当前位置:文档之家› 半导体物理知识点及重点习题总结 删减

半导体物理知识点及重点习题总结 删减

半导体物理知识点及重点习题总结 删减
半导体物理知识点及重点习题总结 删减

第一章 半导体电子状态

1.半导体:通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。

2能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 导带与价带

3.能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。

答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k 关系,从而系统地建立起该理论。

单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。

绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

4.有效质量:有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。

5.本征半导体:既无杂质有无缺陷的理想半导体材料。

6.空穴 :是为处理价带电子导电问题而引进的概念。设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。它引起的假想电流正好等于价带中的电子电流。

7.空穴是如何引入的,其导电的实质是什么?

答:空穴是为处理价带电子导电问题而引进的概念。设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。

这样引入的空穴,其产生的电流正好等于能带中其它电子的电流。所以空穴导电的实质是能带中其它电子的导电作用,而事实上这种粒子是不存在的。

8.半导体的回旋共振现象是怎样发生的(以n 型半导体为例)

答案:首先将半导体置于匀强磁场中。一般n 型半导体中大多数导带电子位于导带底附近,对于特定的能谷而言,这些电子的有效质量相近,所以无论这些电子的热运动速度如何,它们在磁场作用下做回旋运动的频率近似相等。当用电磁波辐照该半导体时,如若频率与电子的回旋运动频率相等,则半导体对电磁波的吸收非常显著,通过调节电磁波的频率可观测到共振吸收峰。这就是回旋共振的机理。

9.简要说明回旋共振现象是如何发生的。

半导体样品置于均匀恒定磁场,晶体中电子在磁场作用下运动

运动轨迹为螺旋线,圆周半径为r , 回旋频率为

当晶体受到电磁波辐射时,

在频率为 时便观测到共振吸收现象。

10.直接带隙材料:如果晶体材料的导带底和价带顶在k 空间处于相同的位置,则本征跃迁属直接跃迁,这样的材料即是所谓的直接带隙材料。砷化镓

间接带隙材料:如果半导体的导带底与价带顶在k 空间中处于不同位置,则价带顶的电子吸收能量刚好达到导带底时

sin v B f qv B f qvB qv B

θθ⊥=-?==与

夹角c

ω2

*2*

*

,// / /c n n c n

v r a v r

m v r qv B m qBr v qB m ωω⊥⊥⊥⊥⊥==?=?=?=向心加速度c ω

准动量还需要相应的变化。硅、锗

第二章 半导体杂质和缺陷能级

1 施主杂质:某种杂质取代半导体晶格原子后,在和周围原子形成饱和键结构时,若尚有一多余价电子,且该电子受杂质束缚很弱、电离能很小,所以该杂质极易提供导电电子,因此称这种杂质为施主杂质;

受主杂质:反之,在形成饱和键时缺少一个电子,则该杂质极易接受一个价带中的电子、提供导电空穴,因此称其为受主杂质。

2. 替位式杂质:杂质原子进入半导体硅以后,杂质原子取代晶格原子而位于晶格点处,称为替位式杂质。 形成替位式杂质的条件:杂质原子大小与晶格原子大小相近

间隙式杂质:杂质原子进入半导体硅以后,杂质原子位于晶格原子间的间隙位置,称为间隙式杂质。 形成间隙式杂质的条件:(1)杂质原子大小比较小(2)晶格中存在较大空隙

形成间隙式杂质的成因:半导体晶胞内除了晶格原子以为还存在着大量空隙,而间隙式杂质就可以存在在这些空隙中。 3.杂质对半导体造成的影响:杂质的出现,使得半导体中产生了局部的附加势场,这使严格的周期性势场遭到破坏。从能带的角度来讲,杂质可导致导带、价带或禁带中产生了原来没有的能级

4.杂质补偿:在半导体中同时存在施主和受主时,施主能级上的电子由于能量高于受主能级,因而首先跃迁到受主能级上,从而使它们提供载流子的能力抵消,这种效应即为杂质补偿。

5.杂质电离能 :杂质电离能是杂质电离所需的最少能量,施主型杂质的电离能等于导带底与杂质能级之差,受主型杂质的电离能等于杂质能级与价带顶之差。

6.施主能级及其特征:施主未电离时,在饱和共价键外还有一个电子被施主杂质所束缚,该束缚态所对应的能级称为施主能级。

特征:①施主杂质电离,导带中出现施主提供的导电电子;②电子浓度大于空穴浓度,即 n > p 。

受主能级及其特征:受主杂质电离后所接受的电子被束缚在原来的空状态上,该束缚态所对应的能级称为受主能级。 特征:①受主杂质电离,价带中出现受主提供的导电空穴;②空穴浓度大于电子浓度,即 p > n 。 7.浅能级杂质的作用:(1)改变半导体的电阻率(2)决定半导体的导电类型。 深能级杂质的特点和作用:

(1)不容易电离,对载流子浓度影响不大

(2)一般会产生多重能级,甚至既产生施主能级也产生受主能级。 (3)能起到复合中心作用,使少数载流子寿命降低。

(4)深能级杂质电离后成为带电中心,对载流子起散射作用, 使载流子迁移率减少,导电性能下降。

第三章 半导体载流子分布 1.费米能级

费米能级不一定是系统中的一个真正的能级,它是费米分布函数中的一个参量,具有能量的单位,所以被称为费米能级。它标志着系统的电子填充水平,其大小等于增加或减少一个电子系统自由能的变化量。 2.简并半导体

