当前位置:文档之家› 第五章 (10) 一般二次同余式、平方剩余

第五章 (10) 一般二次同余式、平方剩余

平方差公式

平方差公式 教学目标 1.经历探索平方差公式的过程,进一步发展符号感和推理水平。 2.会推导平方差公式,并能使用公式实行简单计算。 3.理解平方差及其几何背景,使学生明白数形结合的思想。 4.在合作、交流和讨论中发掘知识,并体验学习的乐趣。 5.培养学生灵活使用知识、勇于探求科学规律的意识。 教学重点:体会公式的发现和推导过程,理解公式的本质,并会使用公式实行简单的计算。 教学难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会使用公式实行计算。 教学准备 1.为每位学习准备一张正方形纸片(边长为15c m)。 2.教师准备两张正方形(一大一小)纸板和三块矩形纸板。 3.多媒体课件。 教学流程 一、创设问题情境,引导学生观察、设想。 教师发给每个学生一张正方形纸片(边长15c m),并用多媒体课件与正方形纸板显示正方形。 师:在一块45c m的正方形纸板上,因为工作的需要,中间挖去一块边长为15c m的正方形(如图),请问剩下部分的面积有多少平方厘米? 师:计算剩下部分的面积能够有哪些方法? 小组讨论: 1.能够用大正方形面积减去小正方形面积得到。 2.能够把剩下的部分切割成几个矩形来计算。 师:从今天的问题来看,用哪一种方法比较好?你们小组能列出算式吗? 或许有学生能迅速列出算式,得出答案是1800平方厘米。 师:为了容易理解,我现在把小正方形放在大正方

形 的角落(如图)。 师 :刚才我们说过计算面积的方法不止一种,我们现在试 着用分割的方法来计算面积。请参照老师的做法,先在 你们的纸上画一条虚线,然后把刚才画的小正方形剪下 来(或撕去),就像要挖去这部分一样,再沿虚线把小长 方形剪下来,并把小长方形拼到大长方形的一边,刚好又变成一个新的长方形(如图)。 师:若按照我们刚开始的题目要求,现在新的大长方形的长、宽各是多少?它的面积又是多少呢? 生:大长方形的长是(45+15)c m ,宽是(45-15)c m 。 长方形的面积=(45+15)×(45-15)=60×30=1800(平方厘米)。 师:还记得两种方式的列式吗? 生:第一种方法的式子是 452-152, 第二种方法的式子是(45+15)×(45-15)。 师:两个式子都能求出剩下的面积,它们之间有什么关系呢? 生:相等。 二、交流对话,探求新知。 看谁算得快: (1)(x +2)(x -2) (2)(1+3a )(1-3a ) (3)(x +5y )(x -5y ) (4)(-m +n )(-m -n ) 师:你们能发现什么规律? 师:再想想看,如果今天的题目换成:“在一块边长为a 厘米的正方形纸板上,因为工作的需要,中间挖去一块边长为b 厘米的小正方形,请问剩下的面积有多少?”我们该怎样列代数式来表示? 生:我们能够用a 2-b 2来表示剩下的面积。 师:还有没有别的方法? 生:也能够用(a +b )(a -b )来表示剩下的面积。 师:今天我们除了要找一个比较方便的方法来求面积外,更重要的是我们能从图形中了解到(a +b )(a -b ) = a 2-b 2这个性质。上一节课我们已经学过多项式的乘法,你能利用计算多项式乘法的方法,把(a +b )(a -b )的答案计算出来吗? 5 30 15 30

