当前位置:文档之家› 关于编制树脂基复合材料项目可行性研究报告编制说明

关于编制树脂基复合材料项目可行性研究报告编制说明

关于编制树脂基复合材料项目可行性研究报告编制说明
关于编制树脂基复合材料项目可行性研究报告编制说明

树脂基复合材料项目

可行性研究报告

编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.doczj.com/doc/964327058.html,

高级工程师:高建

关于编制树脂基复合材料项目可行性研究

报告编制说明

(模版型)

【立项 批地 融资 招商】

核心提示:

1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。

2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整)

编制单位:北京中投信德国际信息咨询有限公司

撰写节能评估报告资金申请报告项目建议书

商业计划书可行性研究报告

目录

第一章总论 (1)

1.1项目概要 (1)

1.1.1项目名称 (1)

1.1.2项目建设单位 (1)

1.1.3项目建设性质 (1)

1.1.4项目建设地点 (1)

1.1.5项目主管部门 (1)

1.1.6项目投资规模 (2)

1.1.7项目建设规模 (2)

1.1.8项目资金来源 (3)

1.1.9项目建设期限 (3)

1.2项目建设单位介绍 (3)

1.3编制依据 (3)

1.4编制原则 (4)

1.5研究范围 (5)

1.6主要经济技术指标 (5)

1.7综合评价 (6)

第二章项目背景及必要性可行性分析 (7)

2.1项目提出背景 (7)

2.2本次建设项目发起缘由 (7)

2.3项目建设必要性分析 (7)

2.3.1促进我国树脂基复合材料产业快速发展的需要 (8)

2.3.2加快当地高新技术产业发展的重要举措 (8)

2.3.3满足我国的工业发展需求的需要 (8)

2.3.4符合现行产业政策及清洁生产要求 (8)

2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9)

2.3.6增加就业带动相关产业链发展的需要 (9)

2.3.7促进项目建设地经济发展进程的的需要 (10)

2.4项目可行性分析 (10)

2.4.1政策可行性 (10)

2.4.2市场可行性 (10)

2.4.3技术可行性 (11)

2.4.4管理可行性 (11)

2.4.5财务可行性 (11)

2.5树脂基复合材料项目发展概况 (12)

2.5.1已进行的调查研究项目及其成果 (12)

2.5.2试验试制工作情况 (12)

2.5.3厂址初勘和初步测量工作情况 (13)

2.5.4树脂基复合材料项目建议书的编制、提出及审批过程 (13)

2.6分析结论 (13)

第三章行业市场分析 (15)

3.1市场调查 (15)

3.1.1拟建项目产出物用途调查 (15)

3.1.2产品现有生产能力调查 (15)

3.1.3产品产量及销售量调查 (16)

3.1.4替代产品调查 (16)

3.1.5产品价格调查 (16)

3.1.6国外市场调查 (17)

3.2市场预测 (17)

3.2.1国内市场需求预测 (17)

3.2.2产品出口或进口替代分析 (18)

3.2.3价格预测 (18)

3.3市场推销战略 (18)

3.3.1推销方式 (19)

3.3.2推销措施 (19)

3.3.3促销价格制度 (19)

3.3.4产品销售费用预测 (20)

3.4产品方案和建设规模 (20)

3.4.1产品方案 (20)

3.4.2建设规模 (20)

3.5产品销售收入预测 (21)

3.6市场分析结论 (21)

第四章项目建设条件 (22)

4.1地理位置选择 (22)

4.2区域投资环境 (23)

4.2.1区域地理位置 (23)

4.2.2区域概况 (23)

4.2.3区域地理气候条件 (24)

4.2.4区域交通运输条件 (24)

4.2.5区域资源概况 (24)

4.2.6区域经济建设 (25)

4.3项目所在工业园区概况 (25)

4.3.1基础设施建设 (25)

4.3.2产业发展概况 (26)

4.3.3园区发展方向 (27)

4.4区域投资环境小结 (28)

第五章总体建设方案 (29)

5.1总图布置原则 (29)

5.2土建方案 (29)

5.2.1总体规划方案 (29)

5.2.2土建工程方案 (30)

5.3主要建设内容 (31)

5.4工程管线布置方案 (32)

5.4.1给排水 (32)

5.4.2供电 (33)

5.5道路设计 (35)

5.6总图运输方案 (36)

5.7土地利用情况 (36)

5.7.1项目用地规划选址 (36)

5.7.2用地规模及用地类型 (36)

第六章产品方案 (38)

6.1产品方案 (38)

6.2产品性能优势 (38)

6.3产品执行标准 (38)

6.4产品生产规模确定 (38)

6.5产品工艺流程 (39)

6.5.1产品工艺方案选择 (39)

6.5.2产品工艺流程 (39)

6.6主要生产车间布置方案 (39)

6.7总平面布置和运输 (40)

6.7.1总平面布置原则 (40)

6.7.2厂内外运输方案 (40)

6.8仓储方案 (40)

第七章原料供应及设备选型 (41)

7.1主要原材料供应 (41)

7.2主要设备选型 (41)

7.2.1设备选型原则 (42)

7.2.2主要设备明细 (43)

第八章节约能源方案 (44)

8.1本项目遵循的合理用能标准及节能设计规范 (44)

8.2建设项目能源消耗种类和数量分析 (44)

8.2.1能源消耗种类 (44)

8.2.2能源消耗数量分析 (44)

8.3项目所在地能源供应状况分析 (45)

8.4主要能耗指标及分析 (45)

8.4.1项目能耗分析 (45)

8.4.2国家能耗指标 (46)

8.5节能措施和节能效果分析 (46)

8.5.1工业节能 (46)

8.5.2电能计量及节能措施 (47)

8.5.3节水措施 (47)

8.5.4建筑节能 (48)

8.5.5企业节能管理 (49)

8.6结论 (49)

第九章环境保护与消防措施 (50)

9.1设计依据及原则 (50)

9.1.1环境保护设计依据 (50)

9.1.2设计原则 (50)

9.2建设地环境条件 (51)

9.3 项目建设和生产对环境的影响 (51)

9.3.1 项目建设对环境的影响 (51)

9.3.2 项目生产过程产生的污染物 (52)

9.4 环境保护措施方案 (53)

9.4.1 项目建设期环保措施 (53)

9.4.2 项目运营期环保措施 (54)

9.4.3环境管理与监测机构 (56)

9.5绿化方案 (56)

9.6消防措施 (56)

9.6.1设计依据 (56)

9.6.2防范措施 (57)

9.6.3消防管理 (58)

9.6.4消防设施及措施 (59)

9.6.5消防措施的预期效果 (59)

第十章劳动安全卫生 (60)

10.1 编制依据 (60)

10.2概况 (60)

10.3 劳动安全 (60)

10.3.1工程消防 (60)

10.3.2防火防爆设计 (61)

10.3.3电气安全与接地 (61)

10.3.4设备防雷及接零保护 (61)

10.3.5抗震设防措施 (62)

10.4劳动卫生 (62)

10.4.1工业卫生设施 (62)

10.4.2防暑降温及冬季采暖 (63)

10.4.3个人卫生 (63)