当费米能级位于禁带之中且远离价带顶和导带底时,电子和空穴浓度均不很高,处理它们分布问题时可不考虑包利原理的约束,因此可用波尔兹曼分布代替费米分布来处理在流子浓度问题,这样的半导体被称为非简并半导体。反之则只能用非米分布来处理载流子浓度问题,这种半导体为简并半导体。

3.1. 若半导体导带底附近的等能面在k 空间是中心位于原点的球面,证明导带底状态密度函数的表达式为

()()21c 3

2

3*n

c

E E h

m 2V

4)E (g -π=

答案:

k 空间中,量子态密度是2V ,所以,在能量E 到E+dE 之间的量子态数为

dk k V dZ 242π?= (1)

根据题意可知

*

+

=n

c m k h E k E 2)(22 (2)

由(1)、(2)两式可得

()dE E E h m V

dZ c n

2/13

2

/3)(24-=*π (3)

由(3)式可得状态密度函数的表达式

2

/13

2/3)()2(4)(c n c E E h

m V dE dZ E g -==*

π (4分)

3.1 已知半导体导带底的状态密度函数的表达式为()()213

2

3*24)(c n

c

E E h m V

E g -=π

试证明非简并半导体导带中电子浓度为()

???

?

?

?--π=T

k E E h T k m n F c n 03

2

30*

exp 22

证明:对于非简并半导体导,由于

dE E g E f dN c B )()(= (3分)

将分布函数和状态密度函数的表达式代入上式得

()()dE E E T

k E E h m V

dN c F

n

2

103

3*exp 24-???

? ??--=π 因此电子浓度微分表达式为

(

)

()dE E E T

k E E h m V dN

dn c F

n 2

103

2

3*exp 24-???

? ??--==π

(3分) 则

()()?

'

-???

? ??--=c c

E E c F

n

dE E E T

k E E h m n 2

103

2

3*0exp 24π

由于导带顶电子分布几率可近似为零,上式积分上限可视为无穷大,则积分可得

()

???

?

??--π=T

k E E h T k m n F c n 03

2

30*

exp 22

(4分)

3.2 以施主杂质电离90%作为强电离的标准,求掺砷的n 型硅在300K 时,强电离区的掺杂浓度上限。(eV 049.0=?D E ,

319108.2-?=cm c N ,310105.1-?=cm i n ,

D F 01

()E E 1

1exp 2k T D f E =

??-+ ???

解:

随着掺杂浓度的增高,杂质的电离度下降。因此,百分之九十电离时对应的掺杂浓度就是强电离区掺杂浓度的上限。此时

[]D 0F D D

D D D N 9.0T k

E E exp 21N N )E (f 1n =?

??

?

??--+=

-=+

由此解得E D -E F =0.075eV ,而E C -E D =0.049eV ,所以E C -E F =0.124eV ,则

D 3

170C F C 0N 9.0cm 1038.2T k E E exp N n =?=???

? ??-=- 由此得,强电离区的上限掺杂浓度为3

17cm 106.2-?。

3.2 以受主杂质电离90%作为强电离的标准,求掺硼的p 型硅在300K 时,强电离区的掺杂浓度上限。(A ΔE =0.045eV ,

1931.110cm c N -=?,310105.1-?=cm i n , F A 01

()E E 1

1exp 2k T A f E =

??-+ ???

解:

随着掺杂浓度的增高,杂质的电离度下降。因此,百分之九十电离时对应的掺杂浓度就是强电离区掺杂浓度的上限。此时

[]01()0.912exp A

A A A A F A N p f E N N E E k T -=-=

=??

-+- ?

??

由此解得E F -E A =0.075eV ,而E A -E V =0.045eV ,所以E F -E V =0.12eV ,则

173

00exp 1.1100.9v F

v A E E p N cm N k T -??-==?=

???

由此得,强电离区的上限掺杂浓度为173

1.210cm -?。

第四章 半导体导电性

1.漂移运动:载流子在外电场作用下的定向运动。

2.迁移率 :单位电场作用下载流子的平均漂移速率。

3.散射:在晶体中运动的载流子遇到或接近周期性势场遭到破坏的区域时,其状态会发生不同程度的随机性改变,这种现象就是所谓的散射。

4.散射几率:在晶体中运动的载流子遇到或接近周期性势场遭到破坏的区域时,其状态会发生不同程度的随机性改变,这种现象就是所谓的散射。散射的强弱用一个载流子在单位时间内发生散射的次数来表示,称为散射几率。

5.平均自由程:两次散射之间载流子自由运动路程的平均值。

6.平均自由时间:连续两次散射间自由运动的平均运动时间

7. 迁移率与杂质浓度和温度的关系 答案:一般可以认为半导体中载流子的迁移率主要由声学波散射和电力杂质散射决定,因此迁移率k 与电离杂质浓度N 和温度间的关系可表为

2

/32/31

-+∝

BNT AT k

其中A 、B 是常量。由此可见

(1) 杂质浓度较小时,k 随T 的增加而减小;

(2) 杂质浓度较大时,低温时以电离杂质散射为主、上式中的B 项起主要作用,所以k 随T 增加而增加,高温时以

声学波散射为主、A 项起主要作用,k 随T 增加而减小;

(3) 温度不变时,k 随杂质浓度的增加而减小。

8. 以n 型硅为例,简要说明迁移率与杂质浓度和温度的关系。

杂质浓度升高,散射增强,迁移率减小。 杂质浓度一定条件下:

低温时,以电离杂质散射为主。温度升高散射减弱,迁移率增大。

随着温度的增加,晶格振动散射逐渐增强最终成为主导因素。因此,迁移率达到最大值后开始随温度升高而减小。 9.在只考虑声学波和电离杂质散射的前提下,给出半导体迁移率与温度及杂质浓度关系的表达式。

