当前位置:文档之家› 实验5:二叉树的创建、遍历及其它基本操作的实现 - 副本

实验5:二叉树的创建、遍历及其它基本操作的实现 - 副本

实验5:二叉树的创建、遍历及其它基本操作的实现 - 副本
实验5:二叉树的创建、遍历及其它基本操作的实现 - 副本

实验5:二叉树的创建、遍历及其它基本操作的实现 实验所需

学时数

2学时 实验目的 1)掌握二叉树的结构特征,以及两种存储结构的特点及适用范围 2)掌握二叉树的先序、中序、后序、层次遍历的方法

3)培养学生综合运用多种数据结构解决实际问题的能力

实验内容 建立一棵以二叉链表作存储结构的二叉树,然后按先序、中序、后序和层次的顺

序分别遍历这棵二叉树。

实验所需

器材

计算机及VC++ 6.0软件 内容要求:

1. 以二叉链表作存储结构创建如下二叉树:

2. 输出二叉树的中序遍历序列和后序遍历序列,以验证所建二叉树的正确性;

3. 按二叉树的层次输出所建二叉树各层的结点,要求同层的结点自左向右排列。(提示:用到两个队列P 、Q 。其中P 存放当前层上的结点,Q 存放下一层的结点。)

实验结果

1、演示程序运行结果。

2、说明调试过程中出现的现象

学生实验评价依据:

优:实验认真、刻苦,有钻研精神,不无故缺席。

良:能认真对待实验,不无故缺席。

中:基本能认真对待实验,不无故缺席。

差:对待实验不够认真,有少量迟到、早退或无故缺席现象。

不及格:对待实验马虎、敷衍,经常迟到、早退或无故缺席。

C

E D

F A

B

#include

#include

#include

typedef int DataType;

typedef struct Node

{

DataType data;

struct Node *LChild;

struct Node *RChild;

}BitNode,*BitTree;

void CreatBiTree(BitTree *bt)//用扩展先序遍历序列创建二叉树,如果是#当前树根置为空,否则申请一个新节点//

{

char ch;

ch=getchar();

if(ch=='.') *bt=NULL;

else

{

*bt=(BitTree)malloc(sizeof(BitNode));

(*bt)->data=ch;

CreatBiTree(&((*bt)->LChild));

CreatBiTree(&((*bt)->RChild));

}

}

void Visit(char ch)//访问根节点

{

printf("%c ",ch);

}

void PreOrder(BitTree root) /*先序遍历二叉树, root为指向二叉树(或某一子树)根结点的指针*/

{

if (root!=NULL)

{

Visit(root ->data); /*访问根结点*/

PreOrder(root ->LChild); /*先序遍历左子树*/

PreOrder(root ->RChild); /*先序遍历右子树*/

}

}

void InOrder(BitTree root)

/*中序遍历二叉树, root为指向二叉树(或某一子树)根结点的指针*/

{

if (root!=NULL)

{

InOrder(root ->LChild); /*中序遍历左子树*/

Visit(root ->data); /*访问根结点*/

InOrder(root ->RChild); /*中序遍历右子树*/

}

}

void PostOrder(BitTree root)

/* 后序遍历二叉树,root为指向二叉树(或某一子树)根结点的指针*/

{

if(root!=NULL)

{

PostOrder(root ->LChild); /*后序遍历左子树*/

PostOrder(root ->RChild); /*后序遍历右子树*/

Visit(root ->data); /*访问根结点*/

}

}

int PostTreeDepth(BitTree bt) //后序遍历求二叉树的高度递归算法// {

int hl,hr,max;

if(bt!=NULL)

{

hl=PostTreeDepth(bt->LChild); //求左子树的深度

hr=PostTreeDepth(bt->RChild); //求右子树的深度

max=hl>hr?hl:hr; //得到左、右子树深度较大者

return(max+1); //返回树的深度

}

else return(0); //如果是空树,则返回0

}

void PrintTree(BitTree Boot,int nLayer) //按竖向树状打印的二叉树 // {

int i;

if(Boot==NULL) return;

PrintTree(Boot->RChild,nLayer+1);

for(i=0;i

printf(" ");

printf("%c\n",Boot->data);

PrintTree(Boot->LChild,nLayer+1);

}

void main()

{

BitTree T;

int h;

int layer;

int treeleaf;

layer=0;

printf("请输入二叉树中的元素(以扩展先序遍历序列输入,其中.代表空子树):\n"); CreatBiTree(&T);

printf("先序遍历序列为:");

PreOrder(T);

printf("\n中序遍历序列为:");

InOrder(T);

printf("\n后序遍历序列为:");

PostOrder(T);

h=PostTreeDepth(T);

printf("\nThe depth of this tree is:%d\n",h);