10.4.4照明 (63)

10.4.5噪声 (63)

10.4.6防烫伤 (63)

10.4.7个人防护 (64)

10.4.8安全教育 (64)

第十一章企业组织机构与劳动定员 (65)

11.1组织机构 (65)

11.2激励和约束机制 (65)

11.3人力资源管理 (66)

11.4劳动定员 (66)

11.5福利待遇 (67)

第十二章项目实施规划 (68)

12.1建设工期的规划 (68)

12.2 建设工期 (68)

12.3实施进度安排 (68)

第十三章投资估算与资金筹措 (69)

13.1投资估算依据 (69)

13.2建设投资估算 (69)

13.3流动资金估算 (70)

13.4资金筹措 (70)

13.5项目投资总额 (70)

13.6资金使用和管理 (73)

第十四章财务及经济评价 (74)

14.1总成本费用估算 (74)

14.1.1基本数据的确立 (74)

14.1.2产品成本 (75)

14.1.3平均产品利润与销售税金 (76)

14.2财务评价 (76)

14.2.1项目投资回收期 (76)

14.2.2项目投资利润率 (77)

14.2.3不确定性分析 (77)

14.3综合效益评价结论 (80)

第十五章风险分析及规避 (82)

15.1项目风险因素 (82)

15.1.1不可抗力因素风险 (82)

15.1.2技术风险 (82)

15.1.3市场风险 (82)

15.1.4资金管理风险 (83)

15.2风险规避对策 (83)

15.2.1不可抗力因素风险规避对策 (83)

15.2.2技术风险规避对策 (83)

15.2.3市场风险规避对策 (83)

15.2.4资金管理风险规避对策 (84)

第十六章招标方案 (85)

16.1招标管理 (85)

16.2招标依据 (85)

16.3招标范围 (85)

16.4招标方式 (86)

16.5招标程序 (86)

16.6评标程序 (87)

16.7发放中标通知书 (87)

16.8招投标书面情况报告备案 (87)

16.9合同备案 (87)

第十七章结论与建议 (89)

17.1结论 (89)

17.2建议 (89)

附表 (90)

附表1 销售收入预测表 (90)

附表2 总成本表 (91)

附表3 外购原材料表 (93)

附表4 外购燃料及动力费表 (94)

附表5 工资及福利表 (96)

附表6 利润与利润分配表 (97)

附表7 固定资产折旧费用表 (98)

附表8 无形资产及递延资产摊销表 (99)

附表9 流动资金估算表 (100)

附表10 资产负债表 (102)

附表11 资本金现金流量表 (103)

附表12 财务计划现金流量表 (105)

附表13 项目投资现金量表 (107)

附表14 借款偿还计划表 (109)

(113)

第一章总论

总论作为可行性研究报告的首章,要综合叙述研究报告中各章节的主要问题和研究结论,并对项目的可行与否提出最终建议,为可行性研究的审批提供方便。总论章可根据项目的具体条件,参照下列内容编写。(本文档当前的正文文字都是告诉我们在该处应该写些什么,当您按要求写出后,这些说明文字的作用完成,就可以删除了。编者注)

1.1项目概要

1.1.1项目名称

企业或工程的全称,应和项目建议书所列的名称一致

1.1.2项目建设单位

承办单位系指负责项目筹建工作的单位,应注明单位的全称和总负责人

1.1.3项目建设性质

新建或技改项目

1.1.4项目建设地点

XXXX工业园区

1.1.5项目主管部门

注明项目所属的主管部门。或所属集团、公司的名称。中外合资项目应注明投资各方所属部门。集团或公司的名称、地址及法人代表的姓名、国籍。

1.1.6项目投资规模

本次项目的总投资为XXX万元,其中,建设投资为XX万元(土建工程为XXX万元,设备及安装投资XXX万元,土地费用XXX万元,其他费用为XX万元,预备费XX万元),铺底流动资金为XX万元。

本次项目建成后可实现年均销售收入为XX万元,年均利润总额XX 万元,年均净利润XX万元,年上缴税金及附加为XX万元,年增值税为XX万元;投资利润率为XX%,投资利税率XX%,税后财务内部收益率XX%,税后投资回收期(含建设期)为5.47年。

1.1.7项目建设规模

主要产品及副产品品种和产量,案例如下:

本次“树脂基复合材料产业项目”建成后主要生产产品:树脂基复合材料达产年设计生产能力为:年产树脂基复合材料产品XXX(产量)。

项目总占地面积XX亩,总建筑面积XXX.00平方米;主要建设内容及规模如下:

主要建筑物、构筑物一览表

工程类别工段名称层数占地面积(m2)建筑面积(m2)

1、主要生产系统生产车间1 1 生产车间2 1 生产车间3 1 生产车间4 1 原料库房 1 成品库房 1

2、辅助生产系统

办公综合楼8 技术研发中心 4 倒班宿舍、食堂 5 供配电站及门卫室 1 其他配套建筑工程 1

合计

行政办公及生活设施占地面积

3、辅助设施道路及停车场 1 绿化 1

1.1.8项目资金来源

本次项目总投资资金XX.00万元人民币,其中由项目企业自筹资金XX.00万元,申请银行贷款XX.00万元。

1.1.9项目建设期限

本次项目建设期从2014年XX月至2015年XX月,工程建设工期为XX个月。

1.2项目建设单位介绍

项目公司简介

1.3编制依据

在可行性研究中作为依据的法规、文件、资料、要列出名称、来源、发布日期。并将其中必要的部分全文附后,作为可行性研究报告的附件,这些法规、文件、资料大致可分为四个部分:

项目主管部门对项目的建设要求所下达的指令性文件;对项目承办单位或可行性研究单位的请示报告的批复文件。

可行性研究开始前已经形成的工作成果及文件。

国家和拟建地区的工业建设政策、法令和法规。

根据项目需要进行调查和收集的设计基础资料。

案例如下:

1.《中华人民共和国国民经济和社会发展“十二五”规划纲要》;

2.《国家中长期科学和技术发展规划纲要(2006-2020)》;

3.《产业“十二五”发展规划》;

4.《本省国民经济和社会发展第十二个五年规划纲要》;

5.《国家战略性新兴产业“十二五”发展规划》;

6.《国家产业结构调整指导目录(2011年本)》;

7.《建设项目经济评价方法与参数及使用手册》(第三版);

8.《工业可行性研究编制手册》;

9.《现代财务会计》;

10.《工业投资项目评价与决策》;

11.项目公司提供的发展规划、有关资料及相关数据;

12.国家公布的相关设备及施工标准。

1.4编制原则

(1)充分利用企业现有基础设施条件,将该企业现有条件(设备、场地等)均纳入到设计方案,合理调整,以减少重复投资。

(2)坚持技术、设备的先进性、适用性、合理性、经济性的原则,采用国内最先进的产品生产技术,设备选用国内最先进的,确保产品的质量,以达到企业的高效益。

(3)认真贯彻执行国家基本建设的各项方针、政策和有关规定,执行国家及各部委颁发的现行标准和规范。

(4)设计中尽一切努力节能降耗,节约用水,提高能源的重复利用率。

(5)注重环境保护,在建设过程中采用行之有效的环境综合治理措施。

(6)注重劳动安全和卫生,设计文件应符合国家有关劳动安全、劳动卫生及消防等标准和规范要求。

1.5研究范围

本研究报告对企业现状和项目建设的可行性、必要性及承办条件进行了调查、分析和论证;对产品的市场需求情况进行了重点分析和预测,确定了本项目的产品生产纲领;对加强环境保护、节约能源等方面提出了建设措施、意见和建议;对工程投资、产品成本和经济效益等进行计算分析并作出总的评价;对项目建设及运营中出现风险因素作出分析,重点阐述规避对策。

