当前位置:文档之家› 光纤通信实验讲义

光纤通信实验讲义

光纤通信实验讲义
光纤通信实验讲义

光纤通信原理与应用

实验讲义

南阳师范学院物理与电子工程学院

编订人:海涛

目录

实验一双光纤通信传输认识 (1)

实验二激光器P—N特性曲线测量 (11)

实验三自动功率控制(APC)原理 (15)

实验四光接收机电路原理 (23)

实验五数字信号电—光、光—电传输 (27)

实验六模拟信号电—光、光—电传输 (29)

实验七光纤通信线路码 (32)

实验八波分复分(WDM)光纤通信 (38)

实验九电话语音光传输 (45)

实验十二—八台计算机单/双光纤全双工通信传输 (49)

实验一双光纤通信传输认识

光纤通信是近代通信发展的一个重要部分,初步了解光纤通信的基本组成,建立光纤通信的基本概念。

一、实验目的

1.了解双光纤通信传输实验箱的结构。

2.了解各模块的功能和作用。

3.了解双光纤通信传输实验的特点。

二、实验内容

1.熟悉双光纤通信传输实验箱各模块的功能和作用。

2.熟悉双光纤通信传输实验箱的使用与操作。

3.了解双光纤通信的波分复用传输方法。

三、实验仪器

THKEGC-2 型实验箱一台、FC/PC 连接器一只、1310nm/1550nm 波分复用器两只(接头类型:FC/PC)、示波器一台。

四、实验箱结构、特点

(一) 结构简介

实验系统结构见图1-1 所示。光纤通信传输实验系统采用模块化结构设计,分为左右两大模块(两套光纤发送接收系统),每一个模块中又由许多子模块组成:

图1-1 双光纤通信传输实验箱模块结构图

1.1310nm 光发送接收系统

1)固定速率时分复用/解复用模块

复接模块:三路串行数据输入接口,一路串行数据输出接口。完成将三路串行数据打包成一路串行数据,结合解复用模块及光纤收发模块即可完成三路串行数据的单光纤传输。

解复用模块:一路串行数据输入接口,二路并行数据(三路数据中的一路是帧信号)直接输出到LED 灯显示。完成将一路串行数据还原成二路并行数据,结合复接模块及光纤收发模块即可完成三路串行数据的单光纤传输。

接口参数:三路输出数据的速率:64Kbps

接口类型:NRZ。

①固定速率数据信号源模块

此模块产生三路速率为64K 的单极性不归零码(NRZ),数据信号帧长为8 位,其中两路可作为数据信息,每路8 位,另外8 位中的7 位可作为集中插入帧同步码。通过拔动开关,可以很方便地改变码信息,并由发光二极管指示。

②固定速率时分复用复接模块

此模块将固定速率数据信号源模块产生的三路NRZ 码复接成一路速率为

128K 的信号,该信号由24 位信息组成,其中16 位为数据信息,另外8 位作为帧同步码。

③固定速率时分复用分接模块

此模块将固定速率时分复用复接模块产生的信号分接,还原成与固定速率数据信号源模块拔动开关相对应的并行数据信息,并通过发光二极管指示。

2)变速率时分复用/解复用模块

复接模块:四路串行数据输入接口,一路串行数据输出接口。完成将四路串行数据打包成一路串行数据,配合解复用模块及光纤收发模块即可完成四路串行数据的单光纤传输。

解复用模块:一路串行数据输入接口,四路串行数据输出接口。完成将一路串行数据还原成四路串行数据,配合复接模块及光纤收发模块即可完成四路串行数据的单光纤传输。

接口参数:四路输入数据的速率:0~64Kbps

接口类型:RS232、NRZ 等。

3)CMI 编译码模块

编码模块:将输入的数字信号进行CMI 编码。译码模块:将输入的CMI 码进行译码。由CPLD(EPM3256)完成。

4)电话接口模块

此模块为独立的电话输入、输出接口,通过专用电话接口芯片实现。

5)PCM 编译码模块

此模块通过专用芯片来实现PCM 编译码电路,可同时完成两路信号的编译码。PCM 模块可以实现传输两路语音信号的功能,采用TP3067 编译码芯片。

6)可调信号源模块

此模块能输出三种模拟信号:方波、正弦波、三角波。频率(0.5~10KHz)可调。正弦波幅度可调。

7)四个串行通信接口模块

此模块配有RS232 接口和信号端口TXD(发送)和RXD(接收)。与变速率时分复用/解复用模块及光纤收发模块结合,可实现自发自收通信实验、两台计算机、四台计算机之间的全双工数据光纤通信实验。若再与两种波长的光纤收发模块结合可完成二∽八台计算机之间的全双工数据通信实验。

8)1310nm 波长光发送模块

主要完成电光信号的转换,即可传输模拟信号(包括视频、音频信号),又可传输数字信号,同时具有无光告警及光器件损坏告警指示。它主要有模拟调制模块和数字调制模块(包括:自动功率控制电路(APC)、无光检测电路、光器件损坏检测电路等)组成。配有视频专用接口。

9)1310nm 波长光接收模块

主要完成光电信号的转换,小信号的检测与信号的恢复放大等功能。它主要有光检测电路、滤波电路、第一放大电路、第二放大电路、判决电平调节电路、整形电路等组成。配有视频专用接口。

2.1550nm 光发送接收系统

1550nm 光发送接收系统中的模块与1310nm 光发送接收系统的功能一样。主要是波长不一样。

(二) 系统特点

1.采用对称模块化双光端机设计,体现了现代性(如新型器件CPLD)和系统性(各模块既可单独做实验又可灵活组合做系统实验)。

2.光器件全外置设计。

3.每个光端机自带数字信号源和终端显示模块,无示波器也可观测实验现象与结果。

4.包含双三路固定速率时分复用模块。

5.包含双四路固定速率时分复用模块。

6.采用高可靠性的接插件,灵活搭线,性能稳定。

7.系统自带两片CPLD 芯片,并有下载接口和下载线,可进行二次开发。

3.双光纤通信的波分复用传输以模拟信号、数字信号双向通信的波分复用传输为例,介绍双光纤通信传输实验箱的特点。由实验老师进行演示。系统结构如图1-2 所示。

图1-2 模拟信号、数字信号的波分复用传输

模拟信号源(可以是实验箱自带的信号源;也可以采用模拟摄像头,对应的示波器改为监视器。)接入1310nm 光端机部分的模拟信号输入端口,通过光发送器件转换为光信号发送,经光纤和波分复用器传输后,由1550nm 光端机部分光接收器件转换为电信号,经模拟信号输出端口输出,由示波器(监视器)显示。数字信号源(R_D1、R_D2 等)接入1550nm 光端机部分的数字信号输入端口,通过光发