一次同余式解法的综述

一次同余式的解法的综述 陈明丹 (华南师范大学数学科学学院 广州 510070) 【摘要】本文系统地将解一次同余式的各种解法集中在一起,如欧拉定理算法、代入求解法、消去系数法、不定方程求解法、不定方程求解法、分式法、威尔逊定理法、求s 、t 法、矩阵求法、“倒数”求法,这样就使得学习者在学习一次同余式的时候有个系统的归纳总结,方便理解。 关键词:一次同余式;解法;欧拉定理;威尔逊定理;不定方程;综述 初等数论是师范院校数学专业学生的一门必修课,也是高中数学教师继续教育的一项重要内容,而同余式是初等数论中非常重要的一部分内容,主要研究一次同余式、二次同余式、同余式组及高次同余式的解法及解数。[1]一次同余式是学习这一部分内容的基础,且结一次同余式是学习初等数论必须要掌握的解题方法。但是在严士键 [2]的教材中只给出了如欧拉定理算法[3]等一些比较简单的方法,而且比 较散乱。本文旨在系统地整理解一次同余式的各种方法,以方便大家的学习。 1.一次同余式ax ≡ b(mod m)的解法 1.1 同余式(mod ),(,)1ax b m a m ≡= 的解法 1.1.1欧拉定理算法 李晓东[1]和李婷[3]指出欧拉定理这种算法主要是运用欧拉定理,则有()1(mod )m m a ?≡,则()(mod )m a b b m a ???≡,则

()1(mod )m x b m a ?-≡ 满足同余式(mod )ax b m ≡,故为同余式的解。李婷还指出这种解法在理论上较易分析,但当模m 较大时,求()m ?就涉及m 的标准分解,此时这种解法在计算量上较为复杂,不宜进行计算机编程计算。所以这种解法更适合模m 较小时,或()m ?较易求解时使用。王靖娜 [4]给出了详细的定理证明过程,以帮 助大家的理解。 1.1.2代入求解法 代入求解法也称为观察法[3],当模m 较小时,可以将模m 的完全剩余系0、1、2……m-1 代入到(mod )ax b m ≡中,求出该同 余式的解。当模m 较大时,则可以利用同余式的性质[2],将同余式的 系数减少,而且有带余除法定理[5]可保证系数在一个固定的范围内作为模m 的余数,从而再用观察法得出一次同余式的解。 李婷[3]这种解法适用于多数情况,但是当模m 及x 的系数较大时,计算量也会变得比较大,此时就不适合使用这种方法,而改用其他的方法。 1.1.3 消去系数法 在同余式(mod )ax b m ≡中,如果|a b ,则可以解出该同 余式的解,因此,将x 的系数a 消去是解一次同余式的最简捷的方 法[6]。如果在同余式中但能找到c 使得(mod )b c m ≡且 |a c ,则根据同余的传递性质有(mod )ax b c m ≡≡,可解出 (mod )c x m a ≡。或者找到(mod )ax b c m ≡≡,且,a c 有公

平方差公式练习题精选(含答案)

For personal use only in study and research; not for commercial use 平方差公式 1、利用平方差公式计算: (1)(m+2) (m-2) (2)(1+3a) (1-3a) (3) (x+5y)(x-5y) (4)(y+3z) (y-3z) 2、利用平方差公式计算 (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n) 3利用平方差公式计算 (1)(1)(-41x-y)(-4 1x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n 2 4、利用平方差公式计算 (1)(a+2)(a-2) (2)(3a+2b)(3a-2b) (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3) 5、利用平方差公式计算 (1)803×797 (2)398×402 7.下列多项式的乘法中,可以用平方差公式计算的是( ) A .(a+b )(b+a ) B .(-a+b )(a -b ) C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a ) 8.下列计算中,错误的有( ) ①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;

③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )= -x 2-y 2. A .1个 B .2个 C .3个 D .4个 9.若x 2-y 2=30,且x -y=-5,则x+y 的值是( ) A .5 B .6 C .-6 D .-5 10.(-2x+y )(-2x -y )=______. 11.(-3x 2+2y 2)(______)=9x 4-4y 4. 12.(a+b -1)(a -b+1)=(_____)2-(_____)2. 13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减 去较小的正方形的面积,差是_____. 14.计算:(a+2)(a 2+4)(a 4+16)(a -2). 完全平方公式 1利用完全平方公式计算: (1)(21x+3 2y)2 (2)(-2m+5n)2 (3)(2a+5b)2 (4)(4p-2q)2 2利用完全平方公式计算: (1)(21x-3 2y 2)2 (2)(1.2m-3n)2 (3)(-21a+5b)2 (4)(-43x-3 2y)2 3 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2 (a+b)2-(a-b)2 (4)(a+b-c)2 (5)(x-y+z)(x+y+z) (6)(mn-1)2— (mn-1)(mn+1) 4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。 5已知x ≠0且x+1x =5,求441x x 的值. 平方差公式练习题精选(含答案) 一、基础训练 1.下列运算中,正确的是( )