1.6主要经济技术指标

项目主要经济技术指标表

序号项目名称单位数据和指标

一主要指标

1 总占地面积亩

2 总建筑面积㎡

3 道路㎡

4 绿化面积㎡

5 总投资资金,其中:万元

建筑工程万元

设备及安装费用万元

土地费用万元

二主要数据

1 达产年年产值万元

2 年均销售收入万元

3 年平均利润总额万元

4 年均净利润万元

5 年销售税金及附加万元

6 年均增值税万元

7 年均所得税万元

8 项目定员人

9 建设期月

三主要评价指标

1 项目投资利润率% 29.80%

2 项目投资利税率% 40.55%

3 税后财务内部收益率% 18.97%

4 税前财务内部收益率% 26.51%

5 税后财务静现值(ic=10%)万元

6 税前财务静现值(ic=10%)万元

7 投资回收期(税后)含建设期年 5.47

8 投资回收期(税前)含建设期年 4.36

9 盈亏平衡点% 45.18%

1.7综合评价

本项目重点研究“树脂基复合材料产业项目”的设计与建设,项目的建设将充分利用现有人才资源、技术资源、经验积累等,逐步在项目当地形成以市场为导向的规模化树脂基复合材料生产基地,以研发和生产树脂基复合材料为主,以满足当前市场的极大需求,进而增强企业的市场竞争力和发展后劲,并推动我国树脂基复合材料事业的发展进程。

项目的实施符合我国相关产业发展政策,是推动我国树脂基复合材料行业持续快速健康发展的重要举措,符合我国国民经济可持续发展的战略目标。项目将带动当地就业,增加当地利税,带动当地经济发展。项目建设还将形成产业集群,拉大产业链条,对项目建设地乃至中国的经济发展起到很大的促进作用。因此,本项目的建设不仅会给项目企业带来更好的经济效益,还具有很强的社会效益。

所以,本项目建设十分可行。

树脂基复合材料在各领域的应用

树脂基复合材料在建筑工业中的应用 建筑工业在国民经济中占有很重要的地位,不论是哪一个国家,建筑工业望远是国民经济的支柱产业之一。随着社会的进步,人们对居住面积、房屋质量和娱乐设施等提出越来越高的要求,这就是推动建筑工业改革发展的动力。 建筑工业现代化的发展方向是:改善施工条件,加快建设进度,降低成本,提高质量,节约能源,减少运输,保护耕地,保护环境和提高技术经济效益等。为了达到此目的,必须从改善现有的建筑材料和发展新型建筑材料方向着手。 在建筑工业中发展和使用树脂基复合材料对减轻建筑物自重,提高建筑物的使用功能,改革建筑设计,加速施工进度,降低工程造价,提高经济效益等都十分有利,是实现建筑工业现代化的必要条件。 1、树脂基复合材料的建筑性能 (1)材料性能的可设计性树脂基复合材料的性能可根据使用要求进行设计,如要求耐水、防腐、高强,可选用树脂基复合材料。由于树脂基复合材料的重量轻,制造方便,对于大型结构和形状复杂的建筑制品,能够一次成型制造,提高建筑结构的整体性。 (2)力学性能好树脂基复合材料的力学性能可在很大范围内进行设计,由于选

用的材料不同,增强材料的铺设方向和方向差异,可以获得性能判别很大的复合材料,如单向玻纤增强环氧复合材料的拉伸强度可达1000MPa以上,比钢(建筑钢)的拉伸强度还高,选用碳纤维作增强材料,制得的树脂基复合材料弹性模量可以达到建筑钢材水平,而其密度却比钢材小4~5倍。更为突出的是树脂基复合材料在制造过程中,可以根据构件受力状况局部加强,这样既可提高结构的承载能力,又能节约材料的减轻自重。 (3)装饰性好树脂基复合材料的表面光洁,可以配制成各种鲜艳的色彩,也可以制造出不同的花纹和图案,适宜制造各种装饰板、大型浮雕及工艺美术雕塑等。 (4)透光性透明玻璃钢的透光率达85%以上(与玻璃相似),其最大特点是不易破碎,能承受荷载。用于建筑工程时可以将结构、围护及采光三者综合设计,能够达到简化采光设计,降低工程造价之目的。 (5)隔热性建筑物的作用是能够防止由热传导、热对流引起的温度变化,给人们以良好的工作和休息环境。一般建筑材料的隔热性能较差,例如普通混凝土的导热系数为1.5~2.1W(m?K),红砖的导热系数为0.81 W(m?K),树脂基复合材料的夹层结构的导热系数为0.05~0.08 W(m?K),比普通红砖小10倍,比混凝土小20多倍。 (6)隔音性隔音效果好坏是评价建筑物质量的标准之一。但传统材料中,隔音效果好的建筑材料往往密度较大,隔热性差,运输和安装困难。树脂基复合材料

酚醛树脂的应用

酚醛树脂的发展概述 侯远东 (河北化工医药职业技术学院,方兴路88号 050026) 摘要:酚醛树脂也叫电木,又称电木粉。是最古老的合成树脂,因其具有较高的机械强度,耐热性好,难燃、低毒、低发烟,可与其它多聚物共混,实现高性能化。本文主要介绍酚醛树脂的生产销售状况、发展趋势。 关键字:酚醛树脂发展趋势生产销售 产品介绍 酚类化合物与醛类化合物缩聚而得的树脂为酚醛树脂。其中以苯酚和甲醛缩聚而得的酚醛 树脂最为重要。 酚醛树脂综合性能优良,是一种人工合成的最古老树脂,拥有近百年的使用历史。早在1872年德国化学家拜耳(A,Baeyer)首先发现了酚和醛在酸的存在下反应可以得到结晶的产物,但当时没有对其开展研究。接着化学家克莱堡(W,Kleeberg,1891)和史密斯(A,Smith,1899) 对这个反应进行了研究。进入20世纪,1902年布卢默(B.Blumer)合成了第一个商业化酚醛 树脂,命名为Laccain 。然而直到1905~1907,被称为酚醛树脂创始人的美国化学家巴克兰(L.H.Baekeland)才对酚醛树脂进行了系统而广泛的研究,并于1907年申请了关于酚醛树脂“加压、加热”固化的专利,而且于1910年10月10日成立了Bakelite公司。巴克兰的功绩 不仅首次合成了交联的聚合物,而且发现了树脂的模压过程,实现了酚醛树脂的实用化,这对 酚醛树脂的生产和应用起了很重大的作用。因此此年(1910年)定为酚醛树脂元年(或者合成高分子元年),巴克兰被成为酚醛树脂之父【1】。 由于酚醛树脂原料易得,价格低廉,生产工艺和设备简单,而且制品具有优异的机械性能、耐热性、耐寒性、电绝缘性、尺寸稳定性、成型加工性、阻燃性及低烟雾性,因此其成为工业 部门不可缺少的材料,具有广泛的用途[2]。 酚醛树脂的性质 (1)物理性质 物理性质:固体酚醛树脂为黄色、透明、无定形块状物质,因含有游离酚而呈微红色,市 场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,比重1.25~1.30。液体酚醛树脂为 黄色、深棕色液体。因选用催化剂的不同,可分为热固性和热塑性两类。