送器件转换为光信号发送,经光纤和波分复用器传输后,由1310nm 光端机部分光接收器件转换为电信号,经数字信号输出端口输出,由示波器或终端显示模块显示。

五、实验注意事项

1.波分复用器属易损器件,应轻拿轻放。

2.光器件连接时,注意要用力均匀。

六、演示实验步骤

1.了解双光纤通信传输实验箱的结构

对照图1-1 了解双光纤通信传输实验箱的结构及各功能模块所在区域。了解各信号输入/输出端口的位置和意义。

2.模拟信号、数字信号的波分复用传输(由实验老师演示)

1) 电气实验导线的连接:

关闭系统电源,将1310nm 光端机的模拟信号源正弦波输出端L_SINE(或模拟摄像头)与1310nm 光发送模块的模拟信号输入端口L_AIN 相连,将开关S71 拨向右边(传输模拟信号);将1550nm 光端机的固定速率数据信号源输出端R_D1 与1550 nm 光发送模块的数字信号输入端口R_DIN 相连,将开关S91 拨向左边(传输数字信号)。

2) 光路部分的连接:

①取下1310nm 光发/光收端口上的红色橡胶保护套。

②取一只波分复用器,取下其双光纤端的两根光纤的橡胶保护套。

③将波分复用器的1310nm 端与1310nm 光发送端口(1310nm TX)的连接器对接,即:将光纤小心地插入连接器,在插入的同时保证光纤的凸起部分与连接器的凹槽完全吻合,然后拧紧固定帽即可。

④同样将波分复用器的1550nm 端与1310nm 光接收端口(1310nm RX)的连接器对接。

⑤用同样的方法将另一只波分复用器的1550nm 端与1550nm 光发送端口(1550nm TX)的连接器对接;同样将波分复用器的1310nm 端与1550nm 光接收端口(1550nm RX)的连接器对接。

⑥取一只连接器,取下其两端的保护套;取下两只波分复用器单光纤端的保护套,分别将它们与连接器连接好。

3) 模拟信号的观测:

开启系统电源,分别用示波器(或监视器)观察1310nm 光发端机的模拟信号输入端L_AIN与1550nm 光收端机模拟信号输出端R_AOUT 的波形。可调节电位器改变模拟信号源的频率和幅度。调节电位器W73 顺时针旋转到底,使偏置电流最大。分别调节电位器W71(输入模拟信号衰减)和WA 1 (增益调节)使示波器上看到不失真的波形。改变模拟信号源的频率,观察波形。

4) 数字信号的观测:

开启系统电源,分别用示波器观察1310nm光收端机的数字信号输出端L_DOUT 与1550nm光发端机数字信号输入端R_DIN 的波形。调节电位器W81(增益调节),使输出波形与信码一致。通过拔动开关改变数字信号源的码型,观察波形。

七、实验报告要求

1.画出双光纤通信传输实验箱模块结构图。

2.对光纤传输系统的认识和体会。

实验二 激光器P —I 特性曲线测量

一、实验目的

1.了解半导体激光器的发光原理。

2.了解半导体激光器平均输出光功率与驱动电流的关系。

3.掌握半导体激光器P-I 曲线的测试及绘制方法。

二、实验内容

测量半导体激光器的功率和驱动电流,并画出P-I 关系曲线。

三、实验仪器

示波器一台、THKEGC-2 型实验箱一台、光功率计一只、万用表一只、FC-ST 光跳线一根。

四、基本原理

1.半导体激光器的功率特性及伏安特性。

半导体激光器的输出光功率与驱动电流的关系如图2-1 所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阀值电流),用Ith 表示。在门限电流以下,激光器工作于自发发射,输出荧光功率很小,通常小于100puW ;在门限电流以上,激光器工作于受激发射,输出激光,功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系相似于正向二极管特性,如图2-2 所示,由于包含两个PN 结,所以在正常工作电流下激光器两极间的电压约为1.2V 。

图2-1 激光器的功率特性 图2-2 激光器的伏安特性

阈值条件就是光谐振腔中维持光振荡的条件。设受激发射所产生的光介质的平均增益系数 (单位长度上的增益)为g ,光介质的平均损耗系数为a ,则光谐振腔产生和维持光振荡的条件为光子在光谐振腔中来回反射一次所产生的光能增益大于或等于光能的损耗,用公式表示为:

12212≥-L a L g e r r e (2-1)

式中L 为光谐振腔的长度,r1、r2 分别为光谐振腔两端镜面的反射系数(0<1r <1、0<2r <1)。从式(2-1)解得门限状态下的增益系数为th g

th th J r r L a g β=+=)1ln(2121 (2-2)

th J 为门限状态下驱动有源区的电流密度。 为平均增益因子,其值取决于激光器的材料与结构。电流密度Jth 按下式可决定门限电流th I 。

th th bLJ I ξ=

式中b 为有源区宽度, ζ>1 为电流侧向扩展因子。采用BH ,DC-PBH 和RWG 激光器结构,可使ζ 接近于1,故能获得小的门限电流。激光器功率特性的线性程度对模拟光纤传输系数的非线性失真指标影响很大。

半导体激光二极管(LD)或简称半导体激光器与发光二极管LED 不同,它通过受激辐射发光,是一种阀值器件。由于受激与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄(垂直发散角为30~50o,水平发散角为0~30o),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(A 入=0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制,非常适合于作高速远距离光纤通信系统的光源。

对于线性度良好的半导体激光器,输出功率可以表示为:

其中

这里的量子效率ηint(表征驱动电子通过受激辐射转化为光子的比例)。在高于阀值区域,大多数半导体激光器的ηint 近于1。

(2-3)式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当驱动电流I>Ith 时,输出功率与I 成线性关系。其增大的速率即P-I 曲线的斜率,称为斜率效率。

P-I 特性是选择半导体激光器的重要依据。在选择时,应选阀值电流Ith 尽可能小,Ith 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真。且要求P-I 曲线的斜率适当。斜率太小,则要求驱动信号小,给驱动电路带来麻烦:斜率太大,则会出现光反向噪声和自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放入机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阀值条件。一般用驱动电流值来标定阀值条件,也即阀值电流Ith,当输入电流小于Ith 时,其输出光为非相干的荧光,类似于LED 发出的光,当电流大于Ith 时,则输出光为激光,且输入电流和输出光功率成线性关系,该实验就是对该线性关系进行测量,以验证P-I 的线性关系。在实验中所用到的半导体激光器输出波长分别为1310nm、1550nm,FC 接口。

图2-3半导体激光器P-I 曲线示意图

五、实验步骤

以1310nm 光发端机(1550nm 光发端机与其相同)为例,即实验箱左边的模块。

1)电气实验导线的连接:

①关闭系统电源,将光发送模块中的可调电位器W73 逆时针旋转到底,将输入模拟信号幅度调节电位器W71 逆时针旋转到底,使模拟驱动电流和输入信号幅度达到最小值。

②将开关S71 拨向右边 (传输模拟信号)。

③将短路帽J71 拨出,使其处于断开状态,在测量点TP71 和TP72 之间串接一外置的直流电流表。

2)光路部分的连接:

用一段短光纤(光跳线)将光功率计的输入端连接到“1310nmTX”端,同时打开光功率计电源开关。

3)打开实验箱电源。

4)缓慢调节电位器W73,依次测量电流和对应的光功率值。并将测得的数据填入下表。

5)参照上述步骤,测量1550nm 光端机的P-I 曲线。

6)实验完毕,关闭实验箱电源。

7)拆下光跳线、电流表、实验导线,整理实验器件与导线。

六、实验报告要求

整理实验数据。分别画出1310nm 激光器和1550 激光器的P-I 曲线,找出规律并比较其异同点。

实验三自动功率控制(APC)原理

一、实验目的

1.了解光发送的电路原理。

2.了解光发送各模块的功能。

3.掌握自动功率控制电路的工作原理。

二、实验内容

1.学习自动功率控制电路的工作原理。

三、实验仪器

示波器一台,THKEGC-2 型实验箱一台,光功率计一只,万用表一只、FC-ST 光跳线一根。

四、基本原理

1.电路方框图

LD 数字光发送电路方框图如图3-1 所示。它由B1、B2、B3、B4、B5、B6、B7 组成。B1是接口及电平移动电路,由集成电路U72 等组成。B2 是驱动电路,由三极管Q74、Q75 等组成。B3 是LD 激光器(LD71),它把码型速率为0~4096kb/s 的信息码流变为光信号后射入光纤。B4 为监测电路,采用PIN 二极管对激光器的工作情况进行监测。B5 为自动功率控制电路(APC),设置APC 的目的是为了得到稳定的光功率输出。APC 由U71 中的三只运算放大器及相关电路组成。无光告警电路由U71D、Q73 及红色发光二极管组成。损坏告警电路由U74、Q77 和红色发光二极管组成。

图3-1 LD 数字光发电路原理框图

2.电路原理(见图3-6)

1) 接口及电平移动电路

由相应电路送来的NRZ 信码由数字信号输入端口加入本模块。接口及电平移动电路由U72等组成。U72 是电平转换电路,它的作用是将TTL 电平转换成ECL。电阻R77 和R710、R75和R79 既是U72 的负载电阻,又起电平的移动作用。将U72 输出的ECL 向负方向移动,以保证驱动电路工作在开关状态。

设置TTL/ECL 电平转换电路是由于LD 的正极接外壳(接地),所以驱动电路必须采用负电源,而输入信码是TTL 电平,不适宜直接驱动,必须转换成ECL 电平,即转换成以-0.8V 为逻辑“1”,-1.6V 为逻辑“0”的电平,再经过电阻R77 和R710、R75 和R79 进行电平移动,将“1”移到-2.56V,将“0”移到-3.04V,作为Q74、Q75 基极电平,其射极电平-3.25V。这样就可以保证Q74、Q75 在非饱和态与非深截止状态之间的转换。

2) LD 驱动电路

LD 驱动电路由晶体管Q74、Q75 组成的耦合电流开关电路构成。激光器LD 的正极接地,负极经电阻R723 接到Q75 的集电极。R724、R725 为LD 提供偏流。

U72 输入端的信码流设为Vin,U72 的反相端(2)经电阻R75 连接到Q75 的基极,电压设为Vsc ,同相端(1)经电阻R77 连接到Q74 基极,电压设为VSC ,当输入Vin 为高电平“1”时, Vsc 为低电平“0”,而VSC 为高电平“1”,这样Q74 基极电位高于Q75 的基极电位,Q74 导通, Q75 截止,集电极无电流输出,LD 不发出激光。反之,当输入Vin 为低电平“0”时,VSC 为高电平“1”;而VSC 为低电平“0”,这样Q75 基极电位高于Q74 的基极电位,Q75 导通,Q74截止,Q75 集电极输出的数字脉冲电流驱动LD,直接驱动LD 发出激光。

3) 偏置电路

因为LD 是阀值元件,阀值为Ith,如图3-2 所示。通常设置预偏置电流Ib(Ib 略小于Ith)。设置Ib 的理由是:如果不设置Ib,而直接用调制信号Id 来进行调制的话,则需要提供幅度变化较大的电流;有了Ib 后,相当于减小了Id 的变化范围,这样有利于提高调制速度。当驱动电流较低时,只有自发幅射存在,这时半导体激光器发射的是荧光,相当于发光二极管的情况。当驱动电流达到Ith 时,输出功率急增,这时LD 发射的是激光。

图3-2 LD 的调制示意图

由于这些理由,就在LD 上加一个预偏置电流Ib,再叠加上Id。即用I=Id+Ib 进行调制,LD的预偏置电路如图3-3 所示。由R725、C77、Q76、Q78、R743 组成。R725 用于限制Ib 的最大值,C77 为滤波电容,用来进一步滤除交流分量。Q76 用来构成APC 电路,Q76 的基极受APC电路控制。

图3-3 LD 的预偏置电路

4) 自动光功率控制电路(APC)

APC是Automatic Power Control 的缩写。设置自动功率控制APC 的因素有两个:一是因为LD 的阀值电流随温度的影响变化很大,如图3-4 所示,由图看出,当温度由20℃升高到50℃时,由于Ith 增大得过多,LD 根本不能工作,此时无激光发出;二是因为P-I 曲线的斜率随使用时间的增长而减小,即电光转换效率降低。如图3-5 所示是一典型的LD 损坏试验的P-I曲线,每隔100~200h 测一条曲线,当使用时间达1700h 时,LD 不能连续使用。为了稳定输出光功率必须设置APC 电路。

本机有自动功率控制电路,采用背向光反馈自动偏置控制方式,即用半导体激光器组件中的PIN 光二极管监测激光器背向输出光功率。因为背向输出光功率与前向输出光功率是跟踪变化的,所以通过闭环控制系统,就可自动调节激光器的电流,达到稳定输出光功率的目的。

图3-4 LD 阀值和P-I 特性随温度图3-5 LD P-I 特性使用时间变化的典型曲线变化的典型曲线

自动功率控制电路原理图如图3-6 所示。由运算放大器U71 和Q76 等组成控制环路。反馈取自LD 的背向光,由PIN 检出并转换成相应的电流,经E73 滤波后加到U71C 运算放大器, U71C 实际上是并联反馈放大器,电位器W74 用来调节增益,以适应灵敏度不同的PIN 管,使得在相同光功率时输出电压(U2)基本不变,并加于U71B 的反相端,U71B 是比较积分放大器,在理想情况下积分器的输出电压为:

这里R734、E75 的乘积称为积分器的时间常数。U3 经二极管D73 和电阻R712 加于Q76的基极,以控制基极电流,进而控制预置电流Ib。从而构成反馈控制回路。

控制过程如下:当某种原因使LD 输出光功率降低时,背向光减弱,PIN 输出电流减小,U1 是运算放大器U71C 的输入电压,由于运算放大器U71C 的输出电压U2 与输入电压U1 成比例,所以运算放大器输出电压U2 也减小。U2 加于比较积分放大器U71B 的反相输入端,所以U71B 的输出电压U3 增加,预置电流Ib 增大,使LD 的输出光功率增大,从而维持输出光功率不变。U71A 用来引入参考信号。U71A 的同相输入端引入直流参考电压。直流参考电压由-5V电源经R727 和W75 取得。引入直流参考电压的目的是为了实现用人工的办法来调节偏流,调节电位器W75,即可实现人工调节偏流。在U71A 的反相输入端引入数字信号作参考。引入数字参考信号的作用是防止控制电路在无信号输入或输入长连“0”时,偏流自动增大并使激光器工作,毫无意义的消耗光能量并造成误码,甚至因发出过高的直流光而烧毁LD。

由图中看出,加于驱动电路Q74 基极的是来自U72 同相端的Uin,加于Q75 基极的信号是来自U72 反相端的/Uin,加于U71A 反相端的数字参考信号来自U72 的反相端/Uin。

当输入信号消失或送入长连“0”时,如果没有引入数字信号,因Uin 为“0”,Id 减小并实施负反馈调节的结果,使Ib 上升。当引入数字参考信号后,因Uin 为低电平,使得/Um 为高电平。Uin 的低电平,U3、Ib 增大;/Uin 的高电平,使U71A 的输出为低电平,使U71B 同相端的电位下降,并使U3 下降,Ib 减小,结果保持Ib 不增大。R738、C79 是Ib 慢启动电路,开机后,Ib 缓慢增大,以避免LD 受到大电流的冲击而损坏, Q78 为偏流的限流保护。当Ib 达到一定值时,R743 上的

电压加大,Q78 的基极电位升高,Q78导通;使Q76 的基流被分流,限制了Ib 的增加。Q78 与R724、R725 均起到对Ib 的限流作用。

五、实验步骤

以1310nm 光发端机(1550nm 光发端机与其相同)为例,即实验箱左边的模块。

1)电气实验导线的连接:

①关闭系统电源,将L_FY_OUT(L_FY_OUT 码型为10101010、10101010、10101010)数字信号作为光发送端的数字输入信号。将开关S71 拨向左边 (数传输字信号)。

2)光路部分的连接:

①取下光发端口上的红色橡胶保护套。

②取一根FC-ST 的光跳线,取下其两端的保护套。

③将光跳线的A 端1310nm 光发送端口(1310nm TX)的连接器对接。

④将光跳线的B 端与光功率计端口的连接器对接。

3)调节电位器W75 (APC 控制器人工偏流调节),使光功率为-2.5dBm。

4)将J72 短路帽拿掉,串接一个直流电流表测量电流Ib。

5)改变输入信号的码型(改变码元中1 的个数),依次减少一个“1”码即增大光功率,根据下表分别记录光功率和电流Ib。

6)完成实验后,先关闭系统电源,再拆下光路的连接(注意轻拆轻放),最后拆下电路的连接线,整理好实验箱。

六、实验报告要求

将实验过程中记录的各种数据结合原理进行分析,加深理解自动功率控制的原理

光纤通信实验报告

计算机与信息技术学院实验报告 专业:通信工程 年级/班级:2009级 2011—2012学年第一学期 课程名称 光纤通信 指导教师 李新源 本组成员 学号姓名 XXXXXX 实验地点 计算机楼501 实验时间 2012年4月6 日 项目名称 自动光功率控制电路 实验类型 硬件实验 一、 实验目的 1.掌握自动功率控制电路的工作原理 二、实验内容: 1.学习自动功率控制电路的工作原理 2.测量相关特征测试点的参数 三、实验仪器: 1.示波器。 2.光纤通信实验系统。 3.光功率计。 4.万用表。 5.FC/PC 型光纤跳线2根。 四、实验原理: 激光器输出光功率与温度和老化效应密切相关。保持激光器输出光功率稳定,可以用光反馈来自动调整偏置电流,电路如下图所示: 1 A 3 A 2 A B I

首先,PIN管监测背向光功率,经检出的光电流由A1放大,送入比较器A3的反向输入端,输入的数字信号和直流参考信号经A2比较放大,接到的A3同相输入端。A3和VT3组成恒流源,给激光器加上偏置电流IB的大小,其中信号参考电压是防止控制电路在无输入信号或长连“0”时,使偏流自动上升。这种电路在10°C~50°C温度范围内功率不稳定度ΔP/P可小于5%。 五、实验步骤: 1.关闭系统电源。按以下方式用连信号连接导线连接: 数字信号模块(数字信号输出一)P300—P100 1310数字光发模块 (数字光发信号输 入) 2.用光纤跳线连接1310nm光发模块和光功率计。 3.将1310nm光发模块的J100,两位都调到ON状态。 4.将1310nm光发模块的J101设置为“数字”。 5.打开系统电源,将数字信源模块第一路的拨码开关U311全拨到OFF状态。这时输入到1310nm数字光发模块的信号始终为“1”。 6.用万用表测量R124两端的电压。测量方法:先将万用表打到20V直流电 压档。然后,将红表笔插入1310nm数字发光模块的台阶插座TP101黑表笔插入TP102。读出万用表的读数U1,代入公式I1= U1/ R124(R124=51Ω)可得此时 自动光功率控制所补偿的电流。观察此时光功率计的读数P1。然后,将1310nm 的拨码开关的右边一位拨到OFF状态,记下光功率计的读数P2。 7.调整手调电位器RP100改变光功率的大小,再重复实验步骤5,将测的实 验数据填入下表。 8.关闭系统电源,拆除实验导线。将各实验仪器摆放整齐。 六、实验结果和心得: 1 2 3 4 5 6 7 16.31dB 16.17dB 11.90dB 7.62dB 6.62dB 4.59dB 3.40dB 37.31dB 25.58dB 11.88dB 7.62dB 6.63dB 4.59dB 3.42dB 3.14mA 5.88mA 8.43mA 12.75mA 1 4.51mA 19.80mA 24.12mA