PrintTree(T,layer);

}

实验三 二叉树的基本操作实现及其应用

二叉树的基本操作实现及其应用 一、实验目的 1.熟悉二叉树结点的结构和对二叉树的基本操作。 2.掌握对二叉树每一种操作的具体实现。 3.学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。 4.会用二叉树解决简单的实际问题。 二、实验内容 设计程序实现二叉树结点的类型定义和对二叉树的基本操作。该程序包括二叉树结构类型以及每一种操作的具体的函数定义和主函数。 1 按先序次序建立一个二叉树, 2按(A:先序 B:中序 C:后序)遍历输出二叉树的所有结点 以上比做,以下选做 3求二叉树中所有结点数 4求二叉树的深度 三、实验步骤 ㈠、数据结构与核心算法的设计描述 /* 定义DataType为char类型 */ typedef char DataType; /* 二叉树的结点类型 */ typedef struct BitNode { DataType data; struct BitNode *lchild,*rchild; }*BitTree; 相关函数声明: 1、/* 初始化二叉树,即把树根指针置空 */ void BinTreeInit(BitTree *BT) { BT=(BitTree)malloc(sizeof(BitNode)); BT->data=NULL; cout<<"二叉树初始化成功!"<>ch; if(ch=='#') BT=NULL; else { if(!(BT=(BitTree)malloc(sizeof(BitNode)))) exit(0);

二叉树实验报告

实验题目:实验九——二叉树实验 算法设计(3) 问题分析: 1、题目要求:编写算法交换二叉树中所有结点的左右子树 2、设计思路:首先定义一个二叉树的数据类型,使用先序遍历建立该二叉树,遍历二叉树,设计左右子树交换的函数,再次遍历交换之后的二叉树,与先前二叉树进行比较。遍历算法与交换算法使用递归设计更加简洁。 3、测试数据: A、输入:1 2 4 0 0 5 0 0 3 0 0 交换前中序遍历:4 2 5 1 3 交换后中序遍历:3 1 5 2 4 交换前:交换后: B、输入:3 7 11 0 0 18 17 0 0 19 0 0 6 13 0 0 16 0 0 交换前中序遍历:11 7 17 18 19 3 13 6 16 交换后中序遍历:16 6 13 3 19 18 17 7 11 概要设计: 1、为了实现上述功能:①构造一个空的二叉树;②应用先序遍历输入,建立二叉树;③中序遍历二叉树;④调用左右子树交换函数;⑤中序遍历交换过后的二叉树。 2、本程序包括4个函数: ①主函数main() ②先序遍历二叉树建立函数creat_bt() ③中序遍历二叉树函数inorder() ④左右子树交换函数 exchange()

各函数间关系如下: 详细设计: 1、结点类型 typedef struct binode //定义二叉树 { int data; //数据域 struct binode *lchild,*rchild; //左孩子、右孩子 }binode,*bitree; 2、各函数操作 ① 先序遍历建二叉树函数 bitree creat_bt() { 输入结点数据; 判断是否为0{ 若是,为空; 不是,递归;} 返回二叉树; } ② 左右子树交换函数 void exchange(bitree t) { 判断结点是否为空{ 否,交换左右子树; 递归;} } ③ 中序遍历函数 void inorder(bitree bt) { 判断是否为空{ 递归左子树; 输出; 递归右子树;} } main () creat_bt () inorder () exchange ()

二叉树的基本 操作

//二叉树的基本操作 #include typedef struct node //定义结点 { char data; struct node *lchild, *rchild; } BinTNode; typedef BinTNode *BinTree; //定义二叉树 void CreateBinTree(BinTree &T); //先序创建二叉树 void PreOrder(BinTree T); //先序遍历二叉树 void InOrder(BinTree T); //中序遍历二叉树 void PostOrder(BinTree T); //后序遍历二叉树 int onechild(BinTree T); //求度为1的结点的个数int leafs(BinTree T); //求叶子结点的个数 int twochild(BinTree T); //度为2的结点的个数void translevel(BinTree b); //层序遍历二叉树 void main() { int n; BinTree T; char ch1,ch2; cout<<"欢迎进入二叉树测试程序的基本操作"<

数据结构二叉树实验报告

实验三二叉树的遍历 一、实验目的 1、熟悉二叉树的结点类型和二叉树的基本操作。 2、掌握二叉树的前序、中序和后序遍历的算法。 3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 二、实验环境 运行C或VC++的微机。 三、实验内容 1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。 2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。 四、设计思路 1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求 2.二叉树采用动态数组 3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点 五、程序代码 #include #include #include #define OK 1 #define ERROR 0 typedef struct TNode//结构体定义 {

int data; //数据域 struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree; void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 { int a; scanf("%d",&a); if(a==00) // 结点的值为空 *T=NULL; else // 结点的值不为空 { *T=(Tree)malloc(sizeof(TNode)); if(!T) { printf("分配空间失败!!TAT"); exit(ERROR); } (*T)->data=a; CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 } } void InitT(Tree *T)//构建空二叉树 { T=NULL; } void DestroyT(Tree *T)//销毁二叉树 { if(*T) // 二叉树非空 { DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T); T=NULL; } } void visit(int e)//访问结点 { printf("%d ",e); }

