

因此只需解,再根据这个不等式组的解集并结合对数函数的性质可以求

出k的取值范围.

解答:解:由对数函数的性质可知,

原方程的解x应满足

当(1),(2)同时成立时,(3)显然成立,

因此只需解

由(1)得2kx=a(1+k2)(4)

当k=0时,由a>0知(4)无解,因而原方程无解.

当k≠0时,(4)的解是

把(5)代入(2),得

解得:﹣∞<k<﹣1或0<k<1.

综合得,当k在集合(﹣∞,﹣1)∪(0,1)内取值时,原方程有解.

点评:解题时要注意分类讨论思想的灵活运用.

参与本试卷答题和审题的老师有:

wsj1012;qiss;wdnah;sllwyn;xintrl;yhx01248;pingfanziqun;yzhb;wdlxh;zlzhan;caoqz115588;wodeqing;gongjy。(排名不分先后)

菁优网

2011年10月20日

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

100道指数和对数运算

指数和对数运算 一、选择题 1.log ( ). A .-12 D .12 2.已知 3log 2 a =,那么 33log 82log 6 -用a 表示是( ) A .52a - B .2a - C .2 3(1)a a -+ D . 2 31a a -- 3.1 2lg 2lg 25 -的值为 A .1 B .2 C .3 D .4 4.已知4213 5 3 2,4,25a b c ===,则( ) A. c a b << B. a b c << C.b a c << D. b c a << 5.设3 .02.03.03.0,3.0,2.0===z y x ,则z y x ,,的大小关系为( ) A.x z y << B. y x z << C. y z x << D. z y x << 6.设0.2 1.6 0.2 2,2,0.4a b c ===,则,,a b c 的大小关系是() A c a b <<. B .c b a << C .a b c << D .b a c << 二、填空题 7.7 33log 8lg 125lg ++= . 8.2 log 510+log 50.25=_________. 9.22log 12log 3-= . 10.若lg2 = a ,lg3 = b ,则lg 54=_____________. 11.若2log 31x =,则3x 的值为 。 12.化简2 log 2 lg5lg2lg2+-的结果为__________. 13.计算=÷--21 100)25lg 41 (lg _______. 三、解答题 14.(本小题满分12分)计算 (Ⅰ)2 221 log log 6log 282 -; (Ⅱ)213 4 270.00818-?? -+ ? ?? 15. lg(x 2 +1)-2lg(x+3)+lg2=0

指数函数与对数运算解读

指数函数与对数运算 一、选择题 1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .3124 3)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.对数式b a a =--)5(log 2中,实数a 的取值范围是 ( ) A .)5,(-∞ B .(2,5) C .),2(+∞ D . )5,3()3,2( 4.如果c b a x lg 5lg 3lg lg -+=,那么 ( ) A .x =a +3b -c B .c ab x 53= C .53 c ab x = D .x =a +b 3-c 3 5.已知指数函数()y f x =,且35 ()225 f -= ,则函数()y f x =的解析式是( ) A 、32 y x = B 、5x y -= C 、5 y x = D 、5x y = 6.设123()4a -=,144()3b =,3 43 ()2 c -=则,,a b c 的大小顺序是 ( ) A c a b << B c b a << C b a c << D b c a << 7.为了得到函数13()3 x y =?的图象,可以把函数1()3 x y =的图象 ( ) A 向左平移3个单位长度 B 向右平移3个单位长度 C 向左平移1个单位长度 D 向右平移1个单位长度 8.函数13x y =-的定义域是( ) A 、(,0]-∞ B 、(,1]-∞ C 、[0,)+∞ D 、[1,)+∞ 9. 若{} |2x M y y ==,{ } |1N x y x == -则M N = ( ) A {}|1y y > B {}|1y y ≥ C {}|0y y > D {}|0y y ≥ 10.函数?????>≤-=-0 ,0 ,12)(2x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或