热塑性树脂和热固性树脂的概念和区别

热塑性树脂和热固性树脂的概念和区别 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

热塑性树脂和热固性树脂的概念和区别 热固性树脂简介 树脂加热后产生,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类。这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时又发生化学反应而交联固化;有时放出一些副产物,如水等。此反应是不可逆的,一经固化,再加压加热也不可能再度软化或流动;温度过高,则分解或碳化。这也就是与热塑性树脂的基本区别。 在塑料工业发展初期,热固性树脂所占比例很大,一般在50%以上。随着石油化工的发展,热塑性树脂产量剧增,到80年代,热固性树脂在世界合成树脂总产量中仅占10%~20%。 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐、不易燃、制品尺寸稳定性好,但性脆。因而绝大多数热固性树脂在成型为制品前,都加入各种,如木粉、矿物粉、或纺织品等使其增强,制成增强塑料。在热固性树脂中,加入增强材料和其他添加剂,如固化剂、着色剂、润滑剂等,即能制成热固性塑料,有的呈粉状、粒状,有的作成团状、片状,统称模塑料。热固性塑料常用的加工方法有模压、层压、传递模塑、浇铸等,某些品种还可用于。 热固性树脂多用缩聚(见聚合)法生产。常用热固性树脂有酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和树脂、聚氨酯、聚酰亚胺等。热固性树脂主要用于

先进纤维增强树脂基复合材料在航空航天工业中的应用

军民两用技术与产品2010·1 先进纤维增强树脂基复合材料 在航空航天工业中的应用 航天材料及工艺研究所 赵云峰 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!!!!!!!!!!!" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!!!!!!!!!!!" 一、引 言 随着航空航天工业的发展,先进飞机、运载火箭和导弹、卫星等的高性能、高可靠性和低成本,很大程度上是由于新材料和新工艺的广泛应用。先进复合材料是航空航天高技术产品的重要组成部分,它能有效降低飞机、运载火箭、导弹和卫星的结构重量,增加有效载荷和射程,降低成本。国外各类航空航天器结构已经广泛采用了先进的纤维增强树脂基复合材料,其中应用最多的是碳纤维增强环氧树脂复合材料。目前,先进复合材料已经取代了铝合金,成为现代大型飞机的首要结构材料。 二、先进纤维增强树脂 基复合材料的特点 先进纤维增强树脂基复合材料由高性能增强纤维和基体树脂按一定的工艺方法复合而成。与其它材料相比,具备如下特点: (1)与金属材料相比,复合材料具有高的比强度和比模量,可以大幅减轻结构重量; (2)各向异性,具有良好的可设计性,可以充分发挥增强纤维的性能; (3)具有优异的耐疲劳、耐腐蚀和抗振动等特性; (4)成型工艺性好,易于制造一次整体成型复杂零件。 表1列出了几类典型的树脂基复合材料和金属材料的性能。 三、先进纤维增强树脂基复合材料在航天产品上的典型应用 欧洲的“阿里安4”运载火箭采用了大量的碳纤维增强环氧树脂复合材料。卫星发射支架,仪器舱,大型整流罩,第一、二级之间的分离壳,助推器前锥和第二、三级级间段均采用碳纤维增强环氧树脂复合材料制造而成。 “阿里安4”运载火箭卫星整流罩最大外径4米、长约12米。由端头、前锥段、圆柱段和倒锥几部分组成。端头为铝合金加强筋环结构。前锥段和圆柱段采用碳纤维面板/铝蜂窝夹层结构。“阿里安5”运载火箭大型卫星整流罩外径5.4米,同样采用碳纤维面板/铝蜂窝夹层结构。“阿里安4”运载火箭第二、三级碳/环氧级间段直径 2.6米、高度2.73米,采用8块曲型 壁板组成,两端框为铝合金材料,中间用5个铝合金环框加强。 先进复合材料结构件的使用,提高了卫星结构的效率,增加了卫星的有效载荷,加强了商业竞争能力。一些航天器结构所用的典型复合材料见表2。 四、高性能增强纤维 1 碳纤维 碳纤维是一种以聚丙烯腈(PAN )、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的高强度、高模量、耐高温特种纤维。PAN 基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小等优异性能,是国防军事工业不可缺少的工程材料。 研究制备碳纤维的新技术,特别是低成本碳纤维制备技术是国外碳纤维研究的重点。制备碳纤维的新技术可归纳为研究发展廉价原丝、新的预氧化技术和新的碳化和石墨化技术三个方面。为了降低碳纤维的价格,研制低成本碳纤维,美国推出了低成本碳纤维研制计划,并已取得了一定的成果,建成了采用微波碳化的试验线,取得了良好效果,使制备碳纤维