二叉树的基本操作实验

实验三二叉树的基本运算 一、实验目的 1、使学生熟练掌握二叉树的逻辑结构和存储结构。 2、熟练掌握二叉树的各种遍历算法。 二、实验内容 [问题描述] 建立一棵二叉树,试编程实现二叉树的如下基本操作: 1. 按先序序列构造一棵二叉链表表示的二叉树T; 2. 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列; 3. 求二叉树的深度/结点数目/叶结点数目;(选做) 4. 将二叉树每个结点的左右子树交换位置。(选做) [基本要求] 从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立), [测试数据] 如输入:ABCффDEфGффFффф(其中ф表示空格字符) 则输出结果为 先序:ABCDEGF 中序:CBEGDFA 后序:CGEFDBA 层序:ABCDEFG [选作内容] 采用非递归算法实现二叉树遍历。 三、实验前的准备工作 1、掌握树的逻辑结构。 2、掌握二叉树的逻辑结构和存储结构。 3、掌握二叉树的各种遍历算法的实现。 一实验分析 本次试验是关于二叉树的常见操作,主要是二叉树的建立和遍历。二叉树的遍历有多种方法,本次试验我采用递归法,递归法比较简单。 二概要设计 功能实现

1.int CreatBiTree(BiTree &T) 用递归的方法先序建立二叉树, 并用链表储存该二叉树 2.int PreTravel(BiTree &T) 前序遍历 3. int MidTravel(BiTree &T) 中序遍历 4.int PostTravel(BiTree &T) 后序遍历 5.int Depth(BiTree &T) //计算树的深度 6.int howmuch(BiTree T,int h) 采用树节点指针数组,用于存放遍历到的元素地址,如果有左孩子,存入地址,j加一,否则没操作,通过访问数组输出层次遍历的结果。k计算叶子数,j为总节点。 7. int exchang(BiTree &T) 交换左右子树,利用递归,当有左右孩子时才交换 三详细设计 #include #include typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree;

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告 篇一:二叉树的建立及遍历实验报告 实验三:二叉树的建立及遍历 【实验目的】 (1)掌握利用先序序列建立二叉树的二叉链表的过程。 (2)掌握二叉树的先序、中序和后序遍历算法。 【实验内容】 1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。 如:输入先序序列abc###de###,则建立如下图所示的二叉树。 并显示其先序序列为:abcde 中序序列为:cbaed 后序序列为:cbeda 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。

4.写好代码 5.编译->链接->调试 #include #include #define OK 1 #define OVERFLOW -2 typedef int Status; typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree; Status CreateBiTree(BiTree &T) { TElemType ch; scanf("%c",&ch); if (ch=='#') T= NULL; else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

实验四 二叉树的遍历和应用04

江南大学通信与控制工程学院标准实验报告 (实验)课程名称:计算机软件技术基础实验名称:二叉树的遍历和应用 班级:自动化 姓名:李玉书 学号:03 指导教师:卢先领 江南大学通信与控制学院

江南大学 实验报告 学生姓名:张晓蔚学号:0704090304 实验地点:信控机房实验时间:90分钟 一、实验室名称:信控学院计算中心 二、实验项目名称:二叉树的遍历和应用 三、实验学时:4学时 四、实验原理: 二叉树的遍历和应用 五、实验目的: 1、掌握二叉树的数据类型描述及特点。 2、掌握二叉树的存储结构(二叉链表)的建立算法。 3、掌握二叉链表上二叉树的基本运算的实现。 六、实验内容: 阅读后面的程序,并将其输入到计算机中,通过调试为下面的二叉树建立二叉链表,并用递归实现二叉树的先序、中序、后序三种遍历。 七、实验器材(设备、元器件): 计算机 八、实验步骤: 1、输入示例程序 2、构建按序插入函数实现算法 3、用C语言实现该算法 4、与源程序合并,编译,调试 5、测试,查错,修改