光纤通信实验材料

实验一半导体激光器P-I特性测试实验 一、实验目的 1、学习半导体激光器发光原理和光纤通信中激光光源工作原理 2、了解半导体激光器平均输出光功率与注入驱动电流的关系 3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法 二、实验内容 1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线 2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率 三、实验仪器 1、ZY12OFCom23BH1型光纤通信原理实验箱1台 2、FC接口光功率计1台 3、FC-FC单模光跳线 1根 4、万用表1台 5、连接导线 20根 四、实验原理 光源是把电信号变成光信号的器件,在光纤通信中占有重要的地位。性能好、寿命长、使用方便的光源是保证光纤通信可靠工作的关键。 光纤通信对光源的基本要求有如下几个方面:首先,光源发光的峰值波长应在光纤的低损耗窗口之内,要求材料色散较小。其次,光源输出功率必须足够大,入纤功率一般应在10微瓦到数毫瓦之间。第三,光源应具有高度可靠性,工作寿命至少在10万小时以上才能满足光纤通信工程的需要。第四,光源的输出光谱不能太宽以利于传输高速脉冲。第五,光源应便于调制,调制速率应能适应系统的要求。第六,电—光转换效率不应太低,否则会导致器件严重发热和缩短寿命。第七,光源应该省电,光源的体积、重量不应太大。 作为光源,可以采用半导体激光二极管(LD,又称半导体激光器)、半导体发光二极管(LED)、固体激光器和气体激光器等。但是对于光纤通信工程来说,除了少数测试设备与工程仪表之外,几乎无例外地采用半导体激光器和半导体发光二极管。 本实验简要地介绍半导体激光器,若需详细了解发光原理,请参看各教材。 半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。 半导体激光器的特性,主要包括阈值电流Ith、输出功率P0、微分转换效率η、峰值波长λp、光束发散角、脉冲响应时间t r、t f等。除上述特性参数之外,有时也把半导体激光器的工作电压、工作温度等列入特性参数。

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

光纤通信系统实验指导书

光纤通信系统实验指导书 光纤通信系统实验指导书 桂林电子科技大学信息科技学院 二零零九年三月 目录 实验一数字光纤传输测试系统实验 (2) 实验二SDH点对点组网2M配置实验 (9)

实验三SDH 链型组网配置实验 (17) 实验四SDH 环形组网配置实验 (27) 实验一数字光纤传输测试系统实验 概述 光纤通信是利用光波作为载波,以光纤作为传输媒质实现信息传输,是一种最新的通信技术。 光纤是光导纤维的简称。光纤通信是以光波为载频,以光导纤维为传输媒质

的一种通信方式。光纤通信使用的波长在近红外区,即波长800~1800nm,可分为短波长波段(850nm)和长波长波段(1310nm和1550nm),这是目前所采用的三个通信窗口。 通信发展过程是以不断提高载频频率来扩大通信容量,光是一种频率极高的电磁波(3×1014HZ),因此用光作载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,是通信发展的必然方向。 光纤通信有许多优点:首先它有极宽的频带。目前我国已完成了10Gbps的光纤通信系统,这意味着在125um的光纤中可以传输大约11万路电话。其次,光纤的传输损耗很小,传统的同轴电缆损耗约在5dB/Km以上,站间距离不足10Km;而工作在1.55um的光纤最低已达到0.2dB/Km的损耗,站间无中继传输可达100Km以上。另外,光纤通信还具有抗电磁干扰、抗腐蚀、抗辐射等特点,它 。 在地球上有取之不尽,用之不竭的光纤原材料—SiO 2 光纤通信可用于市话中继线,长途干线通信,高质量彩色电视传输,交通监控指挥,光纤局域网,有线电视网和共用天线(CATV)系统。 波分复用技术(WDM)的出现,使光纤传输技术向更高的领域发展,实现信息宽带、高速传输。 光纤通信将会在光同步数字体系(SDH)、相干光通信、光纤宽带综合业务数字网(B—ISDN)、用户光纤网、ATM及全光通信有进一步发展。 光纤通信系统主要由三部分组成:光发射机、传输光纤和光接收机。其电/光和光/电变换的基本方式是直接强度调制和直接检波。实现过程如下:输入电信号既可以是模拟信号(如视频信号、电话语音信号、正弦波或三角波信号),也可以是数字信号(如计算机数据、PCM编码信号、数字信号源信号);调制器将输入的电信号转换成适合驱动光源器件的电流信号并用来驱动光源器件,对光源器件进行直接强度调制,完成电/光变换的功能;光源 输出的光信号直接耦合到传输光纤中,经一定长度的光纤传输后送达接收端;在接收端,光电检测器对输入的光信号进行直接检波,将光信号转换成相应的电信号,再经过放大恢复等电信号处理过程,以弥补线路传输过程中带来的信号损伤(如损耗、波形畸变),最后输出和原始输入信号相一致的电信号,从而完成整个传送过程。 根据所使用的光波长、传输信号形式、传输光纤类型和光接收方式的不同,光纤通信系统可分成:

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

光纤通信实验报告汇总(参考)

实验一用户电话接口实验 一、实验目的 1、掌握用户电话接口电路的主要功能 2、了解实现用户接口电路功能芯片Am79R70的主要性能和特点 二、实验内容 1、掌握用户线接口电路的主要功能 2、了解Am79R70的结构和工作原理 3、了解电话接续的原理及其各种语音控制信号的波形 三、实验仪器 1、ZY1804I型光纤通信原理实验系统 1台 2、20MHz 双踪数字示波器 1台 3、电话机 2部 4、连接导线 20根 四、实验原理 1、用户线接口电路功能及其作用 在现代通信设备与程控交换中,由于交换网络不能通过铃流、馈电等电流,因而将过去在公用设备(如绳路)实现的一些功能放到“用户电路”来实现。 在程控交换机中,用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit—SLIC)。根据用户电话机的不同,用户接口电路可分为模拟用户电话接口电路和数字用户电话接口电路。模拟用户电话接口电路与模拟电话相连,数字用户电话接口电路和数字终端相连(如ISDN),而在此实验箱中采用模拟用户电话接口电路。 模拟用户线接口电路在实现时最大的压力应是能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器、继电器等分立元件构成,但随着微电子技术的发展,各种集成的SLIC相继出现,他们大都采用半导体工艺或是薄膜、厚膜会合工艺,性能稳定,价格低廉,已实现了通用化。 在程控交换机中模拟用户接口电路一般要具有B(馈电),R(振铃),S(监视),C(编译码),H(混合),