树脂基复合材料研究进展

先进树脂基复合材料研究进展 摘要:本文介绍了颗粒增强、无机盐晶须增强、光固化等类型的树脂基复合材料,亦指出热固性、环氧树脂基复合材料,并简述了制备方法和新技术的应用。 关键词:树脂基复合材料,颗粒增强,无机盐晶须增强,光固化,制备方法,新技术ADVANCE THE RESEARCH OF POLYMER MATRIX COMPOSITES ABSTRACT: The particulate reinforced、inorganic salt whisker, light-cured of resin matrix composites were introduced in this paper,the thermosetting and thermoplastic resin matrix composites was also show in the paper.This paper also discussed the application of new preparation method and technology. Keywords: resin matrix composites,particulate reinforced,inorganic salt whisker, light-cured,preparation method,new technology 先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,并具有明显优于原组分性能的一类新型材料。目前航空航天领域广泛应用的先进树脂基复合材料主要包括高性能连续纤维增强环氧、双马和聚酞亚胺基复合材料[1]。树脂基复合材料具有比强度高、比模量高、力学性能可设计性强等一系列优点,是轻质高效结构设计最理想的材料[2]。用复合材料设计的航空结构可实现20%一30%的结构减重;复合材料优异的抗疲劳和耐腐蚀性,能提高飞机结构的使用寿命,降低飞机结构的全寿命成本;复合材料结构有利于整体设计和制造,可在提高飞机结构效率和可靠性的同时,采用低成本整体制造工艺降低制造成本。可见复合材料的应用和发展是大幅提高飞机安全性、经济性等市场竞争指标的重要保证,复合材料的用量已成为衡量飞机先进性和市场竞争力的重要标志。 纤维增强树脂基复合材料是在树脂基体中嵌人高性能纤维,比如碳纤维、超高分子量聚乙烯纤维和芳纶纤维等所制得的材料[3]。树脂基体可以分为热塑性树脂和热固性树脂两种,常用的热塑性树脂有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等;常用的热固性树脂有酚醛树脂、环氧树脂和聚醋树脂等。由于纤维增强复合材料具有高强度、高模量、低密度等一系列优良特性,其在航空航天、汽车、建筑、防护、运动器材和包装等领域已有广泛的应用。然而新材料新技术的发展使人们对纤维增强复合材料的性能有了更高的期望,所以高性能纤维增强树脂基复合材料依然是近年来的研究热点。 1 先进树脂基复合材料体系 1.1 纤维增强 纤维增强树脂基复合材料由纤维和树脂基体两部分组成,纤维起承担载荷的作用,树脂均匀传递应力,界面在应力传递的过程中起到关键的作用,是纤维与树脂问应力传递的纽带.随着对复合材料界面性能研究的不断的深入,人们发现纤维的浸润性能、纤维与树脂间的键台及纤维与树脂间的机械嵌合作用等因素对复合材料的性能影响显著,并以此设计出一系列提高界面粘接强度的方法,有效地提高了纤维复合材料的界面性能[4]. 1.1.1碳纤维(CF)增强树脂基复合材料 碳纤维以热碳化方式由聚丙烯睛、沥青或粘胶加工而成,具有高强度、高模量、优异的耐酸碱性和抗蠕变性[4J。对碳纤维增强树脂基复合材料的研究主要集中在对纤维进行改性、对树脂基体进行改性和改善纤维和树脂基体的粘接性能这几个方面。 1.1.2超高强度聚乙烯纤维(uHMPE), 超高分子量聚乙烯纤维(UHMWPE)是1975年由荷兰DSM公司采用凝胶纺丝一超拉伸技术研制成功并实现工业化生产的高强高模纤维。UHMWPE纤维中大分子具有很高的取向度和结晶程度,纤维大分子几乎处于完全伸直的状态,赋予最终纤维高强度、高模量、低密度、耐酸碱

酚醛树脂纤维的研究进展

酚醛树脂纤维的研究进展 *** 中北大学材料科学与工程学院,山西太原,030051 摘要:简单的介绍了酚醛树脂及其重要性能、合成原理,酚醛树脂改性的目的主要是改进它脆性或其它物理性能,提高它对纤维增强材料的粘结性能并改善复合材料的成型工艺条件等。最后对酚醛树脂纤维未来的发展方向进行了展望。 关键词:酚醛树脂、纤维、改性、复合材料 引言:酚醛树脂耐热性好,机械强度高,电绝缘性和耐高温蠕变性能优良,价格低廉且成型加工性好,特别是其良好阻燃性及很少产生有害气体的特性,使该种具有近百年历史的合成材料得到进一步发展,应用于塑料、复合材料、胶粘剂、涂料和纤维等各个领域。经过改性的酚醛树脂广泛应用于高尖端技术领域。所以,酚醛树脂纤维很受欢迎的。 一、酚醛树脂的简介 酚醛树脂也叫电木,又称电木粉,英文名称:phenolic resin, 简称PF。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。固体酚醛树脂为黄色、透明、无定形块状物质,因含有游离酚而呈微红色,比重 1.25~1.30,易溶于醇,不溶于水,对水、弱酸、弱碱溶液稳定。液体酚醛树脂为黄色、深棕色液体。 酚醛树脂由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。因选用催化剂的不同,可分为热固性和热塑性两类。热固性酚醛树脂具有很强的浸润能力,成型性能好,体积密度大,气孔率低,用于耐火制品,该树脂在15℃- 20℃下可保持三个月。酚醛树脂制品优点主要是尺寸稳定,耐热、阻燃,电绝缘性能好,耐酸性强,它主要应用于运输业、建筑业、军事业、采矿业等多种行业,应用广泛。在NH4OH、NaOH或NaCO3等碱性物质的催化下,过量的甲醛与苯酚(其摩尔比大于1)反应生成热固性酚醛树脂。其反应过程如下:在碱性催化剂存在下使反应介质PH大于7,苯酚和甲醛首先发生加成反应生成一羟甲基苯酚。室温下,在碱性介质中的酚醇是稳定的,一羟甲基苯酚中的羟甲基与苯酚上的氢的反应速度比甲醛与苯酚的邻位和对位上的氢的反应速度小,因此一羟甲基苯酚不容易进一步缩聚,只能生成二羟甲基苯酚和三羟甲基苯酚。热塑性酚醛树脂(或称两步法酚醛树脂),为浅色至暗褐色脆性固体,溶于乙醇、丙酮等溶剂中,长期 姓名:*** 班级:*** 学号:***

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料 1热固性树脂基复合材料 热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。 典型的热固性树脂复合材料分为以下几种: (1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。使酚醛树脂复合材料在其应用领域得到大力发展。 (2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。含有环氧树脂所制备的复

合材料己经大力应用到机翼、机身等大型主承力构件上。 (3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。所以在航天航空领域得到了大力的发展和运用。 2热塑性树脂基复合材料 热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。 而热塑性树脂复合材料具有很多的特点,以下概述了一些热塑性树脂复合材料的特点。

酚醛树脂

酚醛树脂 以酚类与醛类为原料,在催化剂作用下,缩聚而得到的树脂,统称为酚醛树脂。酚醛树脂是应用于工业上最早的一种合成树脂。 由于它原材料来源丰富,合成工艺简单,成本较低,而且具有良好的化学性能、物理性能、力学性能和电气绝缘性能,具有广泛的用途。它可以根据不同的使用要求,合成各种使用性能的酚醛树脂,例如,可制成耐热纤维、黏合剂、泡沫塑料等。 酚醛纤维 酚醛纤维具有优异的阻燃、抗烧蚀、高热稳定性和吸声等特性,得到了广泛应用。酚醛纤维是过量的苯酚与甲醛反应生成直线性酚醛树脂,酚醛树脂经熔融纺丝,在酸和醛的混合液中固化形成不溶不熔纤维。纺出纤维的固化反应,就是此聚合物纤维原丝在酸催化作用下进一步同甲醛发生的加成缩合反应,生成亚甲基桥键-CH2-和亚甲基醚键-CH2OCH2-化合物。 (l)酚醛纤维的制备在草酸催化作用下,使过量苯酚与甲酸反应,合成直线形热塑性酚醛树脂;进一步分馏,制备出软化点130℃、数均分子量2000和游 离酚含量小于0.3%的高纯可纺性热塑性酚醛树脂;再经熔融纺丝,纺制成平均 直径1Oum的纤维;将初生纤维固定在石墨夹板上,浸入盛有甲醛和盐酸水溶液的固化液的反应器内,按一定的升温速率升温至95℃,进行固化反应,得到酚 醛纤维。甲醛浓度、盐酸浓度、升温速率等因素对固化反应产生影响,最终影响酚醛纤维的性能。 (2)影响酚醛纤维性能的因素初生纤维的熔并温度随着甲醛浓度的增大而依次降低。其原因在于甲醛与酚醛树脂具有良好的相容性,甲醛的浓度越高,对酚醛树脂的渗透性越强;甲醛对酚醛树脂有显著的溶胀作用,并使其在甲醛浓溶液中的熔点降低。为提高+CH2OH在纤维内部的扩散速度,在+CH20H马初生纤维的液固反应体系中,选用高浓度的+CH30(18.5%),即HCHO (37%)与HCl(37%)各50%相混合。将初生纤维置于18.5%的盐酸溶液中,按10℃/h的速率升温至95℃,并在此温度下恒温2h。初生纤维在反应结束后变成棕红色纤维,将此反应生成 物用热台显微镜和IR进行分析,结果表明,初生纤维经盐酸处理后亚甲基-CH2-和酚羟基-OH 吸收峰相对强度减少,出现了新的吸收峰芳香醚键C-O-C和芳香酮键C-C=O。这可能是初生纤维在强酸作用下酚羟基之间、酚羟基与亚甲基之间发生了脱水缩合反应,导致了芳环中取代基数目增多,交联程度提高,酚醛纤维熔点的提高,热台显微镜分析结果显示,经过HCl处理的酚醛纤维依然为可熔融物,这说明在盐酸作用下只能发生部分交联,发生高度交联化必须存在交联基因的供应体。 纤维内部芳环之间的交联基团越多,宏观上反应在力学性能上拉伸强度越高。在较低的酸浓度下,酚醛纤维拉伸强度随酸浓度的提高而增大,在酸浓度为12%