高中数学+指数、对数的运算

高中数学指数、对数的运算 一.选择题(共28小题) 1.(2014?济南二模)log2+log2cos的值为() A.﹣2 B.﹣1 C.2D.1 2.(2014?成都一模)计算log5+所得的结果为() A.1B.C.D.4 3.若a>2,b>2,且log2(a+b)+log2=log2+log2,则log2(a﹣2)+log2(b﹣2)=()A.0B.C.1D.2 4.(2014?泸州二模)式子log2(log216)+8×()﹣5=() A.4B.6C.8D.10 5.(2014?泸州一模)的值为() A.1B.2C.3D.4 6.(2015?成都模拟)计算21og63+log64的结果是() A.l og62 B.2C.l og63 D.3 7.(2014?浙江模拟)log212﹣log23=() A.2B.0C.D.﹣2 8.(2014?浙江模拟)下列算式正确的是() A.l g8+lg2=lg10 B.l g8+lg2=lg6 C.l g8+lg2=lg16 D.l g8+lg2=lg4 9.(2014?和平区二模)已知3x=5y=a,且+=2,则a的值为() A.B.15 C.±D.225 10.(2013?枣庄二模)已知函数,则的值是() A.9B.﹣9 C.D.

11.(2013?婺城区模拟)已知函数f(x)=log2,若f(a)=,则f(﹣a)=() A.2B.﹣2 C.D. ﹣ 12.(2013?泸州一模)log2100+的值是() A.0B.1C.2D.3 13.(2013?东莞一模)已知函数f(x)=,则f(2+log32)的值为()A. B.C.D.﹣54 ﹣ 14.(2013?东城区二模)f(x)=,则f(f(﹣1))等于()A.﹣2 B.2C.﹣4 D.4 15.(2012?安徽)(log29)?(log34)=() A.B.C.2D.4 16.(2012?北京模拟)函数y=是() B.区间(﹣∞,0)上的减函数 A.区间(﹣∞,0) 上的增函数 D.区间(0,+∞)上的减函数 C.区间(0,+∞) 上的增函数 17.(2012?杭州一模)已知函数则=() A.B.e C.D.﹣e 18.(2012?北京模拟)log225?log34?log59的值为() A.6B.8C.15 D.30 19.(2012?北京模拟)实数﹣?+lg4+2lg5的值为()A.2B.5C.10 D.20

指数对数幂函数总结归纳

指数与指数幂的运算 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数 与对数函数互为反函数(a >0,a ≠1). 【要点梳理】 要点一、幂的概念及运算性质 1.整数指数幂的概念及运算性质 2.分数指数幂的概念及运算性质 为避免讨论,我们约定a>0,n ,m ∈N *,且 m n 为既约分数,分数指数幂可如下定义: 3.运算法则 当a >0,b >0时有: (1)n m n m a a a +=?; (2)()mn n m a a =; (3)()0≠>=-a n m a a a n m n m ,; (4)()m m m b a ab =. 要点诠释: (1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算; (2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-; (3)幂指数不能随便约分.如2 142 )4()4(-≠-. 要点二、根式的概念和运算法则 1.n 次方根的定义: 若x n =y(n ∈N * ,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y . n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ; n 为偶数时,正数y 的偶次方根有两个,记为n y ±;负数没有偶次方根;零的偶次方根为零,记为00n =. 2.两个等式 (1)当1n >且*n N ∈时, ()n n a a =; (2)???=)(||) (,为偶数为奇数n a n a a n n 要点诠释: ①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误. ②指数幂的一般运算步骤 有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如 ),先要化成假分数(如15/4),