6、生成可执行文件,通过综合测试,完成实验 九、实验数据及结果分析: 测试用例 初始数据:ABDH,,I,,EJ,,K,,CFL,,,G,, 测试结果 十、实验结论: 该程序可以完成线性表的常规功能,且增加了异常处理,在异常情况下,例如: 表空,删除结点号不合法或出界,删除数值未找到等,这些情况下都能作出处理。可以通过边界测试。 十一对本实验过程及方法、手段的改进建议: 对书中程序的几点错误做了改正,见源程序。 附:源程序 #include typedef struct bitree { char data ; bitree *lchild; bitree *rchild;

数据结构——二叉树基本操作源代码

数据结构二叉树基本操作 (1). // 对二叉树的基本操作的类模板封装 //------------------------------------------------------------------------------------------------------------------------ #include using namespace std; //------------------------------------------------------------------------------------------------------------------------ //定义二叉树的结点类型BTNode,其中包含数据域、左孩子,右孩子结点。template struct BTNode { T data ; //数据域 BTNode* lchild; //指向左子树的指针 BTNode* rchild; //指向右子树的指针 }; //------------------------------------------------------------------------------------------------------------------------ //CBinary的类模板 template class BinaryTree { BTNode* BT; public: BinaryTree(){BT=NULL;} // 构造函数,将根结点置空 ~BinaryTree(){clear(BT);} // 调用Clear()函数将二叉树销毁 void ClearBiTree(){clear(BT);BT=NULL;}; // 销毁一棵二叉树 void CreateBiTree(T end); // 创建一棵二叉树,end为空指针域标志 bool IsEmpty(); // 判断二叉树是否为空 int BiTreeDepth(); // 计算二叉树的深度 bool RootValue(T &e); // 若二叉树不为空用e返回根结点的值,函数返回true,否则函数返回false BTNode*GetRoot(); // 二叉树不为空获取根结点指针,否则返回NULL bool Assign(T e,T value); // 找到二叉树中值为e的结点,并将其值修改为value。

数据结构实验二叉树

实验六:二叉树及其应用 一、实验目的 树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。 二、问题描述 首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。 如算术表达式:a+b*(c-d)-e/f 三、实验要求 如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算统计叶子结点的个数。求二叉树的深度。十进制的四则运算的计算器可以接收用户来自键盘的输入。由输入的表达式字符串动态生成算术表达式所对应的二叉树。自动完成求值运算和输出结果。四、实验环境 PC微机 DOS操作系统或 Windows 操作系统 Turbo C 程序集成环境或 Visual C++ 程序集成环境 五、实验步骤 1、根据二叉树的各种存储结构建立二叉树; 2、设计求叶子结点个数算法和树的深度算法; 3、根据表达式建立相应的二叉树,生成表达式树的模块; 4、根据表达式树,求出表达式值,生成求值模块; 5、程序运行效果,测试数据分析算法。 六、测试数据 1、输入数据:*(+)3 正确结果: 2、输入数据:(1+2)*3+(5+6*7);

正确输出:56 七、表达式求值 由于表达式求值算法较为复杂,所以单独列出来加以分析: 1、主要思路:由于操作数是任意的实数,所以必须将原始的中缀表达式中的操作数、操作符以及括号分解出来,并以字符串的形式保存;然后再将其转换为后缀表达式的顺序,后缀表达式可以很容易地利用堆栈计算出表达式的值。 例如有如下的中缀表达式: a+b-c 转换成后缀表达式为: ab+c- 然后分别按从左到右放入栈中,如果碰到操作符就从栈中弹出两个操作数进行运算,最后再将运算结果放入栈中,依次进行直到表达式结束。如上述的后缀表达式先将a 和b 放入栈中,然后碰到操作符“+”,则从栈中弹出a 和b 进行a+b 的运算,并将其结果d(假设为d)放入栈中,然后再将c 放入栈中,最后是操作符“-”,所以再弹出d和c 进行d-c 运算,并将其结果再次放入栈中,此时表达式结束,则栈中的元素值就是该表达式最后的运算结果。当然将原始的中缀表达式转换为后缀表达式比较关键,要同时考虑操作符的优先级以及对有括号的情况下的处理,相关内容会在算法具体实现中详细讨论。 2、求值过程 一、将原始的中缀表达式中的操作数、操作符以及括号按顺序分解出来,并以字符串的 形式保存。 二、将分解的中缀表达式转换为后缀表达式的形式,即调整各项字符串的顺序,并将括 号处理掉。 三、计算后缀表达式的值。 3、中缀表达式分解 DivideExpressionToItem()函数。分解出原始中缀表达式中的操作数、操作符以及括号,保存在队列中,以本实验中的数据为例,分解完成后队列中的保存顺序如下图所示:

实验八:二叉树的遍历与应用

实验8 二叉树的遍历与应用 一、实验目的 1.进一步掌握指针变量的含义。 2.掌握二叉树的结构特征,理解并熟悉掌握创建二叉树和实现二叉树的三种遍历。 3.学会编写实现二叉树基本操作的递归算法,领会递归的实质。 二、实验要求 1. 给出程序设计的基本思想、原理和算法描述。 2. 源程序给出注释。 3. 保存和打印出程序的运行结果,并结合程序进行分析。 三、实验题目 1.编写算法,按层输出一棵顺序存储的二叉树所有结点的值。 /**********level.c************/ #include #define VirNode 0 /*虚结点值*/ #define MAXSIZE 100 /*一维数组的容量*/ typedef int TElemType; /*二叉树结点值的类型*/ typedef TElemType SqBitTree[MAXSIZE]; /*SqBitTree:顺序存储的二叉树类型名*/ void leveltree(SqBitTree bt) { } void main() {SqBitTree bb={15,1,2,3,4,5,0,0,8,0,0,11,0,0,0,0}; ; } 2.以二叉链表为存储结构实现二叉树的三种遍历(先序、中序、后序)的递归算法。将tree.h 和tree.c文件补充完整。 3.编写算法,按层次遍历一棵二叉链表。 4.编写算法,输出二叉树中所有度为2的结点。 void printdata(BitTree bt) 5.编写算法,求二叉树中结点的最大值。假设结点为整型。 int maxvalue(BitTree bt) 6.编写递归算法,求二叉树中以元素值为x的结点为根的子树的深度。(首先在遍历过程中找到值为x结点,然后调用Get_Depth(),求得值为x的结点为根的子树的深度)。 注意:后面有算法的过程与步骤,请填空。 7.编写算法,实现二叉链表的先序非递归遍历。 void PreOrderBiTree(BitTree T)

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》 实验报告 实验题目 二叉树的基本操作及运算 一、需要分析 问题描述: 实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。 问题分析: 二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。处理本问题,我觉得应该:

1、建立二叉树; 2、通过递归方法来遍历(先序、中序和后序)二叉树; 3、通过队列应用来实现对二叉树的层次遍历; 4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等; 5、运用广义表对二叉树进行广义表形式的打印。 算法规定: 输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。 输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。对二叉树的一些运算结果以整型输出。 程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。 测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E 预测结果:先序遍历ABCDEGF 中序遍历CBEGDFA 后序遍历CGEFDBA 层次遍历ABCDEFG 广义表打印A(B(C,D(E(,G),F))) 叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2 查找5,成功,查找的元素为E 删除E后,以广义表形式打印A(B(C,D(,F))) 输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B 预测结果:先序遍历ABDEHCFG 中序遍历DBHEAGFC 后序遍历DHEBGFCA 层次遍历ABCDEFHG 广义表打印A(B(D,E(H)),C(F(,G))) 叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3 查找10,失败。

二叉树的遍历算法实验报告

二叉树实验报告 09信管石旭琳 20091004418 一、实验目的: 1、理解二叉树的遍历算法及应用 2、理解哈夫曼树及其应用。 3、掌握哈夫曼编码思想。 二、实验内容: 1、建立二叉树二叉链表 2、实现二叉树递归遍历算法(中序、前序、后序) 3、求二叉树高度 4、求二叉树结点个数 5、求二叉树叶子个数 6、将序号为偶数的值赋给左子树 三、主要程序: #include #include typedef int ElemType; struct BiTNode { ElemType data; struct BiTNode *lch,*rch; }BiTNode,*BiTree; struct BiTNode *creat_bt1(); struct BiTNode *creat_bt2(); void preorder (struct BiTNode *t); void inorder (struct BiTNode *t); void postorder (struct BiTNode *t); void numbt (struct BiTNode *t); int n,n0,n1,n2; void main() { int k; printf("\n\n\n"); printf("\n\n 1.建立二叉树方法1(借助一维数组建立)"); printf("\n\n 2.建立二叉树方法2(先序递归遍历建立)"); printf("\n\n 3.先序递归遍历二叉树"); printf("\n\n 4.中序递归遍历二叉树"); printf("\n\n 5.后序递归遍历二叉树"); printf("\n\n 6.计算二叉树结点个数"); printf("\n\n 7.结束程序运行");

二叉树基本操作经典实例

本程序由SOGOF完成 该完整程序主要是递归函数的使用及模板的使用,完成了对二叉树基本的链表操作,主要有二叉树的建立,前序、中序、后序遍历,求树的高度,每层结点数(包含树的最大宽度),左右结点对换,二叉树的内存释放,求解树的叶子数。 #include using namespace std; #define FLAG'#' typedef char Record; template struct Binary_Node { Entry data; Binary_Node*left; Binary_Node*right; Binary_Node(); Binary_Node(const Entry& x); }; template Binary_Node::Binary_Node() { left=NULL; right=NULL; } template Binary_Node::Binary_Node(const Entry &x) { data=x; left=NULL; right=NULL; } template class Binary_tree { public: bool empty()const; Binary_tree(); Binary_tree(Binary_tree&org); void create_tree(Binary_Node*&tree);//建立二叉树 void recursive_copy(Binary_Node*&tree,Binary_Node*&cur); void pre_traverse(Binary_Node *tree);//前序 void mid_traverse(Binary_Node *tree);//中序 void post_traverse(Binary_Node *tree);//后序遍历