酚醛树脂

水性酚醛树脂胶粘剂的制备 酚醛树脂是苯酚或取代苯酚同甲醛的反应产物。改变酚和醛的种类,酚/酲摩尔比,催化剂的种类和用量,或者反应时间与温度,其反应生成物均会不同。重要的商品酚包括苯酚C6H5OH,甲苯酚CH3C6H4OH,二甲苯酚(CH3)2C6H3OH,对叔丁基苯酚等。所用酚/醛摩尔比与催化剂的种类,决定着酚醛树脂是酚端基还是羟甲基端基(-CH2OH)。酚端基型酚醛树脂常称为“线性酚醛树脂”(novolac)或“两步型树脂”;这种树脂不是热反应性的,除非另外加入更多的甲醛,它们一般用六次甲基四胺(简称“六次”)在加热下交联固化。如果分子链端为羟甲基,则可称为“甲阶酚醛树脂”(resole)或“一步型树脂”;这类树脂是热反应性的,在进一步加热下就会固化成热固性网状结构-除非将苯酚的邻位之一或对位预先封闭(例如采用对叔丁基苯酚)。两步型树脂在酚过量(即较高酚/酲摩尔比)与酸性催化剂存在下制备;一步型树脂在醛过量(即较低酚/醛摩尔比)与碱性催化剂存在下制备。 水性酚醛树脂包括低分子量的水溶性酚醛树脂(主要是甲阶树脂)和水分散性酚醛树脂两类,后者可从包括线性酚醛树脂在内的多种酚醛树脂制成,且稳定得多。 1.水溶性甲阶酚醛树脂的制备 一般甲阶酚醛树脂是否有水溶性或混溶性的关键是控制其加热反应的程度。在醛过量与碱性催化剂存在下,最初生成的产物主要是苯酚中两个邻位和一个对位上的氢部分或全部被羟甲基取代。在进一步加热下,可能发生两类缩合脱水反应导致分子量增大:一类为2个羟甲基之间缩合形成醚链节(-CH2-O-CH2),另一类为一个羟甲基同一个邻位或对位活泼氢原子之间反应产生次甲基链节。 在加热反应程度不大时,产物含有比例较多的亲水基团(如羟甲基等),是低粘度的水溶性液体;进一步反应脱水,在分子量增大的同时,亲水基团减少,就逐步变成同水混溶性很小或不混溶的高粘度液体,其后变成可粉碎的固体。 一般甲阶酚醛树脂的制备工艺,是把氢氧化钠催化剂加入到苯酚和甲醛中,然后逐步加热到80-100℃。用真空控制反应温度在100℃以下,反应时间一般为1-3h。因为甲阶树脂进一步加热反应会凝胶,故脱水温度用真空控制在105℃以下。通常在150℃热板上测试凝胶时间,以监测反应程度并决定是否结束反应和出料。 低分子量水溶性树脂应在尽可能低的温度下完成生产反应,通常在50℃左右(反应活性较低的对位取代型甲阶树脂可以在高达120℃的温度下完成反应)。这类水溶性树脂固含量范围40%-70%,pH范围7-7.5。其树脂分子量稍微增大(这在室温下也很难避免),对水溶性或混溶性都会产生重大影响。因此这类树脂常按订货单制造,并在冷冻下贮存或装运,并且要马上使用。液体甲阶酚醛树脂有两类: ①含树脂的可溶性盐; ②为用过滤脱除了不溶性盐的树脂。这些盐是在综合碱性催化时形成的。在前一种类型中不必脱除其可溶性盐,因此成本较低。 采用对叔丁基苯酚制备甲阶树脂时,一般在制造期间要经过洗涤脱盐。在最初的碱性反应阶段后,在脱水之前,反应物料用一种芳香溶剂稀释,经中和形成一种水溶性盐。当停止搅拌时,水层(含有大多数盐)沉降到底部,接着进行溶液分离。再加入更多的水进行反复多次的洗涤。其后将树脂在真空下脱除溶剂,在冷却前形成所希望的分子量。 在有些应用中,需要使液体水溶性甲阶树脂保持与水的高混溶性。例如当其用作绝热粘结剂时,它们要用相当多的水稀释后喷洒到玻璃和石棉纤维上。因此这类树脂也要求在冷冻下贮存和装运。 固态甲阶树脂较稳定,只在热天才需冷冻。从对位取代酚类(如丁基苯酚)所制得的甲阶树脂可稳定1年以上。 水溶性酚醛树脂一般可以用粘度、相对密度、固含量和水溶性来表征。典型树脂的性能

树脂基复合材料的发展史

树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是目前技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国俗称玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。从此纤维增强复合材料开始受到军界和工程界的注意。 第二次世界大战以后这种材料迅速扩展到民用,风靡一时,发展很快。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。 1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。 60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。 1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、船的壳体以及卫生洁具等大型制件,从而更扩大了树脂基复合材料的应用领域。 1963年前后在美、法、日等国先后开发了高产量、大幅宽、连续生产的玻璃纤维复合材料板材生产线,使复合材料制品形成了规模化生产。拉挤成型工艺的研究始于50年代,60年代中期实现了连续化生产,在70年代拉挤技术又有了重大的突破,近年来发展更快。除圆棒状制品外,还能生产管、箱形、槽形、工字形等复杂截面的型材,并还有环向缠绕纤维以增加型材的侧向强度。目前拉挤工艺生产的制品断面可达76cm×20cm。 在70年代树脂反应注射成型(Reaction Injection Molding, 简称RIM)和增强树脂反应注射成型(Reinforced Reaction Injection Molding, 简称RRIM)两种