根据 32

i T

μ∝/N i ; 3

2

s T

μ-∝

可得

2/32/31

BT T AN i +=-μ

其中A 和B 是常数。

10.以n 型半导体为例说明电阻率和温度的关系。

答:低温时,温度升高载流子浓度呈指数上升,且电离杂质散射呈密函数下降,因此电阻率随温度升高而下降;当半导体处于强电离情况时,载流子浓度基本不变,晶格震动散射逐渐取代电离杂质散射成为主要的散射机构,因此电阻率随温度由下降逐渐变为上升;高温时,虽然晶格震动使电阻率升高,但半导体逐渐进入本征状态使电阻率随温度升高而迅速下降,最终总体表现为下降。

11.强电场效应:实验发现,当电场增强到一定程度后,半导体的电流密度不再与电场强度成正比,偏离了欧姆定律,场强进一步增加时,平均漂移速度会趋于饱和,强电场引起的这种现象称为强电场效应。

12.载流子有效温度Te :当有电场存在时,载流子的平均动能比热平衡时高,相当于更高温度下的载流子,称此温度为载流子有效温度。

13.热载流子:在强电场情况下,载流子从电场中获得的能量很多,载流子的平均能量大于晶格系统的能量,将这种不再处于热平衡状态的载流子称为热载流子

4.4室温下,在本征硅单晶中掺入浓度为1015cm -3的杂质硼后,再在其中掺入浓度为3×1015cm -3

的杂质磷。试求:

(1)载流子浓度和电导率。 (2)费米能级的位置。

(注:电离杂质浓度分别为1015cm -3、3×1015cm -3、4×1015cm -3和时,电子迁移率分别为1300、1130和1000cm 2

/V.s ,空穴迁移率分别为500、445和400cm 2

/V.s ;在300K 的温度下,eV T k 026.00=,3

19100.0-?=cm

N C ,

319100.0-?=cm N V ,310105.1-?=cm n i )

09 答案:

室温下,该半导体处于强电离区,则多子浓度

31515010210)13(-?=?-=cm n

少子浓度3502

010125.1/-?==cm n n p i ;(

电导率cm /32.010********.115190Ω=????==-n q n μσ(2分) (2)根据???

?

??-=T k E E n n i

F i 00exp 可得eV E E i F 31.0=-

所以费米能级位于禁带中心之上0.31eV 的位置。

第五章 非平衡载流子

1.非平衡载流子注入:产生非平衡载流子的过程称为非平衡载流子的注入。

2.非平衡载流子的复合:复合是指导带中的电子放出能量跃迁回价带,使导带电子与价带空穴成对消失的过程。非平衡载流子逐渐消失的过程称为非平衡载流子的复合,是被热激发补偿后的净复合。

3.少子寿命(非平衡载流子寿命):非平衡载流子的平均生存时间。

4.准费米能级:对于非平衡半导体,导带和价带间的电子跃迁失去了热平衡。但就它们各自能带内部而言,由于能级非常密集、跃迁非常频繁,往往瞬间就会使其电子分布与相应的热平衡分布相接近,因此可用局部的费米分布来分别描述它们各自的电子分布。这样就引进了局部的非米能级,称其为准费米能级。

5.直接跃迁:准动量基本不变的本征跃迁,跃迁过程中没有声子参与。

直接复合:导带中的电子不通过任何禁带中的能级直接与价带中的空穴发生的复合

间接复合:杂质或缺陷可在禁带中引入能级,通过禁带中能级发生的复合被称作间接复合。相应的杂质或缺陷被称为复合中心。 表面复合::在表面区域,非平衡载流子主要通过半导体表面的杂质和表面特有的缺陷在禁带中形成的复合中心能级进行的复合。

6.表面电子能级:表面吸附的杂质或其它损伤形成的缺陷态,它们在表面处的禁带中形成的电子能级,也称为表面能级。

7.俄歇复合:载流子从高能级向低能级跃迁,发生电子-空穴复合时,把多余的能量付给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回低能级时,多余的能量常以声子形式放出,这种复合称为俄歇复合。 俄歇复合包括:带间俄歇复合以及与 杂质和缺陷有关的俄歇复合。

8.陷阱效应:当半导体的非平衡载流子浓度发生变化时,禁带中杂质或缺陷能级上的电子浓度也会发生变化,若增加说明该能级有收容电子的作用,反之有收容空穴的作用,这种容纳非平衡载流子的作用称为陷阱效应。

陷阱中心:当半导体的非平衡载流子浓度发生变化时,禁带中杂质或缺陷能级上的电子浓度也会发生变化,若增加说明该能级有收容电子的作用,反之有收容空穴的作用,这种容纳非平衡载流子的作用称为陷阱效应。具有显著陷阱效应的杂质或缺陷称为陷阱中心。

9.扩散:由于浓度不均匀而导致的微观粒子从高浓度处向低浓度处逐渐运动的过程。 10.漂移运动:载流子在外电场作用下的定向运动。

5.2 室温下,在硅单晶中掺入1015cm -3

的磷,试确定E F 与E i 间的相对位置。再将此掺杂后的样品通过光照均匀产生非平

衡载流子,稳定时ΔN=ΔP=1012cm -3,试确定E P F 与E F 的相对位置;去掉光照后20μs 时,测得少子浓度为5×1011cm -3

求少子寿命τp 为多少。(室温下硅的本征载流子浓度为1.5×1010cm -3

,k 0T=0.026eV )