指数与对数运算练习题

1、用根式的形式表示下列各式)0(>a (1)51a = (2)34 a = (3)35 a - = (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4 y x = (2))0(2>=m m m (3 = (4 = ; (5)a a a = ; 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)31()4-= ;(4)3 416()81 - = (5)12 2 [(]- = (6)(12 2 1??-???? = (7)=3 264 4.化简 (1)=??12 74331a a a (2)=÷?654323 a a a (3)=÷-?a a a 9)(34 323 (4)322 a a a ?= (5)3 1 63)278(--b a = (7)()0,053542 15 65 8≠≠÷???? ? ? ?- -b a b a b a = 5.计算 (1) 43 512525÷ - (2) (3)21 0319)41 ()2(4)21(----+-?- ()5.02 1 20 01.04122432-?? ? ???+??? ??-- (5)48 37 3271021.097203 225 .0+ -? ? ? ??++? ?? ??- -π (6)241 30.75 3323(3)0.04[(2)]168 ----++-+ (7)( ) 3 263 425.00 3 1323228765 .1?? ? ??--?+?+?? ? ??-?- 6.解下列方程 (1)13 1 8 x - = (2)151243 =-x (3)1321(0.5)4x x --= 7.(1).已知112 2 3a a -+=,求下列各式的值(1)1a a -+= ;(2)22 a a -+= (2).若1 3a a -+=,求下列各式的值:(1)112 2 a a - += ; (2)22 a a -+= ; (3).使式子34 (12) x --有意义的x 的取值范围是 _. (4).若32a =,1 35b -=,则323 a b -的值= .

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n ( N * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5)6323 1.512??= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为 O x y a d c b

指数对数基本运算

2016-2017学年度???学校9月月考卷 1.计算:________. 2.已知666log log log 6a b c ++=,其中*,,a b c N ∈,若,,a b c 是递增的等比数列,又b a -为一完全平方数,则a b c ++=___________. 3.已知3log 21x =,则42x x -=________. 4.lg83lg5+的值是 . 5.lg0.01+log 216=_____________. 6= . 7.已知,53m b a ==且,则m 的值为 . 8.已知y x y x y x lg lg 2lg )2lg()lg(++=++-,则 9,0a b c <<<,0)()()(;③c d <;④c d >.其中可能成立的是 (填序号) 10. 11 12.如果22log log 4,那么m n m n +=+的最小值是 . 13.若log 21a <,则a 的取值范围是 14的定义域为 . 15.32-,三个数中最大数的是 . 16.若log 4(3a +4b)=log a +b 的最小值是 .

参考答案 1.1 【解析】=lg10=1. 2.111 【解析】 试题分析:66666log log log log 6,6a b c abc abc ++===, 2b ac =,所以366,36b b ==.46ac =,因为b a -为一完全平方数,所以27,48,111a c a b c ==++=. 考点:1.对数运算;2.数列. 【思路点晴】本题涉及很多知识点,一个是对数加法运算,用的是公式 log log log a a a b c bc +=.然后,,a b c 是递增的等比数列,可得2b ac =,接下来因为b a -为一完全平方数,比36小的完全平方数只有25,16,9,故可以猜想27a =,通过计算可得27,48,111a c a b c ==++=.有关几个知识点结合起来的题目,只需要对每个知识点逐个击破即可. 3.6 【解析】 试题分析:由条件可知2log 3x =,故222log 3log 34222936x x -=-=-=. 考点:对数运算的基本性质. 4.3 【解析】 试题分析:3lg83lg5lg8lg5lg10003+=+==。 考点:对数运算法则的应用。 5.2 【解析】lg0.01+log 216=-2+4=2 考点:本题考查对数的概念、对数运算的基础知识,考查基本运算能力. 6【解析】 考点:指数和对数的运算法则。 7【解析】略 8.2 【解析】略