初等数论(十)——平方剩余

初等数论(十) ——二次剩余 一、知识要点 (一)、基本定义与定理 1、定义1:设奇质数p ,d 是整数,d p |/.若同余方程)(mod 2p d x ≡有解,则称 d 是模p 的二次剩余(亦称平方剩余);若无解,则称d 是模p 的二次非剩余(亦称平方非 剩余). 注:当讨论二次(非)剩余时,一般都约定p 是奇质数. 2、定理1:在模p 的一个简化剩余系..... 中,恰有21-p 个模p 的二次剩余,2 1 -p 个模p 的二次非剩余.并且,若d 是模p 的二次剩余,则同余方程)(mod 2p d x ≡的解数是2. 推论:模p 的二次剩余包含在2 2 122) (,,2,1-p 的剩余类中. 3、几个常见模的二次剩余与二次非剩余 4、定理2(Euler 判别法):设奇质数p ,d 是整数,d p |/ . (1) d 是模p 的二次剩余的充要条件是)(mod 12 1 p d p ≡-; (2)d 是模p 的二次非剩余的充要条件是)(mod 11p d p -≡-. 5、定义2(Legendre 符号):设奇质数p ,定义整数d 的函数: ? ?? ??-=. |, 0;, 1;, 1)(d p p d p d p d 的二次非剩余是模的二次剩余是模 注:)(p d 读作d 对p 的勒让得符号. 6、Legendr e 符号的几个性质 ① )( )(p d p p d +=; ②)(mod )(2 1p d p d p -≡;③21 )1()1(,1)1(--=-=p p p ;

④ )())(()(2121p a p a p a p a a a n n =,特别地c p p d p dc |),()(2/=. 7、定理3:(1)12) 1()2 (--=p p ;(2)奇质数q p ,满足,1),(=p q 则∑-=-=2 11][)1()(p k p qk p q . 推论:当18±=m p 时,2是二次剩余;当38±=m p 时,2是二次非剩余. 注:①奇质数112±=k p ,则1)3(=p ;奇质数512±=k p ,则1)3(-=p . ②奇质数18+=k p 或38+=k p 时,则1)2 (=-p . 8、定理4(Gauss 二次互反律) 设q p ,均为奇质数,且1),(=q p ,则)()1()(1 1q p p q q p --? -=. 9、定理5(Lagrange ):每一正整数都能表示成四个整数的平方和. 二、典型问题分析 例1、(1)设质数5≥p .证明:模p 的全部二次剩余的和是p 的倍数. (2)设p 是奇质数.证明:在1,,2,1-p 中全体模p 的二次剩余 的和][24) 1(1 21 2 ∑-=--=p j p j p p p S . 例2、设奇质数p ,21,d d 是整数,1|d p /,2|d p /. (1)若21,d d 均为模p 的二次剩余,则21d d 是模p 的二次剩余; (2)若21,d d 均为模p 的二次非剩余,则21d d 是模p 的二次剩余; (3)若21,d d 分别是模p 的二次剩余和二次非剩余,则21d d 是模p 的二次非剩余.

《数论算法》教案4章(二次同余方程与平方剩余)

第 4 章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余 3. 勒让德符号、雅可比符号 4. 二次同余方程的求解 要点 二次同余方程有解的判断与求解 4.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1) (二) 化简 设m =k k p p p α ααΛ2121,则方程(1)等价于同余方程 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221Λ Λ 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp )

变量代换, y =2ax +b (3) 有 2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论:只须讨论以下同余方程 2x ≡a (mod αp ) (5) 【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9))