5.4 试推证:对于只含一种复合中心的间接带隙半导体晶体材料,在稳定条件下非平衡载流子的净复合率公式

(

)

()()

112

p p r n n r n np r r N U p n i

p n t +++-=

答案:

题中所述情况,主要是间接复合起作用,包含以下四个过程。 甲:电子俘获率=r n n(N t -n t )

乙:电子产生率=r n n 1n t n 1=n i exp((E t -E i )/k 0T) 丙:空穴俘获率=r p pn t

丁:空穴产生率=r p p 1(N t -n t ) p 1=n i exp((E i -E t )/k 0T) 稳定情况下净复合率

U=甲-乙=丙-丁 (1)

稳定时

甲+丁=丙+乙

将四个过程的表达式代入上式解得

)

p p (r )n n (r r p nr N 1p 1n p

1n t

++++=t n (2)

将四个过程的表达式和(2)式代入(1)式整理得

)

p p (r )n n (r )p n np (r r N U 1p 1n 11p n t +++-=

(3)

由p 1和n 1的表达式可知 p 1n 1=n i 2

代入上式可得

(

)

()()

1p 1n 2

i

p n t p p r n n r n np r r N U +++-=

5.4 试推导直接复合情况下非平衡载流子复合率公式。 答案:

在直接复合情况下,复合率

R rnp

= (2分)

非简并条件下产生率可视为常数,热平衡时产生率

2000i G R rn p rn === (2分)

因此净复合率

2()d i U R G r np n =-=- (2分)

5.4 已知室温下,某n 型硅样品的费米能级位于本征费米能级之上0.35eV ,假设掺入复合中心的能级位置刚好与本征费米能级重合,且少子寿命为10微秒。如果由于外界作用,少数载流子被全部清除,那么在这种情况下电子-空穴对的产生率是多大?

(注:复合中心引起的净复合率(

)

()()

112

p p r n n r n np r r N U p n i

p n t +++-=

;在300K 的温度下,eV T k 026.00=,

310105.1-?=cm n i )

答案: 根据公式

???

?

??-=T

k E E n n i

F i 00exp 可得 31601005.1-?=cm n 根据题意可知产生率

(

)

()()

1390

2

2

112

101.2--??===

+++--

=-=s cm n n

n n r N p p r n n r n np r r N U G p i i

p t p n i

p n t τ

5.7 证明爱因斯坦关系式:n n q

T

k D μ?=0 答案:

建立坐标系如图,由于掺杂不均,空穴扩散产生的电场如图所示,空穴电流如下:

()

dx

x dp qD J p

p

)

(0-=扩

, ()

E x p q J p p

)(0μ=漂

平衡时:()()

0=-漂

p p

J J

E x p dx

x dp D p p

)()

(00μ=-∴: (10分) dx dV

E -=:

??

?

???-+=T K E x qV E Exp N x p F v v 00)()(

dx

x dV T K q x p dx x dp )

()

()(000= ∴:

q

T

K D p

p

0=

μ

同理

n n q

T

k D μ?=

0 (10)

5.8 以空穴为例推导其运动规律的连续性方程。 根据物质不灭定律:

空穴浓度的变化率=扩散积累率+迁移积累率+其它产生率-非平衡载流子复合率

扩散积累率: 22p p dS d p

D dx dx

-=扩

迁移积累率: p p d p E dS dx dx

μ????-=-

净复合率: p

U τ

?=

其它因素的产生率用 表示,则可得空穴的连续性方程如下:

22p p p p E p p p p

D E p g t x x x μμτ

?????=--+-????

5.8已知半无限大硅单晶300K 时本征载流子浓度310105.1-?=cm n i ,掺入浓度为1015

cm -3

的受主杂质,

(1) 求其载流子浓度和电导率。

(2) 再在其中掺入浓度为1015

cm -3

的金,并由边界稳定注入非平衡电子浓度为()310010-=?cm n ,如果晶体中的电场

可以忽略,求边界处电子扩散电流密度。

注:电离杂质浓度分别为1015cm -3和2×1015cm -3时,电子迁移率分别为1300和1200cm 2

/V.s ,空穴迁移率分别为500和450cm 2

/V.s ;r n =6.3×10-8

cm 3

/s ;r p =1.15×10-7

cm 3

/s ;C q 19106.1-?=;在300K 的温度下,eV T k 026.00=

08 10 答:

(1)此温度条件下,该半导体处于强电离区,则多子浓度3100105.1-?=cm p 少子浓度35202

0105.1/-?==cm p n n i ;(3分) 电导率cm p q p Ω=???==-/08.010500106.11519μσ (2)此时扩散电流密度:00)()(n D q L n qD J n

n

n n

?=?=τ 将q

T k D n

n 0μ=与n t n r N 1=τ代入上式:00)(n r TN k q J n t n ?=μ;取电子迁移率为1200cm 2

/V.s 并将其它数据代入

上式,得电流密度为7.09×10-5

A/cm

2

半导体物理器件期末考试试题(全)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 2015半导体物理器件期末考试试题(全) 半导体物理器件原理(期末试题大纲)指导老师:陈建萍一、简答题(共 6 题,每题 4 分)。 代表试卷已出的题目1、耗尽区:半导体内部净正电荷与净负电荷区域,因为它不存在任何可动的电荷,为耗尽区(空间电荷区的另一种称呼)。 2、势垒电容:由于耗尽区内的正负电荷在空间上分离而具有的电容充放电效应,即反偏 Fpn 结的电容。 3、Pn 结击穿:在特定的反偏电压下,反偏电流迅速增大的现象。 4、欧姆接触:金属半导体接触电阻很低,且在结两边都能形成电流的接触。 5、饱和电压:栅结耗尽层在漏端刚好夹断时所加的漏源电压。 6、阈值电压:达到阈值反型点所需的栅压。 7、基区宽度调制效应:随 C-E 结电压或 C-B 结电压的变化,中性基区宽度的变化。 8、截止频率:共发射极电流增益的幅值为 1 时的频率。 9、厄利效应:基带宽度调制的另一种称呼(晶体管有效基区宽度随集电结偏置电压的变化而变化的一种现象) 10、隧道效应:粒子穿透薄层势垒的量子力学现象。 11、爱因斯坦关系:扩散系数和迁移率的关系: 12、扩散电容:正偏 pn 结内由于少子的存储效应而形成的电容。 1/ 11