二叉树的遍历实验报告

二叉树的遍历实验报告 一、需求分析 在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理,这就是二叉树的遍历问题。 对二叉树的数据结构进行定义,建立一棵二叉树,然后进行各种实验操作。 二叉树是一个非线性结构,遍历时要先明确遍历的规则,先访问根结点还时先访问子树,然后先访问左子树还是先访问有右子树,这些要事先定好,因为采用不同的遍历规则会产生不同的结果。本次实验要实现先序、中序、后序三种遍历。 基于二叉树的递归定义,以及遍历规则,本次实验也采用的是先序遍历的规则进行建树的以及用递归的方式进行二叉树的遍历。 二、系统总框图

三、各模块设计分析 (1)建立二叉树结构 建立二叉树时,要先明确是按哪一种遍历规则输入,该二叉树是按你所输入的遍历规则来建立的。本实验用的是先序遍历的规则进行建树。 二叉树用链表存储来实现,因此要先定义一个二叉树链表存储结构。因此要先定义一个结构体。此结构体的每个结点都是由数据域data 、左指针域Lchild 、右指针域Rchild 组成,两个指针域分别指向该结点的左、右孩子,若某结点没有左孩子或者右孩子时,对应的指针域就为空。最后,还需要一个链表的头指针指向根结点。 要注意的是,第一步的时候一定要先定义一个结束标志符号,例如空格键、#等。当它遇到该标志时,就指向为空。 建立左右子树时,仍然是调用create ()函数,依此递归进行下去,

直到遇到结束标志时停止操作。 (2)输入二叉树元素 输入二叉树时,是按上面所确定的遍历规则输入的。最后,用一个返回值来表示所需要的结果。 (3)先序遍历二叉树 当二叉树为非空时,执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (4)中序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (5)后序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (6)主程序 需列出各个函数,然后进行函数调用。 四、各函数定义及说明 因为此二叉树是用链式存储结构存储的,所以定义一个结构体用以存储。 typedef struct BiTNode { char data; struct BiTNode *Lchild; struct BiTNode *Rchild;

数据结构实验二叉树的遍历

南昌大学实验报告 学生姓名:李木子学号:专业班级:软工 实验类型:□验证□综合□设计□创新实验日期:实验成绩:一、实验项目名称 二叉树的遍历 二、实验目的 学会链式二叉树的结构体定义,创建与前序中序后序遍历三、实验基本原理 四、主要仪器设备及耗材 电脑, 五、实验步骤 ************************************** * 链式二叉树的创建与遍历 * ************************************** ************************************** * 链式二叉树的结构体定义 * ************************************** <> <> ; { ; *; *; };

************************************** * 链式二叉树函数声明 * ************************************** *(); (*); (*); (*); ************************************** * 链式二叉树创建函数 * ************************************** *() { ; *; (); ('') ; ('\'); { (*)(()); >; >(); >(); } ; } ************************************** * 链式二叉树递归前序遍历函数 * ************************************** (*) { () { ("\">);

实验10 二叉树的基本操作

浙江大学城市学院实验报告 课程名称数据结构基础 实验项目名称实验十二叉树的基本操作 学生姓名专业班级学号 实验成绩指导老师(签名)日期2014-12-18 一.实验目的和要求 1、掌握二叉树的链式存储结构。 2、掌握在二叉链表上的二叉树操作的实现原理与方法。 3、进一步掌握递归算法的设计方法。 二.实验内容 1、按照下面二叉树二叉链表的存储表示,编写头文件binary_tree.h,实现二叉链表的定义与基本操作实现函数;编写主函数文件test4_1.cpp,验证头文件中各个操作。 二叉树二叉链表存储表示如下: struct BTreeNode { ElemType data; // 结点值域 BTreeNode *lchild , *rchild ; // 定义左右孩子指针 } ; 基本操作如下: ①void InitBTree( BTreeNode *&BT ); //初始化二叉树BT ②void CreateBTree( BTreeNode *&BT, char *a ); //根据字符串a所给出的广义表表示的二叉树建立二叉链表存储结构 ③int EmptyBTree( BTreeNode *BT); //检查二叉树BT是否为空,空返回1,否则返回0 ④int DepthBTree( BTreeNode *BT); //求二叉树BT的深度并返回该值 ⑤int FindBTree( BTreeNode *BT, ElemType x); //查找二叉树BT中值为x的结点,若查找成功返回1,否则返回0 ⑥void PreOrder( BTreeNode *BT); //先序遍历二叉树BT ⑦void InOrder( BTreeNode *BT); //中序遍历二叉树BT ⑧void PostOrder( BTreeNode *BT); //后序遍历二叉树BT