T(测试),O(过压保护)七项功能。具体含义是: 1、馈电(B-Battery feeding):向用户话机馈送直流电流。通常要求馈电电压为-48V,环路电流不小于18mA。 2、过压保护(O-Overvoltage protection):防止过压过流冲击损坏电路和设备。 3、振铃控制(R-Ringing Control):向用户话机馈送铃流,通常为25Hz/75Vrms正弦波。 4、监视(S-Supervision):监视用户线的状态,检测话机摘机、挂机与拨号脉冲灯信号已送往控制网络和交换网络。 5、编解码与滤波(C-CODEC/Filter):在数字交换中,它完成模拟话音与数字码间的转换。编译码通常采用PCM码的方式,其编码器(Coder)和译码器(Decoder)统称为CODEC。相应的防混叠与平滑低通滤波器的带宽范围为:300Hz~3400Hz,编码速率为64Kb/s。 6、混合(H-Hybird):完成二线与四线的转换功能,即实现模拟二线双向信号与PCM发送和接收数字四线信号之间的分离。 7、测试(T-Test):对用户电路进行测试。 模拟用户接口电路的结构如图所示: 图1-1 模拟用户接口电路框图 2、用户线接口电路 在本实验箱中,用户线接口电路芯片选用Legerity公司生产的模拟用户线接口芯片Am79R70。Am79R70是一种功能较强的用户线接口芯片,它除了拥有用户接口电路常用的7种功能中的6种外,还拥有电流限制、挂机传输、极性反转、tip开路和环路检测等功能。其内部电路结构原理框图如下:

光纤通信实验报告

OptiSystem实验 一、OptiSystem简介 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS 和MANS都适用。OptiSystem有一个基于实际光纤通讯系统模型的系统级模拟器,并具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,从而成为一系列广泛使用的工具。全面的图形用户界面提供光子器件设计、器件模型和演示。丰富的有源和无源器件库,包括实际的、波长相关的参数。参数扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。OptiSystem满足了急速发展的光子市场对于一个强有力而易于使用的光系统设计工具的需求,深受系统设计者、光通信工程师、研究人员的青睐。 OptiSystem软件允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它可广泛应用下列场合: 1.物理层的器件级到系统级的光通讯系统设计; 2.CATV或者TDM?WDM网络设计; 3.SONET?SDH的环形设计; 4.传输装置、信道、放大器和接收器的设计; 5.色散图设计; 6.不同接受模式下误码率(BER)和系统代价(Penalty)的评估; 7.放大系统的BER和连接预算计算。 实验1 OptiSystem快速入门:以“激光外调制”为例 一、实验目的 1、掌握软件的简单操作 2、了解软件的元件库 3、掌握建立新的project(新的工作界面) 4、掌握搭建系统:将元件从元件库中拖入project、连线、搭建系统 5、掌握设置参数 6、掌握软件的运行、观察结果、导出数据 二、实验过程 1.建立一个新文件。(File>New) 2.将光学器件从数据库里拖入主窗口进行布局. 3.光标移至有锁链图标出现时,进行连线。(如图1所示) 4.设置连续波激光器参数。 (1)点击frequency>mode, 出现下拉菜单,选中script。 (2)在value中输入数据并作评估。 (3)点击单位,选择“THZ”,点击OK 回主窗口。(如图2所示)

毕业设计100光纤通信+课程设计报告

课程设计报告 课程名称光纤通信 课题名称通信系统综合实验 一、设计内容与设计要求 1、设计内容 1)多路数据+多路电话光纤综合传输系统的实现 2)多路数据+多计算机+单路图像/语音全双工光纤综合传输系统的实现3)*多路计算机+双路图像/语音全双工光纤综合传输系统的实现 2、设计目的 掌握变速率时分复用的原理、实现方法; 学习并掌握计算机RS232通信技术; 掌握时分复用技术和波分复用技术的灵活搭配使用; 实现数字和语音同时通信。 3、实验仪器与设备 1.光纤通信实验系统2台。 2.示波器1台。 3.波分复用器2个。 4.电话2部。 I

5.FC/FC光纤跳线2根。 6.计算机若干台串口通信电缆若干根。 7.1310nm/1550nm波长波分复用器2个。 8.摄像头1个。 9.监视器1个(或用电话代替)。 4、设计原理 《多路数据+多路电话光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、PCM编译码、波分复用等几个子系统,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十四、实验二十五、实验二十的方法; 《多路数据+多计算机+单路图像图像/语音全双工光纤综合传输系统》拟实现模拟图像、数据在同一光纤中传输。即在光纤中同时传输数字数据和模拟信号。一种解决方案综合了《光纤通信原理教学系统实验指导书》中的实验二十六、实验二十七、实验十六的知识; 《多路计算机+双路图像/语音全双工光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、变速率时分复用、解变速率时分复用、位时钟提取(数字锁相环DPLL)原理及实现五个实验,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十三、实验二十四、实验二十五、实验二十六、实验二十七。 5、设计要求 掌握结构化系统设计的主体思想,以自下而上逐步完善的方法实现指定的通信系统功能,并按要求测试相关参数、波形等实验数据,以积累一些典型的通信子系统的功能、性能、参数等知识以及系统集成的知识。 (1)在规定的时间内以小组为单位完成相关的系统功能实现、数据测试和记录并进行适当的分析。 (2)按本任务书的要求,编写《课程设计报告》(Word文档格式)。并用A4纸打印并装订; II

光纤通信实验报告

光纤通信实验报告 班级:14050Z01 姓名:李傲 学号:1405024239

实验一光发射机的设计 一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD。 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,分为光源的内调制(图1.1)和光源的外调制(图1.2)。 采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。图1.2的结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,经过一个NRZ脉冲发生器(None-Return-to-Zero Generator)转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1.1内调制光发射机图1.2外调制光发射机 对于直接强度调制状态下的单纵模激光器,其载流子浓度的变化是随注入电流的变化而变化。这样使有源区的折射率指数发生变化,从而导致激光器谐振腔的光通路长度相应变化,结果致使振荡波长随时间偏移,导致所谓的啁啾现象。啁啾是高速光通讯系统中一个十分重要的物理量,因为它对整个系统的传输距离和传输质量都有关键的影响。 内容:铌酸锂(LiNbO3)型Mach-Zehnder调制器中的啁啾(Chirp)分析 1设计目的 对铌酸锂Mach-Zehnder调制器中的外加电压和调制器输出信号啁啾量的关系进行模拟和分析,从而决定具体应用中MZ调制器的外置偏压的分布和大小。 2设计布局图 外调制器由于激光光源处于窄带稳频模式,可以降低或者消除系统的啁啾量。典型的外调制器是由铌酸锂(LiNO3)晶体构成。本设计中,通过对该晶体外加电压的分析调整而最终减少该光发送机中的啁啾量,其模型的设计布局图如图1.3所示。