平方差公式计算题

平方差公式 1.计算 (1) (2) (3) (4)(-1+3x )(-1-3x ) (5) (6) (7)(a+2)(a 2+4)(a 4 +16)(a -2) (8) )1)(1)(1)(124-+++x x x x ( (9) 19982-1997×1999 (10) 2003×2001-2002 2 (11) 2009×2007-2008 2 (12)201220102011 2?- 2. 计算 ⑴)13)(13()3)(3(----+-+n n n n ⑵)(1()1)(1)(142+--++m m m m ⑶)43)(34()23)(32(y x x y x y y x +--+- ⑷ a 4 +(1-a)(1+a)(1+a 2) ⑸()()()()x x x x 3223113-+--+- ⑹)4)(1()3)(3(+---+a a a a 3. 先化简,再求值: ⑴ )2)(32()34)(43(n m n m m n n m -+-+-,其中1,1-==n m . ⑵ (3x+2)(3x-2) -(x+1)(x-1),其中x=-1 4. 解方程: (1)x (x+2)+(2x+1)(2x -1)=5(x 2 +3). ⑵x x x x x x 2)1)(1()3)(322++-+=-+( 5. 计算: )52)(52(22--+-x x )4)(4(-+ab ab )14)(14(---a a )49)(23)(23(22b a b a b a ++-)1)(1)(1)(1(42a a a a +++-

⑴ ⑵ ⑵ 22007200720082006-? ⑷ 22007200820061 ?+ 6.广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少? )12()12)(12)(12(42++++n 2481511111(1)(1)(1)(1)22222+++++

《数论算法》教案5章(二次同余方程与平方剩余)

第5章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余 3. 勒让德符号、雅可比符号 4. 二次同余方程的求解 要点 二次同余方程有解的判断与求解 5.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m ))(1) (二) 化简 设m =k k p p p αααΛ2 121,则方程(1)等价于同余方程组 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221Λ Λ ?2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp ) 变量代换, y =2ax +b (3) 有

2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论:只须讨论方程2x ≡a (mod αp ) (5) 【例5.1.1】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9)) (四) 平方剩余 【定义5.1.1】设m 是正整数,a 是整数,m a 。若同余方程 2x ≡a (mod m ) (6) 有解,则称a 是模m 的平方剩余(或二次剩余);若无解,则称a 是模m 的平方非剩余(或二次非剩余)。

(完整版)平方差公式题型总结

平方差公式练习题 一、选择题 1、下列多项式乘法,能用平方差公式进行计算的是( ) A.(x+y)(-x -y) B.(2x+3y)(2x -3z) C.(-a -b)(a -b) D.(m -n)(n -m) 2、下列多项式乘法,不能用平方差公式计算的是( ) A.(-a -b )(-b+a) B.(xy+z) (xy -z) C.(-2a -b) (2a+b) D.(0.5x -y) (-y -0.5x) 4、(42x -5y)需乘以下列哪个式子,才能使用平方差公式进行计算( ) A.-42x -5y B.-42x +5y C.(42x -5y ) D.(4x+5y) 5、4a +(1-a)(1+a)(1+2a )的计算结果是( ) A.-1 B.1 C.24a -1 D.1-24a 6.下列计算正确的是( ) A.(2x+3)(2x -3)=22x -9 B.(x+4)(x -4)=2x -4 C.(5+x)(x -6)=2x -30 D.(-1+4b)(-1-4b)=1-162b 7.下列各式运算结果是x 2-25y 2的是( ) A.(x+5y)(-x+5y) B.(-x -5y)(-x+5y) C.(x -y)(x+25y) D.(x -5y)(5y -x) 8.下列式中能用平方差公式计算的有( ) ①(x-1 2y)(x+1 2y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个 9.下列式中,运算正确的是( ) ①222(2)4a a =, ②21 1 1 (1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++??=. A.①② B.②③ C.②④ D.③④ 10.乘法等式中的字母a 、b 表示( ) A.只能是数 B.只能是单项式 C.只能是多项式 D.单项式、?多项式都可以 11.(-a +1)(a +1)(a 2+1)等于………………( ) (A )a 4-1 (B )a 4+1(C )a 4+2a 2+1 (D )1-a 4 二.填空题 1、(x -1)(x +1)=_____, (2a +b )(2a -b )=_____, (31 x -y )(31 x +y )=_____. 2、(x +4)(-x +4)=_____, (x +3y )(_____)=9y 2-x 2, (-m -n )(_____)=m 2-n 2 3、98×102=(_____)(_____)=( )2-( )2=_____. 4、-(2x 2+3y )(3y -2x 2)=_____. 5、(a -b )(a +b )(a 2+b 2)=_____. 6、(_____-4b )(_____+4b )=9a 2-16b 2 ,(_____-2x )(_____-2x )=4x 2-25y 2 7、(xy -z )(z +xy )=_____, (65x -0.7y )(65x +0.7y )=_____. 8、(41x +y 2)(_____)=y 4-161 x 2