热塑性树脂和热固性树脂的概念和区别

热塑性树脂和热固性树脂的概念和区别 热固性树脂简介 树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是机械性能较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类合成树脂。这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时又发生化学反应而交联固化;有时放出一些副产物,如水等。此反应是不可逆的,一经固化,再加压加热也不可能再度软化或流动;温度过高,则分解或碳化。这也就是与热塑性树脂的基本区别。 在塑料工业发展初期,热固性树脂所占比例很大,一般在50%以上。随着石油化工的发展,热塑性树脂产量剧增,到80年代,热固性树脂在世界合成树脂总产量中仅占10%~20%。 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐温高、不易燃、制品尺寸稳定性好,但性脆。因而绝大多数热固性树脂在成型为制品前,都加入各种增强材料,如木粉、矿物粉、纤维或纺织品等使其增强,制成

增强塑料。在热固性树脂中,加入增强材料和其他添加剂,如固化剂、着色剂、润滑剂等,即能制成热固性塑料,有的呈粉状、粒状,有的作成团状、片状,统称模塑料。热固性塑料常用的加工方法有模压、层压、传递模塑、浇铸等,某些品种还可用于注射成型。 热固性树脂多用缩聚(见聚合)法生产。常用热固性树脂有酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和树脂、聚氨酯、聚酰亚胺等。热固性树脂主要用于制造增强塑料、泡沫塑料、各种电工用模塑料、浇铸制品等,还有相当数量用于胶粘剂和涂料。 从发展看,热固性树脂还在进一步改进质量,研制新品种,以满足新加工工艺开发的要求。用弹性体和热塑性树脂进行改性、开发注塑级热固性模塑料以及反应注射成型用专用树脂及配方,近年来已受到很大重视。采用互穿聚合物网络技术将为热固性树脂的合成开辟新途径。 热固性树脂的分类 除不饱和聚酯树脂、环氧树脂、酚醛树脂外,热固性树脂主要有以下品种。 一、三聚氰胺甲醛树脂 三聚氰胺甲醛树脂是由三聚氰胺和甲醛缩聚而成的热固性树脂。用玻璃纤维增强的三聚氰胺甲醛层压板具有高的力学性能、优良的耐热性和电绝缘性及自熄性。

酚醛泡沫复合材料综述

可陶瓷化酚醛泡沫复合材料 1 耐烧蚀材料概况 复合材料(如C/C复合材料、碳/酚醛复合材料)具有高比强度、高比模量、耐高温、抗烧蚀、抗冲击等特点,在航天航空领域得到广泛应用,目前正逐步取代黑色金属、有色金属等传统材料,成为轻质化结构和防热结构的主要材料。航天飞行器在高温等恶劣环境下,如洲际导弹鼻锥再入大气层时,将经受7000-8000K超高温、每平方米几十兆瓦热流密度、100g过载、粒子云高速侵蚀、突防中遇到的核辐射和动能拦截等,通过材料自身烧蚀引起质量损失,吸收并带走大量的热量,阻止外部热量向结构内部传递,从而保护内部结构在一定温度范围内正常工作[1]。 聚合物基耐烧蚀材料的研究在国内外备受重视,尤其是近几年随着航空航天技术的深入发展,关于该材料的专利申请量也呈现井喷式增长。我国在聚合物基耐烧蚀材料领域的专利意识已经不输于欧洲、日本等国家或地区,并且在技术上也有了长足的进步,然而与航空强国美国相比,仍然存在不小的差距。航空航天技术的蓬勃发展必然会对耐烧蚀材料提出更高的要求,我国应以此为契机,充分利用现有技术,开发出综合性能更为优越的耐烧蚀材料,不断的提升我国在世界舞台上的技术竞争力。 1.1烧蚀材料分类 烧蚀材料按烧蚀机理分为升华型、熔化型和碳化型三类[2]。聚四氟乙烯、石墨和碳/碳复合材料属于升华型。这些材料在高温下升华,带走大量热量,而且碳是一种辐射系数较高的材料,因而具有很好的抗烧蚀性能。不过这类材料的隔热性能较差,加上这类材料的成本较高,限制了其更广泛的应用。石英和玻璃属于熔化型烧蚀材料。这些材料在高温下熔化吸收热量,而且熔化后形成的SiO2液态膜具有抗高速气流冲刷的能力,不过这类材料的工艺性较差,不适合成型大面积防热套。纤维增强树脂复合材料属于碳化型烧蚀材料。它是以纤维或布作为增强材料,以树脂为基体制成复合材料。这类材料主要利用高分子材料在高温下碳化吸收热量,并进一步利用其形成的碳化层辐射散热。这三类材料中,以碳化型烧蚀材料应用最多。 1.2复合材料的烧蚀机理

热塑性树脂复合材料应用

摘要:热塑性复合材料因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。热塑性复合材料如果想继续扩大在民机上的应用,必须进入机体主承力构件,然而,热塑性应用于主承力构件还三个挑战,即原材料成本高,铺放工艺缓慢,以及预浸料粘性问题。 关键词:热塑性复合材料碳纤维机体内饰主承力结构 热塑性复合材料是以玻璃纤维、碳纤维、芳烃纤维及其它材料增强各种热塑性树脂所形成的复合材料,因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。 1 热塑性复合材料的民机应用潜质 以聚苯硫醚(PPS),聚醚酰亚胺(PEI),聚醚醚酮(PEEK)和聚醚酮酮(PEKK)为基体的先进增强热塑性复合材料(TPC),具备高刚度、低加工成本和重新加工能力,拥有良好的阻燃、低烟和无毒(FST)性能,固化周期可以以分钟记,且其成形过程是天生的非热压罐工艺。这些固有属性使其成为轻质、低成本航空结构的理想材料。为西科斯基公司直升机提供大型热塑性复合材料地板的纤维锻造公司提供了如下一组数据:热塑性复合材料比钢轻60%,硬度是其6倍;比铝轻30%;比热固性复合材料强韧2倍;比注射模塑塑料硬5倍;在生产中比板材少60%碎屑。 上述性能特点和数据对比表明,热塑性复合材料是一种天生的航空结构材料,并且在民机应用上拥有巨大的潜质,甚至可能在未来为航空复合材料制造带来一场热塑性革命。 2 热塑性复合材料在民机上的典型应用 目前,热塑性复合材料(TPC)在民机上的应用主要体现在机体结构件和内饰件上,这其中,碳纤维增强PPS的TPC占大多数。 2.1 机体结构件 机体结构件中,TPC主要应用在地板、前缘、控制面和尾翼零件上,这些零件都是外形比较简单的次承力构件。空客A380客机、空客A350客机、湾流G650公务机和阿古斯塔·韦斯特兰AW169直升机都是热塑性机体结构件的应用大户。 空客A380客机上最重要的热塑性复合材料结构件是玻璃纤维/PPS材料的机翼固定前缘。每个机翼有8个固定前缘构件,其中热塑性材料占到了整个用料的三分之二。在固定前缘蒙皮的纤维铺放中,制造商福克航空结构公司选择了先进的超声点焊作为铺放设备的加热系统。