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

指数对数运算经典习题及答案.doc

指数对数运算 一、选择题 1.3 log 9log 28的值是 ( ) A . 3 2 B .1 C . 2 3 D .2 2.设a,b,c 都是正数,且3a =4b =6,那么 ( ) A . b a c 1 11+= B . b a c 122+= C . b a c 2 21+= D . b a c 212+= 3.已知==)5(,)10(f x f x 则 ( ) A .5 10 B . 10 5 C. 10log 5 D. 5lg 4.若a>1,b>1,a a p b b b log )(log log =,则a p 等于 ( ) A .1 B .b C .log b a D .a b a log 5.设15 112 1)3 1 (log )3 1 (log --+=x ,则x 属于区间 ( ) A .(-2,-1) B .(1,2) C .(-3,-2) D .(2,3) 6.若32x +9=10·3x ,那么x 2 +1的值为 ( ) A .1 B .2 C .5 D .1或5 7.已知2lg(x -2y)=lgx+lgy ,则y x 的值为 ( ) A .1 B .4 C .1或4 D . 4 1 或4 8.方程log 2(x+4)=2x 的根的情况是 ( ) A .仅一个正根 B .有两正根 C .有两负根 D .有一正根和一负根 9.下列各式中成立的一项是 ( ) A .7177)(m n m n = B. 3124 3)3(-=- C. 43 433)(y x y x +=+ D. 33 39= 10. 化简??? ? ??÷???? ??-???? ??656131 21213231 3b a b a b a 的结果是 ( ) A .a 6 B. a - C. a 9- D. 2 9a 11.若x x 则,0)](log [log log 25.02=等于 ( ) A .2 B. 2 C. 2 1 D. 1

对数函数与指数函数的运算

对数函数与指数函数的运算 1.化简下列各式(其中各字母均为正数): (1) ;)(65312121132 b a b a b a ????-- (2).)4()3(6521 332121231----?÷-??b a b a b a 2.化简(1) 313 2)3(---a y x (2) )111)((2211b ab a b a +-+-- 3.化简下列各式 (1) 6113175.0231729)95()27174(256)61(027 .0------+-+-- (2) (a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)] 4.求值(1)lg14-2lg 37+lg7-lg18 (2)9lg 243lg

(3) 2.1lg 10lg 38lg 27lg -+ (4)(lg2)3+(lg5)3+3lg2?lg5 (5)化简22)4(lg 16lg 25lg )25(lg ++ 答案: 1.(1)原式= .100653121612131656131212131=?=?=?-+-+--b a b a b a b a b a (2)原式=- )(45)4(25233136121332361------÷-=?÷b a b a b a b a .45145452 32321ab ab ab b a -=?-=?-=-- 2. (1) 639 27x a y ; (2) 3311b a +;

3.(1) 5132;(2) a a 1 ; 4. (1) 0;(2) 25;(3) 23;(4) 1;(5) 2 ;

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

指数与对数运算(习题)

指数与对数运算(习题) 1. 若log x z =,则( ) A .7z y x = B .7z y x = C .7z y x = D .7x y z = 2. 若a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( ) A .log log log a c c b b a ?= B .log log log a c c b a b ?= C .log ()log log a a a bc b c =? D .log ()log log a a a b c b c +=+ 3. 已知x ,y 为正实数,则下列式子中正确的是( ) A .lg lg lg lg 222x y x y +=+ B .lg()lg lg 222x y x y +=? C .lg()lg lg 222x y x y ?=? D .lg lg lg lg 222x y x y ?=+ 4. 若235log [log (log )]0x =,则x 的值为( ) A .2 B .3 C .5 D .125 5. 已知3log 2a =,那么33log 22log 6-可用a 表示为( ) A .5a -2 B .-a -2 C .3a -(1+a )2 D .3-a 2-1 6. 若25a b m ==,且112a b +=,则m 的值为( ) A . B . 10 C .20 D .100 7. 若3log 41x =,则44x x -+的值为( ) A .1 B .83 C .103 D .2 8. 求下列各式的值:

; ; 2 3278?? ??? =____________; 1 236-=_________________; 3 481625-?? ??? =______________. 9. 用分数指数幂表示下列各式(其中各式字母均为正数): 2 ; ; ; =____________. 10. 化简下列各式(其中各式字母均为正数): 11. 已知8112()log 1x x f x x x -?=?>?≤)) ((,若1()4f x =,则x =_________. 12. 计算下列各式:

指数与对数运算练习题

指数运算练习题 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)34 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)34 y x = (2) )0(2>=m m m (3 = (4 = ; (5)a a a = ; 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)12 2 [(]- = (6)(1 2 2 1?????? = (7)=3 264 4.化简 (1)=??12 74331a a a (2)=÷?654323 a a a (3)=÷-?a a a 9)(34 323 (4)322 a a a ?= (5)3 1 63)278(--b a = (7)()0,053542 15 658≠≠÷???? ? ? ? - -b a b a b a = 5.计算 (1) 43 512525÷ - (2) (3)21 0319)4 1 ()2(4)21(----+-?- ()5 .02 1 2001.04122432-?? ? ???+??? ??- - (5)48 37 3271021.097203 225 .0+ -? ? ? ??++? ? ? ??- -π (6)241 30.75 3323(3)0.04[(2)]168 ----++-+ (7)( ) 3 263 425.00 3 1323228765 .1?? ? ??--?+?+?? ? ??-?- 6.解下列方程

(1)13 1 8 x - = (2)151243 =-x (3)1321(0.5)4x x --= 7.(1).已知112 2 3a a -+=,求下列各式的值(1)1a a -+= ;(2)22 a a -+= (2).若1 3a a -+=,求下列各式的值:(1)1 12 2 a a - += ; (2)22 a a -+= ; (3).使式子34 (12) x --有意义的x 的取值范围是 _. (4).若32a =,1 35b -=,则323 a b -的值= . 对数运算练习题 一、选择题 1、以下四式中正确的是( ) A 、log 22=4 B 、log 21=1 C 、log 216=4 D 、log 221=4 1 2、下列各式值为0的是( ) A 、10 B 、log 33 C 、(2-3)° D 、log 2∣-1∣ 3、2 5 1 log 2 的值是( ) A 、-5 B 、5 C 、 51 D 、-5 1 4、若m =lg5-lg2,则10m 的值是( ) A 、 2 5 B 、3 C 、10 D 、1 5、设N = 3log 12+3 log 1 5,则( ) A 、N =2 B 、N =2 C 、N <-2 D 、N >2 6、在)5(log 2a b a -=-中,实数a 的范围是( ) A 、 a >5或a <2 B 、 25<

高中数学指数对数的运算

高中数学指数、对数的运算一.选择题(共28小题) 1.(2014?济南二模)log2+log2cos的值为() A.﹣2B.﹣1C.2D.1 2.(2014?成都一模)计算log5+所得的结果为() A.1B.C.D.4 3.若a>2,b>2,且log2(a+b)+log2=log2+log2,则log2(a﹣2)+log2(b﹣2)=()A.0B.C.1D.2 4.(2014?泸州二模)式子log2(log216)+8×()﹣5=() A.4B.6C.8D.10 5.(2014?泸州一模)的值为() A.1B.2C.3D.4 6.(2015?成都模拟)计算21og63+log64的结果是() A.l og 2B.2C.l og63D.3 6 7.(2014?浙江模拟)log212﹣log23=() A.2B.0C.D.﹣2 8.(2014?浙江模拟)下列算式正确的是() A.l g8+lg2=lg10B.l g8+lg2=lg6C.l g8+lg2=lg16D.l g8+lg2=lg4 9.(2014?和平区二模)已知3x=5y=a,且+=2,则a的值为() A.B.15C.±D.225 10.(2013?枣庄二模)已知函数,则的值是()A.9B.﹣9C.D.

11.(2013?婺城区模拟)已知函数f(x)=log2,若f(a)=,则f(﹣a)=() A.2B.﹣2C.D. ﹣ 12.(2013?泸州一模)log2100+的值是() A.0B.1C.2D.3 13.(2013?东莞一模)已知函数f(x)=,则f(2+log32)的值为()A. B.C.D.﹣54 ﹣ 14.(2013?东城区二模)f(x)=,则f(f(﹣1))等于()A.﹣2B.2C.﹣4D.4 15.(2012?安徽)(log29)?(log34)=() A.B.C.2D.4 16.(2012?北京模拟)函数y=是() B.区间(﹣∞,0)上的减函数 A.区间(﹣∞,0) 上的增函数 D.区间(0,+∞)上的减函数 C.区间(0,+∞) 上的增函数 17.(2012?杭州一模)已知函数则=()A.B.e C.D.﹣e 18.(2012?北京模拟)log225?log34?log59的值为() A.6B.8C.15D.30 19.(2012?北京模拟)实数﹣?+lg4+2lg5的值为()A.2B.5C.10D.20