光纤通信实验报告全

光纤通信实验报告 实验1.1 了解和掌握了光纤的结构、分类和特性参数,能够快速准确的区分单模或者多模类型的光纤。 实验1.2 1.关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为 1550nm的光信道),注意收集好器件的防尘帽。 2.打开系统电源,液晶菜单选择“码型变换实验—CMI码PN”。确认,即在P101铆孔 输出32KHZ的15位m序列。 3.示波器测试P101铆孔波形,确认有相应的波形输出。 4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有 相应的波形输出,调节 W205 即改变送入光发端机信号(TX1550)幅度,最大不超 过5V。即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接 口输出。 5.示波器B通道测试光收端机输出电信号的P204试点,看是否有与TX1550测试点一 样或类似的信号波形。 6.按“返回”键,选择“码型变换实验—CMI码设置”并确认。改变SW101拨码器 设置(往上为1,往下为0),以同样的方法测试,验证P204和TX1550测试点波 形是否跟着变化。

7.轻轻拧下TX1550或RX1550法兰接口的光跳线,观测P204测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。 8.以上实验都是在同一台实验箱上自环测试,如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。 9.关闭系统电源,拆除各光器件并套好防尘帽。 实验2.1 1.关闭系统电源,按照图 2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模 尾纤、光功率计连接好(TX1550通过尾纤接到光功率计),注意收集好器件的防尘帽。2.打开系统电源,液晶菜单选择“码型变换实验-- CMI码设置” 确认,即在P101铆 孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。 3.示波器测试P101铆孔波形,确认有相应的波形输出。

光纤通信实验

实验一半导体激光器P-I特性测试验 一、实验目的 1.学习半导体激光器发光原理和光纤通信中激光光源工作原理 2.了解半导体激光器平均输出光功率与注入驱动电流的关系 3.掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试 方法 二、实验仪器 1.ZY12OFCom13BG型光纤通信原理实验箱台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线根 4.万用表1台 5.连接导线20根 三、实验原理 半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~ 1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流I th,当输入电流小于I th时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于I th时,输出光为激光,且输入电流和输出光功率成线性关系。该实验就是对该线性关系进行测量,以测试半导体激光器的P-I线性关系。在实验中所用到半导体激光器输出波长为1310nm,带尾纤及FC型接口。 半导体激光器作为光纤通信中应用的主要光源,其性能指标直接影响到系统传的质量,因此P-I特性曲线的测试了解激光器性能是非常重要的。半

光纤光学大学物理实验讲义

光纤通信实验 光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。光纤通信是现代通信网的主要传输手段,主要通过在发送端把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。 因此构成光纤通信的基本要素是光源、光纤和光检测器。 半导体激光器可以作为光纤通信的主要光源,其具有超小型、高效率和高速工作的优异特点,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。前香港中文大学校长高锟和George A. Hockham 首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖。光检测器:把光发射机发送的携带有信息的光信号转化成相应的电信号并放大、再生恢复为原传输的信号的器件。 【实验目的】 1. 了解和掌握半导体激光器的电光特性和测量阈值电流 2. 了解和掌握光纤的结构和分类以及光在光纤中传输的基本规律。 3. 对光纤本身的光学特性进行初步的研究,对光纤的使用技巧和处理方法有一定的了解。 4. 了解光纤通信的基本原理。 【实验仪器】 导轨,半导体激光器+二维调整,三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功率指示计,一维位移架,专用光纤钳、光纤刀,示波器,音源等。 【实验原理】 一、半导体激光器的电光特性 实验采用的光源是半导体激光器,由于它的体积小、重量 轻、效率高、成本低,已进入了人类社会活动的多个领域。 因此对半导体激光器的了解和使用就显得十分重要。本实验 对半导体激光器进行一些基本的实验研究,以掌握半导体激

光纤通信实验报告

一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验内容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

光纤通信实验一

实验报告 课程名称无源光实验 实验项目实验1.1、实验1.2、实验1.3、 实验1.4、实验1.5

第一部分无源光实验 实验1.1 单模光纤特性测量 一、实验目的 1、能够熟练测量光的特性 2、掌握单模光纤特性 二、实验仪器 1、 ZH7002型光纤通信多功能综合实验系统一台 2、光功率计一台 3、单模光纤跳线一根 三、实验原理 光纤是光波的传输媒质,按光纤中传输模式的多少,光纤可分为多模光纤和单模光纤两类。在单模光纤中只能传输一个模式,多模光纤则能承载成百上千个模式。 一般的光纤通信系统中,对光纤的要求为:(1)低传输损耗;(2)高带宽和高数据传输速率;(3)与系统元件(光源、光检测器等)的耦合损耗低;(4)高的机械稳定性;(5)在工作条件下光和机械性能的退化慢;(6)容易制造。 单模光纤的结构、参数和各组成部分的作用与多模光纤是类似的,它们的不同之处在于:单模光纤有模场直径和截止波长两个特殊参数。单模光纤的典型几何参数如表1所示。 表1 单模光纤的典型几何参数 参数指标 模场直径,μm (8.6~10.5)±0.7 包层直径,μm 125±1 芯/包层同心度误差,μm ≤0.8 包层不圆度,%≤2%

单模光纤以其损耗低、频带宽、容量大、成本低、易于扩容等优点,作为一种理想的信息传输介质,得到了广泛的应用。 四、 实验步骤 准备工作:将实验箱左上端的跳线开关KE01和KJ02都设置在“5B6B ”工作方式下(右端:2-3),将5B6B 编码模块中的输入数据选择开关KB01设置在“m 序列”工作方式(右端:2-3),KX02设置在“正常”位置;用发送波长为1310nm 和1550nm 的光纤发送器作为光源;并准备好尾纤,为保证测试精度,测量前先用酒精棉将光纤头清洁一下。 1、 弯曲损耗测量 (1) 将单模光纤跳线的一端接入光纤收发模块中激光收发器UE01的发送端,然后 用光功率计测量该光源的光功率并记录结果。 1310nm :-8.06dBm 1550nm :-3.48dBm (2) 人为地抖动跳线,定量地观察光功率值的波动范围。(为什么变化比较小?) 1310nm :-8.03dBm~-8.12dBm 1550nm :-3.61dBm~-3.89dBm 因为光纤具有高机械稳定性。 2、 不同波长(1310nm 与1550nm )的光信号在光纤中衰减量的测量(连接方法可 参考图1.2) 1310/1550nmLD ZH7002 跳线 连接器 跳线 光功率计 图1.2 跳线连接示意图 (1) 将跳线的一端接到光发送波长为1310nm 的激光发送器的输出端,用光功 率计测出该点的光功率13p ,在此跳线的另一端通过连接器再接入一根跳 线,测光功率'13p ,计算出差值' 131313d p p =-。(注:此差值中包含有连 接器的损耗) 13p =-8.11dBm '13p =-8.79dBm ' 131313d p p =-=0.68dBm (2) 将跳线的一端接到光发送波长为1550nm 的激光发送器的输出端,用光功