13、空间电荷区:冶金结两侧由于 n 区内施主电离和 p 区内受主电离

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 而形成的带净正电荷与净负电荷的区域。 14、单边突变结:冶金结的一侧的掺杂浓度远大于另一侧的掺杂浓度的 pn 结。 15、界面态:氧化层--半导体界面处禁带宽度中允许的电子能态。 16、平带电压:平带条件发生时所加的栅压,此时在氧化层下面的半导体中没有空间电荷区。 17、阈值反型点:反型电荷密度等于掺杂浓度时的情形。 18、表面散射:当载流子在源极和源漏极漂移时,氧化层--半导体界面处载流子的电场吸引作用和库伦排斥作用。 19、雪崩击穿:由雪崩倍增效应引起的反向电流的急剧增大,称为雪崩击穿。 20、内建电场:n 区和 p 区的净正电荷和负电荷在冶金结附近感生出的电场叫内建电场,方向由正电荷区指向负电荷区,就是由 n 区指向 p 区。 21、齐纳击穿:在重掺杂 pn 结内,反偏条件下结两侧的导带与价带离得非常近,以至于电子可以由 p 区的价带直接隧穿到 n 区的导带的现象。 22、大注入效应:大注入下,晶体管内产生三种物理现象,既三个效应,分别称为:(1)基区电导调制效应;(2)有效基区扩展效应; (3)发射结电流集边效应。 它们都将造成晶体管电流放大系数的下降。 3/ 11

华工半导体物理期末总结

一、p-n结 1.PN结的杂质分布、空间电荷区,电场分布 (1)按照杂质浓度分布,PN 结分为突变结和线性缓变结 突变结--- P区与N区的杂质浓度都是均匀的,杂质浓度在冶金结面处(x = 0)发生突变。 单边突变结---一侧的浓度远大于另一侧,分别记为PN+ 单边突变结和P+N 单边突变结。后面的分析主要是建立在突变结(单边突变结)的基础上 突变结近似的杂质分布。

线性缓变结--- 冶金结面两侧的杂质浓度均随距离作线性变化,杂质浓度梯 a 为常数。在线性区 () N x ax =- () 常数 = - = dx N N d a a d 线性缓变结近似的杂质分布。

空间电荷区:PN结中,电子由N区转移至P区,空穴由P区转移至N区。电子和空穴的转移分别在N区和P区留下了未被补偿的施主离子和受主离子。它们是荷电的、固定不动的,称为空间电荷。空间电荷存在的区域称为空间电荷区。 (2)电场分布 2.平衡载流子和非平衡载流子 (1)平衡载流子--处于非平衡状态的半导体,其载流子浓度为n0和p0。 (2)非平衡载流子--处于非平衡状态的半导体,其载流子浓度也不再是n0和p0(此处0是下标),可以比他们多出一部分。比平衡状态多出来的这部分载流子称为非平衡载流子 3. Fermi 能级,准Fermi 能级,平衡PN结能带图,非平衡PN结能带图 (1)Fermi 能级:平衡PN结有统一的费米能级。 (2)当pn结加上外加电压V后,在扩散区和势垒区范围内,电子和空穴没有统一的费米能级,分别用准费米能级。 (3)平衡PN结能带图

(4)非平衡PN结能带图

集合的简单练习题 并集合的知识点归纳

必修1 集合复习 知识框架: 1.1.1 集合的含义与表示 1.下列各组对象 ①接近于0的数的全体;②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体; ④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数有( ) A .2组 B .3组 C .4组 D .5组 2.设集合M ={大于0小于1的有理数},N ={小于1050的正整数}, P ={定圆C 的内接三角形},Q ={所有能被7整除的数},其中无限集是( ) A .M 、N 、P B .M 、P 、Q C .N 、P 、Q D .M 、N 、Q 3.下列命题中正确的是( ) A .{x |x 2+2=0}在实数范围内无意义 B .{(1,2)}与{(2,1)}表示同一个集合 C .{4,5}与{5,4}表示相同的集合 D .{4,5}与{5,4}表示不同的集合 4.直角坐标平面内,集合M ={(x ,y )|xy ≥0,x ∈R ,y ∈R }的元素所对应的点是( ) A .第一象限内的点 B .第三象限内的点 C .第一或第三象限内的点 D .非第二、第四象限内的点 5.已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },Y ={y |y =4k +1,k ∈Z },则( ) A .x +y ∈M B .x +y ∈X C .x +y ∈Y D .x +y ?M 6.下列各选项中的M 与P 表示同一个集合的是( ) A .M ={x ∈R |x 2+0.01=0},P ={x |x 2=0} B .M ={(x ,y )|y =x 2+1,x ∈R },P ={(x ,y )|x =y 2+1,x ∈R } C .M ={y |y =t 2+1,t ∈R },P ={t |t =(y -1)2+1,y ∈R } D .M ={x |x =2k ,k ∈Z },P ={x |x =4k +2,k ∈Z } 7.由实数x ,-x ,|x |所组成的集合,其元素最多有______个. 8.集合{3,x ,x 2-2x }中,x 应满足的条件是______. 9.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______. 10.用符号∈或?填空: ①1______N ,0______N .-3______Q ,0.5______Z ,2______R . ②2 1______R ,5______Q ,|-3|______N +,|-3|______Z . 11.若方程x 2+mx +n =0(m ,n ∈R )的解集为{-2,-1},则m =______,n =______. 12.若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =______,b =______. 13.方程组?? ???=+=+=+321x z z y y x 的解集为______. 14.已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______. 15.用描述法表示下列各集合:

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质有无缺陷的理想半导体材料。 1.4空穴 空穴是为处理价带电子导电问题而引进的概念。设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的

半导体物理学_课堂知识详细归纳总结

第一章、 半导体中的电子状态习题 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 题解: 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成 为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温 度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的 集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小; (2) GaAs : a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ; b )直接能隙结构; c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ; 1-5、 解: (1) 由题意得: [][])sin(3)cos(1.0)cos(3)sin(1.002 2 20ka ka E a k d dE ka ka aE dk dE +=-=

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

电子科技大学半导体物理期末考试试卷试题答案

电子科技大学二零一零至二零一一学年第一学期期末考试 1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比 2.有3个硅样品,其掺杂情况分别是: 甲.含铝1×10-15cm-3乙.含硼和磷各1×10-17cm-3丙.含镓1×10-17cm-3 室温下,这些样品的电阻率由高到低的顺序是(C ) A.甲乙丙 B. 甲丙乙 C. 乙甲丙 D. 丙甲乙 3.题2中样品的电子迁移率由高到低的顺序是( B ) 4.题2中费米能级由高到低的顺序是( C ) 5. 欧姆接触是指( D )的金属一半导体接触 A. W ms = 0 B. W ms < 0 C. W ms > 0 D. 阻值较小且具有对称而线性的伏安特性 6.有效复合中心的能级必靠近( A ) A.禁带中部 B.导带 C.价带 D.费米能级 7.当一种n型半导体的少子寿命由直接辐射复合决定时,其小注入下的少子寿命正比于(C ) A.1/n0 B.1/△n C.1/p0 D.1/△p 8.半导体中载流子的扩散系数决定于其中的( A ) A.散射机构 B. 复合机构 C.杂质浓变梯度 D.表面复合速度 9.MOS 器件绝缘层中的可动电荷是( C ) A. 电子 B. 空穴 C. 钠离子 D. 硅离子 10.以下4种半导体中最适合于制作高温器件的是( D ) A. Si B. Ge C. GaAs D. GaN 二、解释并区别下列术语的物理意义(30 分,7+7+8+8,共4 题) 1. 有效质量、纵向有效质量与横向有效质量(7 分) 答:有效质量:由于半导体中载流子既受到外场力作用,又受到半导体内部周期性势场作用。有效概括了半导体内部周期性势场的作用,使外场力和载流子加速度直接联系起来。在直接由实验测得的有效质量后,可以很方便的解决电子的运动规律。(3分) 纵向有效质量、横向有效质量:由于k空间等能面是椭球面,有效质量各向异性,在回旋共振实验中,当磁感应强度相对晶轴有不同取向时,可以得到为数不等的吸收峰。我们引入纵向有效质量跟横向有效质量表示旋转椭球等能面纵向有效质量和横向有效质量。(4分) 2. 扩散长度、牵引长度与德拜长度(7 分) 答:扩散长度:指的是非平衡载流子在复合前所能扩散深入样品的平均距离。由扩散系数

集合知识点+练习题

第一章集合 §1.1集合 基础知识点: ⒈集合的定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合, 也简称集。 2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示, 而元素用小写的拉丁字母a,b,c…表示。 3.集合相等:构成两个集合的元素完全一样。 4.常用的数集及记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+;N内排除0的集. 整数集,记作Z;有理数集,记作Q;实数集,记作R; 5.关于集合的元素的特征 ⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。 如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大 发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性; 而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元 素是不确定的. ⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. 如:方程(x-2)(x-1)2=0的解集表示为{1, 2},而不是{1, 1, 2} ⑶无序性:即集合中的元素无顺序,可以任意排列、调换。 练1:判断以下元素的全体是否组成集合,并说明理由: ⑴大于3小于11的偶数;⑵我国的小河流; ⑶非负奇数;⑷方程x2+1=0的解; ⑸徐州艺校校2011级新生;⑹血压很高的人; ⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点 6.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于?”两种) ⑴若a是集合A中的元素,则称a属于集合A,记作a∈A; ⑵若a不是集合A的元素,则称a不属于集合A,记作a?A。 例如,(1)A表示“1~20以内的所有质数”组成的集合,则有3∈A,4?A,等等。 (2)A={2,4,8,16},则4∈A,8∈A,32?A.