数论02二次同余式与平方剩余4.3勒让德符号

■ 一勒让德符号定义 ■二欧拉判别法则 ■三高斯引理 ■四定理3及其证明 2013-4 10 一勒让彳惠符号定以 思考题(一):.O o (r ) 求模17的平方剩余和平方非剩余 第 章 二次同余式与平方剩余 4. 3勒让彳惠苻号 ate

勒iJL徳号定义 思考题(二):?。。辽] 判断5是不是模17的平方剩余? 52 = 25 = 8(mod 17) , 51 =82三—l(mod 17) 5s = (-4) =16 = -1 (mod 17) 所以5是模17的平方非剩余 2013-4 10ate 1717丿 9) 17> 侧朗;卅)需)需) 1 -1 —r勒庁上德符号 定义1设p是素数,定义勒让德符号如下: 卜若。是模"的平方剩余 (a)= < -L若d是模#的平方非剩余 P 0,若 p'a 2013-4 10 ate

Sodp)有解或杖有解. 2013-4 10 定土甲.1(欧扌立判 另IJ 法贝IJ) 设 P 是奇-素数,贝驭寸 任意執数a, (自三a 乎(mod p) 例2证明2是模17平方剩余;3是17 平方非剩余. 解:因为(17-1 )/2=2',且有 2 = 4,2’ = 4 = —1,2、= (— I)2 = l(mod 1 7) 由定义駅 政协同余式*劭 敦论 ~r 勒德符号 瓠P 冋财■仔卜1,翻? 二欧拉判别法

根据欧拉判断法则,并注意到a 二1 时, = 1以及a=?l 时,<<=(一1)丁,且P 是 奇数. 推论1,设p 是奇素数,则 例1若质数9=如+1,期一1是p 的平方剩余;若P0 4匕一I..则一1是P 的平方非剩余. (D (2) — =(—1尸 I P 丿 二欧拉判别法 2013-4-10 敷陀 7 二欧拉判另!J 法

平方差公式计算

平方差公式计算 一、选择题 1.下列多项式乘法,能用平方差公式进行计算的是( ) A.(x+y)(-x -y) B.(2x+3y)(2x -3z) C.(-a -b)(a -b) D.(m -n)(n -m) 2.下列计算正确的是( ) A . ()()()()222 2425252525y x y x y x y x -=-=-+ B .22291)3()1()31)(31(a a a a +=+-=--+- C .()()()()222249232332x y x y x y y x -=-=--- D . ()()8242-=-+x x x 3.下列多项式乘法,不能用平方差公式计算的是( ) A.(-a -b)(-b+a) B.(xy+z)(xy -z) C.(-2a -b)(2a+b) D.(0.5x -y)(-y -0.5x) 4.( 245x y -)需乘以下列哪个式子,才能使用平方差公式进行计算( ) A. 245x y - B.-245x y - C. ( ) 2 2 45x y - D. ( ) 2 2 45x y + 5. 4 a +(1-a)(1+a)(1+2 a )的计算结果是( ) A.-1 B.1 C.24 a -1 D.1-24 a 6.下列各式运算结果是2 x -2 25y 的是( ) A.(x+5y)(-x+5y) B.(-x -5y)(-x+5y) C.(x -y)(x+25y) D.(x -5y)(5y -x) 7.下列式中能用平方差公式计算的有( ) ①(x-12y)(x+1 2 y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个 8.下列式中,运算正确的是( ) ①222 (2)4a a =, ②2111 (1)(1)1339 x x x - ++=-, ③235 (1)(1)(1)m m m --=-, ④23 2482 a b a b ++??=. A.①② B.②③ C.②④ D.③④ 9.乘法等式中的字母a 、b 表示( ) A.只能是数 B.只能是单项式 C.只能是多项式 D.单项式、?多项式都可以 二、计算: (a+3)(a-3) ( 2a+3b)(2a-3b) (1+2c)(1-2c)