树脂基复合材料复习要点

1.功能复合材料主要由功能体和基体组成,或由两种(或两种以上)的功能体组成。 2.材料在复合后所得的复合材料,依据其产生复合效应的特征,可分为线性效应和非线性效应。 3.燃烧过程,大致分为五个不同的阶段:(1)加热阶段;(2)降解阶段;(3)分解阶段;(4)点燃阶段;(5)燃烧阶段。 4.氧指数(OI)愈高,表示燃烧愈难。当OI<22时,为易燃性塑料;当OI在22—27之间时,为自熄性塑料;当OI > 27时,为难燃塑料 5.在美国UL-94防火标准中,塑料阻燃等级由HB,V-2,V-1向V-O逐级递增。 6.阻燃机理有多种:保护膜机理、不燃性气体机理、冷却机理、终止链锁反应机理、协同作用体系。 7.非金属材料的腐蚀类型按腐蚀机理分类①物理腐蚀②化学腐蚀③大气老化④环境应力开裂 8.为了弄清材料的腐蚀机理,进一步对其寿命进行预测,对其进行的实验以试验场所划分,可分为现场试验及实验里试验。 9.摩阻复合材料一般由增强体、摩擦功能调节体与基体等构成,各组分在摩擦材料中的作用是不同的。 10.列举三种常见的水溶性高分子聚合物:聚乙二醇、聚乙吡咯烷酮、聚乙烯。 11.防辐射服是利用服饰内金属纤维构成的环路产生感生电流,有感生电流产生反向电磁场进行屏蔽。 12.吸波材料之所以能够吸收进入材料内部的电磁波主要是由于电磁波在材料内部产生电损耗或磁损耗而使电磁波的电磁性能转化为其他形式的能量散失掉,从而达到减少反射的目的。 13.电损耗介质的吸波机理主要是松弛极化、磁性介质在交变磁场的作用下产生能量损耗的机制有:①磁滞损耗②涡流损耗③剩磁效应④磁共振。 14.密封材料的耐磨性通常以磨损率的倒数来表示。 15.影响玻璃钢透光率的主要因素:玻璃纤维和粘结剂的折射指数;玻璃纤维和粘结剂的光吸收系数;玻璃纤维的直径及其在玻璃钢中的体积含量。 16.阻尼特性可以通过对数衰减率δ与阻尼因子η两种方式来描述。 17.复合材料用于装甲防护主要有两种形式,即单纯的纤维织物和复合材料层合板。 18.防弹复合材料所用的纤维通常为玻璃纤维、尼龙纤维、芳纶和超高分子量聚乙烯纤维,最近开发出具有目前最高强度的聚苯并噁唑(PBO)纤维。 19.理想的树脂基体应具有耐高温、高韧性、高强度、低模量等性能,以及低成本。常用的树脂基体有:( )、( )、低密度聚乙烯、交联聚异戊二烯、聚丙烯等。 20.抗辐射聚合物基体一般在分子主链上具有多重环,如环氧树脂、聚酰亚胺树脂、聚醚砜、聚醚醚酮树脂等均具有良好的耐辐射性。 21.功能复合材料:除力以外而提供其它物理性能的复合材料即具有各种电学性能、磁学性能、光学性能、热学性能、声学性能以及摩擦、阻尼等性能。 22.高分子纳米复合材料:是由各种纳米单元和高分子复合而成的一种新型复合材料,其中纳米单元按化学成分分为金属陶瓷高分子和无机非金属。 23.燃烧氧指数:指试样像蜡烛状持续燃烧时,在氮-氧混合气流中所必须的最低氧含量。

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

酚醛树脂及复合材料成型工艺的研究进展

酚醛树脂是最早工业化的合成树脂,已经有100年的历史。由于它原料易得,合成方便以及树脂固化后性能能满足很多使用要求,因此在模塑料、绝缘材料、涂料、木材粘接等方面得到广泛应用。近年来,随着人们对安全等要求的提高,具有阻燃、低烟、低毒等特性的酚醛树脂重新引起人们重视,尤其在飞机场、火车站、学校、医院等公共建筑设施及飞机的内部装饰材料等方面的应用越来越多[1]。 与不饱和聚酯树脂相比,酚醛树脂的反应活性低,固化反应放出缩合水,使得固化必须在高温高压条件下进行,长期以来一般只能先浸渍增强材料制作预浸料(布),然后用于模压工艺或缠绕工艺,严重限制了其在复合材料领域的应用。为了克服酚醛树脂固有的缺陷,进一步提高酚醛树脂的性能,满足高新技术发展的需要,人们对酚醛树脂进行了大量的研究,改进酚醛树腊的韧性、提高力学性能和耐热性能、改善工艺性能成为研究的重点。近年来国内相继开发出一系列新型酚醛树脂,如硼改性酚醛树脂、烯炔基改性酚醛树脂、氰酸酯化酚醛树脂和开环聚合型酚醛树脂等。可以用于smc/bmc、rtm、拉挤、喷射、手糊等复合材料成型工艺。本文结合作者的研究工作,介绍了酚醛树脂的改性研究进展及rtm、拉挤等酚醛复合材料成型工艺的研究应用情况。 1酚醛树脂的改性研究 1.1聚乙烯醇缩醛改性酚醛树脂 工业上应用得最多的是用聚乙烯醇缩醛改性酚醛树脂,它可提高树脂对玻璃纤维的粘结力,改善酚醛树脂的脆性,增加复合材料的力学强度,降低固化速率从而有利于降低成型压力。用作改性的酚醛树脂通常是用氨水或氧化镁作催化剂合成的苯酚甲醛树脂。用作改性的聚乙烯醇缩醛一般为缩丁醛和缩甲乙醛。使用时一般将其溶于酒精,作为树脂的溶剂。利用缩醛和酚醛羟甲基反应合成的树脂是1种优良的特种油墨载体树脂。 1.2聚酰胺改性酚醛树脂 经聚酰胺改性的酚醛树脂提高了酚醛树脂的冲击韧性和粘结性。用作改性的聚酰胺是一类羟甲基化聚酰胺,利用羟甲基或活泼氢在合成树脂过程中或在树脂固化过程中发生反应形成化学键而达到改性的目的。用该树脂制成的渔竿等薄壁管具有优良的力学性能。 1.3环氧改性酚醛树脂 用热固性酚醛树脂和双酚a型环氧树脂混合物制成的复合材料可以兼具2种树脂的优点,改善它们各自的缺点,从而达到改性的目的。这种混合物具有环氧树脂优良的粘结性,改进了酚醛树脂的脆性,同时具有酚醛树脂优良的耐热性,改进了环氧树脂耐热性较差的缺点。这种改性是通过酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基进行化学反应,以及酚醛树脂中的酚羟基与环氧树脂中的环氧基进行化学反应,最后交联成复杂的体型结构来达到目的,是1种应用最广的酚醛增韧方法。 1.4有机硅改性酚醛树脂 有机硅树脂具有优良的耐热性和耐潮性。可以通过使用有机硅单体与线性酚醛树脂中的酚羟基或羟甲基发生反应来改进酚醛树脂的耐热性和耐水性。 采用不同的有机硅单体或其混合单体与酚醛树脂改性,可得不同性能的改性酚醛树脂,具有广泛的选择性。

相关主题
文本预览
相关文档 最新文档