二叉树的建立和遍历的实验报告

竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告 篇一:二叉树遍历实验报告 数据结构实验报告 报告题目:二叉树的基本操作学生班级: 学生姓名:学号: 一.实验目的 1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。 2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。二.实验学时: 课内实验学时:3学时课外实验学时:6学时三.实验题目 1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序

遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTree structnode*lchild,*rchild; }binTnode;元素类型: intcreatebinTree(binTree voidpreorder(binTreevoidInorder(binTree voidpostorder(binTreevoidInordern(binTreeintleaf(bi nTree intpostTreeDepth(binTree 2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构 3)实现过程: 1、实现非递归中序遍历代码: voidcbiTree::Inordern(binTreeinttop=0;p=T;do{ while(p!=nuLL){ stack[top]=p;;top=top+1;p=p->lchild;}; if(top>0){ top=top-1;p=stack[top];

数据结构二叉树遍历实验报告

问题一:二叉树遍历 1.问题描述 设输入该二叉树的前序序列为: ABC##DE#G##F##HI##J#K##(#代表空子树) 请编程完成下列任务: ⑴请根据此输入来建立该二叉树,并输出该二叉树的前序、中序和后序序列; ⑵按层次遍历的方法来输出该二叉树按层次遍历的序列; ⑶求该二叉树的高度。 2.设计描述 (1)二叉树是一种树形结构,遍历就是要让树中的所有节点被且仅被访问一次,即按一定规律排列成一个线性队列。二叉(子)树是一种递归定义的结构,包含三个部分:根结点(N)、左子树(L)、右子树(R)。根据这三个部分的访问次序对二叉树的遍历进行分类,总共有6种遍历方案:NLR、LNR、LRN、NRL、RNL和LNR。研究二叉树的遍历就是研究这6种具体的遍历方案,显然根据简单的对称性,左子树和右子树的遍历可互换,即NLR与NRL、LNR与RNL、LRN 与RLN,分别相类似,因而只需研究NLR、LNR和LRN三种即可,分别称为“先序遍历”、“中序遍历”和“后序遍历”。采用递归方式就可以容易的实现二叉树的遍历,算法简单且直观。 (2)此外,二叉树的层次遍历即按照二叉树的层次结构进行遍历,按照从上到下,同一层从左到右的次序访问各节点。遍历算法可以利用队列来实现,开始时将整个树的根节点入队,然后每从队列中删除一个节点并输出该节点的值时,都将它的非空的左右子树入队,当队列结束时算法结束。

(3)计算二叉树高度也是利用递归来实现:若一颗二叉树为空,则它的深度为0,否则深度等于左右子树的最大深度加一。 3.源程序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #include #include #include #define ElemType char struct BTreeNode { ElemType data; struct BTreeNode* left; struct BTreeNode* right; }; void CreateBTree(struct BTreeNode** T) { char ch; scanf_s("\n%c", &ch); if (ch == '#') *T = NULL;

实验五-二叉树基本操作的编程实现实验分析报告

实验五-二叉树基本操作的编程实现实验报告

————————————————————————————————作者:————————————————————————————————日期:

HUBEI UNIVERSITY OF AUTOMOTIVE TECHNOLOGY 数据结构 实验报告 这里一定填 写清楚自己 实验项目实验五实验类别基础篇 学生姓名朱忠栋学生学号20120231515 完成日期2014-12-16 指导教师付勇智 实验成绩评阅日期 评阅教师

实验五二叉树基本操作的编程实现 【实验目的】 内容:二叉树基本操作的编程实现 要求: 二叉树基本操作的编程实现(2学时,验证型),掌握二叉树的建立、遍历、插入、删除等基本操作的编程实现,也可以进一步编程实现查找等操作,存储结构主要采用顺序或链接结构。也鼓励学生利用基本操作进行一些应用的程序设计。 【实验性质】 验证性实验(学时数:2H) 【实验内容】 以下的选题都可以作为本次实验的推荐题目 1.建立二叉树,并以前序遍历的方式将结点内容输出。 2.将一个表示二叉树的数组结构转换成链表结构。 3.将表达式二叉树方式存入数组,以递归方式建立表达式之二叉树状结构,再分别输出前序、中序 及后序遍历结果,并计算出表达式之结果。 【注意事项】 1.开发语言:使用C。 2.可以自己增加其他功能。 【实验分析、说明过程】