指数函数对数函数计算题集

指数函数对数函数计算题1 1、计算:lg 5·lg 8000+06.0lg 6 1lg )2 (lg 23++. 2、解方程:lg 2(x +10)-lg(x +10)3=4. 3、解方程:23log 1log 66-=x . 4、解方程:9-x -2×31-x =27. 5、解方程:x )8 1(=128. 6、解方程:5x+1=12 3-x . 7、计算:10log 5log )5(lg )2(lg 2233+ +·.10 log 18 8、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9、求函数121log 8.0--= x x y 的定义域. 10、已知log 1227=a,求log 616.

11、已知f(x)=1322+-x x a ,g(x)=522-+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x) >g(x). 12、已知函数f(x)=321121x x ?? ? ??+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数. 14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值. 16、解对数方程:log 2(x -1)+log 2x=1 17、解指数方程:4x +4-x -2x+2-2-x+2+6=0 18、解指数方程:24x+1-17×4x +8=0 19、解指数方程:22)223()223( =-++-x x ±2 20、解指数方程:014332 14111=+?------x x 21、解指数方程:042342222=-?--+-+x x x x

指数与对数运算练习题

指数运算与对数运算练习题 基础题 1、用根式的形式表示下列各式)0(>a (1)51a = (2)34 a = (3)35 a - = (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4 y x = (2))0(2>=m m m (3= (4= ; (5)a a a = ; 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)31()4-= ;(4)3 4 16()81 -= (5)12 2 [(]- = (6)(12 2 1?????? = (7)=3 264 一、选择题 1、以下四式中正确的是( ) A 、log 22=4 B 、log 21=1 C 、log 216=4 D 、log 221=4 1 2、下列各式值为0的是( ) A 、10 B 、log 33 C 、(2-3)° D 、log 2∣-1∣ 3、2 5 1 log 2 的值是( ) A 、-5 B 、5 C 、 51 D 、-5 1 4、若m =lg5-lg2,则10m 的值是( ) A 、 2 5 B 、3 C 、10 D 、1 5、设N = 3log 12+3 log 1 5,则( ) A 、N =2 B 、N =2 C 、N <-2 D 、N >2 6、在)5(log 2a b a -=-中,实数a 的范围是( ) A 、 a >5或a <2 B 、 25<

指数与对数的运算

指数与对数的运算 【课标要求】 (1)通过具体实例(如细胞的分裂,考古中所用的14 C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用; 【命题走向】 指数与对数的性质和运算,在历年的高考中一般不单独命题。大多以指数函数、对数函数等基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。 【要点精讲】 1、整数指数幂的概念。 (1)概念:*)(N n a a a a a n ∈??= n 个a (2)运算性质: 两点解释:①可看作 ∴==②可看作∴== 2、根式: (1)定义:若 则x 叫做a 的n 次方根。 (2)求法:当n 为奇数时:正数的n 次方根为正数,负数的n 次方根为负数 记作: 当n 为偶数时,正数的n 次方根有两个(互为相反数) 记作: 负数没有偶次方根 0的任何次方根为0 名称:叫做根式 n 叫做根指数 a 叫做被开方数 (3)公式: ;当n 为奇数时 ; 当n 为偶数时 3、分数指数幂 (1)有关规定: 事实上, 若设a >0, ,由n 次根式定义, 次方根,即: (2)同样规定:;0的正分数指数幂等于0,0的负分数指数幂没有意义。 (3)指数幂的性质:整数指数幂的运算性质推广到有理指数幂。 (注)上述性质对r 、R 均适用。 4、对数的概念 (1)定义:如果的b 次幂等于N ,就是,那么数称以为底N 的对数,记作其中称对数的底,N 称真数。 ①以10为底的对数称常用对数,记作; ②以无理数为底的对数称自然对数,,记作; (2)基本性质: ①真数N 为正数(负数和零无对数);2); ③;4)对数恒等式:。

相关主题
文本预览
相关文档 最新文档