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1、1 半导体 通常就是指导电能力介于导体与绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1、2能带 晶体中,电子的能量就是不连续的,在某些能量区间能级分布就是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1、2能带论就是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程与周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1、2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型就是为分析晶体中电子运动状态与E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上就是周期函数,而且某些能量区间能级就是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1、2导带与价带 1、3有效质量 有效质量就是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

半导体物理期末试卷(含部分答案

一、填空题 1.纯净半导体Si 中掺错误!未找到引用源。族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

集合知识点总结及习题培训资料

集合知识点总结及习 题

集合 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ??????????? ???????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ???? ?????????? ???????? ?????????????????????? ??????????????????????=??????? 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.元素与集合的关系——(不)属于关系 (1)集合用大写的拉丁字母A 、B 、C …表示

北工大 10年 半导体物理 期末试卷

半导体物理2010-2011学年(2011.1.5) 一、简答题(8*6’=48’) 1.请填写下表中的数据: 解理面 材料晶格结构布拉伐格子直接/间接 带隙 Si GaAs 2.什么是本征半导体?什么是杂质半导体?示意画出掺杂浓度为Nd的N型半导体样品电子浓度n和本征载流子浓度ni随T变化曲线。 3.“纯净的半导体中,掺入百万分之一的杂质,可以减小电阻率达1百万倍,”是估算说明之。 4.一块杂志补偿的半导体,受主杂质和施主杂质浓度相等。设杂质全部电离,判断当杂质浓度分别为 (a) Na=Nd=1014cm-3(b) Na=Nd=1018cm-3 时,哪种情况的电导率大?简述分析理由。 5.什么是载流子的平均自由时间τ?有两块Si半导体材料1和2,其中τ1>τ2,迁移率哪个大? 如果同一块半导体中,有两种机理的平均自由时间τ1和τ2,其总迁移率如何确定? 6.写出以n型样品为例少子空穴的连续性方程。 由连续性方程写出:不考虑电场的作用、无产生、稳态载流子扩散方程; 7.什么是PN结的势垒电容?定性说明掺杂浓度对势垒电容有何影响。 8.一个p-N异质结接触前能带图见图1。画出平衡状态下能带图。

电阻率为7Ω·cm的p型硅,T=300K。 ⑴试计算室温时多数载流子和少子浓度(可查图)。 ⑵计算该半导体的功函数。 ⑶不考虑界面态,在金属铝(功函数W Al=4.20eV)和金属铂(功函数W Pi=5.3eV)中选择制备肖特基二极管的金属,给出选择理由。 ⑷求金属一侧势垒高度的理论值qΦms和半导体一侧势垒高度qV D 。 三、(16’) 室温下,一个Si的N-P结,N区一侧掺杂浓度为1017cm-3,P区为1015cm-3 ⑴求该N-P结的接触电势差。 ⑵画出平衡PN结、正向偏置PN结、反向偏置PN结空间电荷区中及边界处的载流子分布示意图。 ⑶根据正向和反向少子分布情况,解释PN结正向导通,反向截止的饱和特性。 ⑷写出理想PN结电流-电压关系公式,在对数坐标下,定性画出理想和实际I-V特性示意图。 四、(15’) 一理想的MOS结构的高频测量的C-V曲线如图2. (1)判断该结构中,半导体的导电类型。 (2)说明图中1,2,3,4,5点的半导体一侧的状态,并示意画出每点半导体一侧的能带形状,以及金属和半导体一侧的电荷分布。

半导体物理笔记总结 对考研考刘恩科的半导体物理很有用 对考研考刘恩科的半导体物理很有用

半导体物理 绪 论 一、什么是半导体 导体 半导体 绝缘体 电导率ρ <10- 9 3 10~10- 9 10> cm ?Ω 此外,半导体还有以下重要特性 1、 温度可以显著改变半导体导电能力 例如:纯硅(Si ) 若温度从 30C 变为C 20时,ρ增大一倍 2、 微量杂质含量可以显著改变半导体导电能力 例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C 27 300K )时,电阻率由214000Ω降至0.2Ω 3、 光照可以明显改变半导体的导电能力 例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。 另外,磁场、电场等外界因素也可显著改变半导体的导电能力。 综上: ● 半导体是一类性质可受光、热、磁、电,微量杂质等作用而改变其性质的材料。 二、课程内容 本课程主要解决外界光、热、磁、电,微量杂质等因素如何影响半导体性质的微观机制。 预备知识——化学键的性质及其相应的具体结构 晶体:常用半导体材料Si Ge GaAs 等都是晶体 固体 非晶体:非晶硅(太阳能电池主要材料) 晶体的基本性质:固定外形、固定熔点、更重要的是组成晶体的原子(离子)在较大范围里(6 10-m )按一定方式规则排列——称为长程有序。 单晶:主要分子、原子、离子延一种规则摆列贯穿始终。 多晶:由子晶粒杂乱无章的排列而成。 非晶体:没有固定外形、固定熔点、内部结构不存在长程有序,仅在较小范围(几个原子距)存在结构有 序——短程有序。 §1 化学键和晶体结构 1、 原子的负电性 化学键的形成取决于原子对其核外电子的束缚力强弱。 电离能:失去一个价电子所需的能量。 亲和能:最外层得到一个价电子成为负离子释放的能量。(ⅡA 族和氧除外) 原子负电性=(亲和能+电离能)18.0? (Li 定义为1) ● 负电性反映了两个原子之间键合时最外层得失电子的难易程度。 ● 价电子向负电性大的原子转移 ⅠA 到ⅦA ,负电性增大,非金属性增强