光纤通信实验六报告

光电综合设计报告 学号:姓名: 一、课题6: 1、课题要求及技术指标 ①课题名称: EDFA 设计 ②课题任务: 采取不同结构和泵浦波长设计一个EDFA,结构分为同向泵浦,反向泵浦,双向泵浦三类。 ③技术指标: 可选泵浦光源波长为980nm 和1480nm;泵浦光源的功率在10~20dBm,测试输入信号功率为-20dBm。 ④课题要求: 1.在上述条件下要求EDFA 噪声指数小于4.5dB。 2.在满足一定条件下,最大输出功率可达到18dBm,最大增益可达到25dB(两者不要求同时满足)。 3.需要分别比较三种结构下的EDFA 的以下特性,并根据比较结果优化设计: (1)掺铒光纤长度的优化,需要从输出功率、噪声指数、增益三个方面验证; (2)泵浦光源波长(可选择980nm 和1480nm)的优化,需要从输出功率、噪声指数、增益三个方面验证; 4.给出设计图和性能参数比较图,参数取点不少于10 个,参数应具有合理性和可行性。 2、课题分析及设计思路 ①课题分析: 铒纤长度在4~15m 之间取值。 仿真模型中,掺铒光纤选用Default/Amplifiers Library/Optical/EDFA/Erbium Doped Fiber;泵浦光源选用Default/Transmitters Library/Optical Sources/Pump Laser;泵浦光耦合器采用Default/WDM Multiplexers Library/Multiplexers/ Ideal Mux。 ②设计思路: 设计参考反向泵浦EDFA 结构图,参考图如下:

根据下述实验原理,可知同向EDFA Pump Laser 位于与CW Laser 同向的合波器前,而光纤输出端则不设置。同理,双向EDFA就是两侧均放置了Pump Laser。 ③实验原理:掺铒光纤放大器EDFA 1、EDFA的结构和工作原理 图 1 给出了双向EDFA 的原理性光图,其主体是泵浦源和掺铒光纤(EDF)。泵浦源用来提供能量;EDF 作为有源介质,提供反转粒子;波分复用器(WDM)的作用是将泵浦光和信号光混合,然后送入EDF 中,对它的要求是能将信号有效地混合而损耗最小;光隔离器(ISO)的作用是防止反射光对EDFA 的影响,保证系统稳定工作;滤波器的作用是滤除EDFA 的噪声,提高系统的信噪比(SNR),在两级宽带EDFA 中,它还起到增益平坦的作用。EDFA 的泵浦过程需要使用三能级系统(如图 2.3 所示)。实际上基态能级、亚稳态能级和泵浦能级受斯托克斯分裂(Stock Splitting)和热效应的影响,形成了一个近似联系的能带。由于亚稳态能级和基态能级具有一定的宽度,因此EDFA 的放大效应具有一定波长范围。在掺铒光纤中注入足够强的泵浦光,就可以将大部分处于基态的Er3 +离子抽运到激发态,处于激发态的Er3 + 离子又迅速无辐射地转移到亚稳态。由于Er3 +离子在亚稳态能级上寿命较长,因此很容易在亚稳态与基态之间形成粒子数反转。当信号光子通过掺铒光纤时,与处于亚稳态的Er3 +离子相互作用发生受激辐射效应,产生大量与自身完全相同的光子,这时通过掺铒光纤传输的信号光子迅速增多,产生信号放大作用。Er3 + 离子处于亚稳态时,除了发生受激辐射和受激吸收以外,还要产生自发辐射(ASE),它造成EDFA 的噪声。图1为EDFA 双向泵浦结构示意图。

光纤通信实验报告

光纤通信实验报告 课程名称光纤通信实验 实验一 光源的P-I特性、光发射机消光比测试 一、实验目的 1、了解半导体激光器LD的P-I特性、光发射机消光比。 2、掌握光源P-I特性曲线、光发射机消光比的测试方法。 二、实验器材 1、主控&信号源模块、2号、25号模块各一块 2、23号模块(光功率计)一块 3、FC/PC型光纤跳线、连接线若干 4、万用表一个 三、实验原理 数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平

均光功率的测试。 1、半导体光源的P -I 特性 I(mA) LD 半导体激光器P -I 曲线示意图 半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P -I 的线性关系。 P -I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,没有扭折点, P -I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。 2、光发射机消光比 消光比定义为:00 11 10lg P EXT P 。 式中P 00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。P 11是光发射机输入全“1”时输出的平均光功率。从激光器的注入电流(I )和输出功率(P )的关系,即P -I 特性可以清楚地看出消光比的物理概念,如下图所示。

光纤通信实验报告

( 二 〇 一 五 年 十二 月 专题设计实验报告 学校代码: 10128 学 号:201210204005 题 目: 光纤通信实验 学生姓名: 赵亚非 专 业: 通信工程 班 级: 一班 指导教师: 纪松波

实验一SDH网元基本配置 一、实验目的: 通过本实验,了解 SDH 光传输的原理和系统组成,了解 ZXMP S325 设备的硬件构成和单板功能,学习ZXONM 300 网管软件的使用方法,掌握 SDH 网元配置的基本操作。 二、实验器材: 1、SDH 设备:3 套 ZXMP 325; 2、实验用维护终端。 三、实验原理 1、SDH 原理 同步数字体制(SDH)是为高速同步通信网络制定的一个国际标准,其基础在于直接同步复用。按照SDH 组建的网络是一个高度统一的、标准化的、智能化的网络,采用全球统一的接口以实现多环境的兼容,管理操作协调一致,组网与业务调度灵活方便,并且具有网络自愈功能,能够传输所有常见的支路信号,应用于多种领域(如光纤传输,微波和卫星传输等)。 SDH 具有以下特点: (1)接口:接口的规范化是设备互联的关键。SDH 对网络节点接口(NNI)作了统一的规范,内容包括数字信号数率等级、帧结构、复接方法、线路接口、监控管理等。 电接口: STM-1 是 SDH 的第一个等级,又叫基本同步传送模块,比特率为 155.520Mb/s;STM-N 是 SDH 第 N 个等级的同步传送模块,比特率是STM-1 的 N 倍(N=4n=1,4,16,- - -)。 光接口:采用国际统一标准规范。SDH 仅对电信号扰码,光口信号码型是加扰的 NRZ码,信号数率与SDH 电口标准信号数率相一致。 (2)复用方式 a)低速 SDH----高速 SDH,字节间插; b) 低速 PDH-----SDH,同步复用和灵活的映射。 (3) 运行维护:用于运行维护(OAM)的开销多,OAM 功能强——这也是线路编码不用加冗余的原因. (4)兼容性:SDH 具有很强的兼容性,可传送 PDH 业务,异步转移模式信号

相关主题
文本预览
相关文档 最新文档