页面不够,可续页。 根据自己选择的层次不同的实验内容,完善程序代码,调试通过后,分析说明该问题处理的详细算法过程。不需要写出详细的代码,只表达清楚详细的处理算法即可。可以采用流程图、形式语言或者其他数学表达方式来说明。 这次实验考查的主要是:递归建立二叉树,递归输出先序,中序和后序遍历的结果;非递归建立二叉树,再以非递归方式分别输出先序,中序和后序遍历的结果。 而对于基础篇考查的主要是:递归建立二叉树,递归输出先序,中序和后序遍历的结果,是以填空的方式进行考查的。 对于第一空:递归实现的先序遍历,其实现方法是: printf("%d",p->data); if(p->lchild!=NULL) preorder(p->lchild); if(p->rchild!=NULL) preorder(p->rchild); 对于第二空:递归实现的中序遍历,其实现方法是: if(p->lchild!=NULL) inorder(p->lchild); printf("%d",p->data); if(p->rchild!=NULL) inorder(p->rchild); 对于第三空:递归实现的后序遍历,其实现方法是: if(p->lchild!=NULL) postorder(p->lchild); if(p->rchild!=NULL) postorder(p->rchild); printf("%d",p->data); 【思考问题】 页面不够,可续页。 1.二叉树是树吗?它的定义为什么是递归的? 答:最多有两棵子树的有序树,称为二叉树。二叉树是一种特殊的树。具有n个结点的完全二叉树的深度为log2n +1 !!!二叉树的计算方法:若一棵二叉树为空,则其深度为0,否则其深度等于左子树和右子树的最大深度加1 2.三种根序遍历主要思路是什么? 答:大体思路差不多,但节点访问位置不一样,先序的话,是先访问,然后节点压栈,移到左子树,至节点空退栈,移到右子树。而中序的话,是先节点压栈,移到左子树,至节点空退栈,访问节点,然后移到右子树。另外,所谓前序、中序、后序遍历,全称是前根序遍历,中根序遍历,后根序遍历,不管哪种遍历,访问左子树一定在访问右子树之前,不同的就是根的访问时机。 所以三种递归/或非递归,程序思路都是一样的。 3.如果不用遍历算法一般启用什么数据结构实现后序遍历? 答:用栈实现后序遍历。 4.举出二叉树的应用范例? 答:一个集合的幂集、排列问题、组合问题

二叉树的基本操作实验报告

二叉树的基本操作实验报告 学号姓名实验日期 2012-12-26 实验室计算机软件技术实验指导教师设备编号 401 实验内容二叉树的基本操作 一实验题目 实现二叉树的基本操作的代码实现 二实验目的 1、掌握二叉树的基本特性 2、掌握二叉树的先序、中序、后序的递归遍历算法 3、通过求二叉树的深度、度为2的结点数和叶子结点数等算法三实习要求 (1)认真阅读书上给出的算法 (2)编写程序并独立调试 四、给出二叉树的抽象数据类型 ADT BinaryTree{ //数据对象D:D是具有相同特性的数据元素的集合。 //数据关系R: // 若D=Φ,则R=Φ,称BinaryTree为空二叉树; // 若D?Φ,则R={H},H是如下二元关系; // (1)在D中存在惟一的称为根的数据元素root,它在关系H下无前驱; // (2)若D-{root}?Φ,则存在D-{root}={D1,Dr},且D1?Dr =Φ; // (3)若D1?Φ,则D1中存在惟一的元素x1,?H,且存在D1上的关系H1 ?H;若Dr?Φ,则Dr中存在惟一的元素xr,?H,且存在上的关系 Hr ?H;H={,,H1,Hr};

// (4)(D1,{H1})是一棵符合本定义的二叉树,称为根的左子树;(Dr,{Hr})是一棵符合本定义的二叉树,称为根的右子树。 //基本操作: CreateBiTree( &T, definition ) // 初始条件:definition给出二叉树T的定义。 // 操作结果:按definiton构造二叉树T。 BiTreeDepth( T ) // 初始条件:二叉树T存在。 // 操作结果:返回T的深度。 PreOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。 // 操作结果:先序遍历T,对每个结点调用函数Visit一次且仅一次。一旦visit()失败,则操 作失败。 InOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。 // 操作结果:中序遍历T,对每个结点调用函数Visit一次且仅一次。一旦visit()失败,则操 作失败。 PostOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。 // 操作结果:后序遍历T,对每个结点调用函数Visit一次且仅一次。一旦visit()失败,则操 作失败。 LeafNodes(p) // 初始条件:二叉树T存在。 // 操作结果:返回T的叶子结点数。

相关主题
文本预览
相关文档 最新文档