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

半导体物理期末考试试卷a-参考答案与评分标准

电子科技大学二零零七至二零零八学年第一学期期末考试 一、选择填空(22分) 1、在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带( B ), 对应的有效质量( C ),称该能带中的空穴为( E )。 A. 曲率大; B. 曲率小; C. 大; D. 小; E. 重空穴; F. 轻空穴 2、如果杂质既有施主的作用又有受主的作用,则这种杂质称为(F )。 A. 施主 B. 受主 C.复合中心 D.陷阱 F. 两性杂质 3、在通常情况下,GaN呈( A )型结构,具有( C ),它是(F )半导体材料。 A. 纤锌矿型; B. 闪锌矿型; C. 六方对称性; D. 立方对称性; E.间接带隙; F. 直接带隙。 4、同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr是乙的3/4,m n*/m0值是乙的2 倍,那么用类氢模型计算结果是( D )。 A.甲的施主杂质电离能是乙的8/3,弱束缚电子基态轨道半径为乙的3/4 B.甲的施主杂质电离能是乙的3/2,弱束缚电子基态轨道半径为乙的32/9 C.甲的施主杂质电离能是乙的16/3,弱束缚电子基态轨道半径为乙的8/3 D.甲的施主杂质电离能是乙的32/9,的弱束缚电子基态轨道半径为乙的3/8 5、.一块半导体寿命τ=15μs,光照在材料中会产生非平衡载流子,光照突然停止30μs后,其中非平衡载 流子将衰减到原来的(C )。 A.1/4 ; B.1/e ; C.1/e2; D.1/2 6、对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够高、n i>> /N D-N A/ 时,半导体具有( B )半导体的导电特性。 A. 非本征 B.本征 7、在室温下,非简并Si中电子扩散系数Dn与ND有如下图(C )所示的最恰当的依赖关系: DnDnDnDn 8、在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向(A )移动;当掺

高中数学必修一集合知识点总结资料

高中数学必修一 第一章集合与函数概念 课时一:集合有关概念 1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。 2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。例:世界上最高的山、中国古代四大美女、…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x∈R| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} ②Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a∈A (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法:(&&&&&) 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 课时二、集合间的基本关系 1.“包含”关系—子集 (1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系, A?(或B?A) 称集合A是集合B的子集。记作:B A?有两种可能(1)A是B的一部分,; 注意:B (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) 或若集合A?B,存在x∈B且x A,则称集合A是集合B的真子集。 ③如果 A?B, B?C ,那么 A?C

最新电子科技大学半导体物理期末考试试卷a试题答案

电子科技大学二零 九 至二零 一零 学年第 一 学期期 末 考试 半导体物理 课程考试题 A 卷 ( 120分钟) 考试形式: 闭卷 考试日期 2010年 元月 18日 课程成绩构成:平时 10 分, 期中 5 分, 实验 15 分, 期末 70 分 一、选择题(共25分,共 25题,每题1 分) A )的半导体。 A. 不含杂质和缺陷 B. 电阻率最高 C. 电子密度和空穴密度相等 D. 电子密度与本征载流子密度相等 2、如果一半导体的导带中发现电子的几率为零,那么该半导体必定( D )。 A. 不含施主杂质 B. 不含受主杂质 C. 不含任何杂质 D. 处于绝对零度 3、对于只含一种杂质的非简并n 型半导体,费米能级E F 随温度上升而( D )。 A. 单调上升 B. 单调下降 C. 经过一个极小值趋近Ei D. 经过一个极大值趋近Ei 4、如某材料电阻率随温度上升而先下降后上升,该材料为( C )。 A. 金属 B. 本征半导体 C. 掺杂半导体 D. 高纯化合物半导体 5、公式*/m q τμ=中的τ是半导体载流子的( C )。 A. 迁移时间 B. 寿命 C. 平均自由时间 D. 扩散时间 6、下面情况下的材料中,室温时功函数最大的是( A ) A. 含硼1×1015cm -3的硅 B. 含磷1×1016cm -3的硅 C. 含硼1×1015cm -3,磷1×1016cm -3的硅 D. 纯净的硅

7、室温下,如在半导体Si 中,同时掺有1×1014cm -3的硼和1.1×1015cm -3的磷,则电子浓度约为( B ),空穴浓度为( D ),费米能级为( G )。将该半导体由室温度升至570K ,则多子浓度约为( F ),少子浓度为( F ),费米能级为( I )。(已知:室温下,n i ≈1.5×1010cm -3;570K 时,n i ≈2×1017cm -3) A 、1×1014cm -3 B 、1×1015cm -3 C 、1.1×1015cm -3 D 、2.25×105cm -3 E 、1.2×1015cm -3 F 、2×1017cm -3 G 、高于Ei H 、低于Ei I 、等于Ei 8、最有效的复合中心能级位置在( D )附近;最有利陷阱作用的能级位置在( C )附近,常见的是( E )陷阱。 A 、E A B 、E D C 、E F D 、Ei E 、少子 F 、多子 9、MIS 结构的表面发生强反型时,其表面的导电类型与体材料的( B ),若增加掺杂浓度,其开启电压将( C )。 A 、相同 B 、不同 C 、增加 D 、减少 10、对大注入条件下,在一定的温度下,非平衡载流子的寿命与( D )。 A 、平衡载流子浓度成正比 B 、非平衡载流子浓度成正比 C 、平衡载流子浓度成反比 D 、非平衡载流子浓度成反比 11、可以由霍尔系数的值判断半导体材料的特性,如一种半导体材料的霍尔系数为负值,该材料通常是( A ) A 、n 型 B 、p 型 C 、本征型 D 、高度补偿型 12、如在半导体中以长声学波为主要散射机构是,电子的迁移率n 与温度的( B )。 A 、平方成正比 B 、 23 次方成反比 C 、平方成反比 D 、2 3 次方成正比 13、为减少固定电荷密度和快界面态的影响,在制备MOS 器件时通常选择硅单晶的方向为( A )。 A 、【100】 B 、【111】 C 、【110】 D 、【111】或【110】 14、简并半导体是指( A )的半导体。

相关主题
文本预览
相关文档 最新文档