二次同余式与平方剩余

本章的目的是较深入地讨论 1.一般二次 了解一般二次及: 教学过程: 本节主要讨论 2.单质数的 了解单质数的: 教学过程: 这节我们讨论单质数p 的)(mod 12 1p a p ≡-:而)(mod 12 1p a p -≡- 单质数p 的使的)(mod ),(mod 22 212 1p a r p a r ≡≡于是有)(mod )(212 21p a a r r ≡ 这说明 一般二次同余式 在第四章中,我们讨论了高次同余式的解的一般理论,但在实际中,要解一个高次同余式一般比较困难。在本章我们重点讨论二次同余式的解法。思路是先把一般二次同余式化为特殊的二次同余式,再引入平方剩余与平方非剩余,并利用勒让得符号来判断特殊二次同余式是否有解。 二次同余式的一般形式 二次同余式的一般形式是 , 0 ( ) (1) 化一般二次同余式为特殊二次同余式 由高次同余式的理论知,若 的标准分解式为 , 则(1)有解的充要条件是下面同余式组中每个同余式有解。 于是要判别(1)是否有解及如何解(1),我们可重点讨论 为质数。 (2) 下面对(2)分情况进行讨论。找到(2)有解的判别法。 由于(2)为二次同余式,故可假定 ,若有 但 (,,), 则(2)化为。

而。故还可假定(,,)。 1) |,|。则 。因而同余式无解。故(2)设有解。 2) |, 。则 无解,故(2)有解的充要条件是 有解,即 有解。 但( , )=1。故有解,从而(2)有解,且(2)的解可由 的解求出。 3) , >2。则 。用4乘(2)后再配方,即得 (3) 易证(2)和(3)等价。用代2 +得 (4) 则(2)有解的充要条件是(4)有解,于是将(2)化为(4)讨论。 4) , =2。这时为奇。 (i )若2 ,则 无解。故(2)有解的充要条件是 有解。 因对任何整数 恒有 。所以(2)有解的充要条件是 有解,即2|。 (ii ) 若2|,令 。由 知 (2)有解的充要条件是 有解。即 (5) 有解。 作代换 = +,则(2)有解的充要条件是 有解。 由上面讨论,可将(2)的问题化为二次同余式 或一般情况即 (6) 平方剩余和非平方剩余 定义 若同余式(6)有解,则叫模的平方剩余,若同余式(6)无解,则叫模的平方非剩余。 由这一定义,要判断(6)是否有解,就是判断是否为模的平方剩余,下面几节

(完整版)平方差、完全平方公式专项练习题

平方差公式专项练习题 一、选择题 1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示() A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是() A.(a+b)(b+a) B.(-a+b)(a-b C.(1 3 a+b)(b- 1 3 a) D.(a2-b)(b2+a) 3.下列计算中,错误的有() ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9; ④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2. A.1个 B.2个 C.3个 D.4个 4.若x2-y2=30,且x-y=-5,则x+y的值是() A.5 B.6 C.-6 D.-5 5.计算: (1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数); (2)(3+1)(32+1)(34+1)…(32008+1)- 4016 3 2. 6.利用平方差公式计算:2009×2007-20082. (1)一变: 22007 200720082006 -?.(2)二变: 2 2007 200820061 ?+. 7.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4 …… (1)观察以上各式并猜想:(1-x)(1+x+x2+……+x n)=______.(n为正整数) (2)根据你的猜想计算: ①(1-2)(1+2+22+23+24+25)=______. ② 2+22+23+……+2n=______(n为正整数). ③(x-1)(x99+x98+x97+……+x2+x+1)=_______. (3)通过以上规律请你进行下面的探索: ①(a-b)(a+b)=_______. ②(a-b)(a2+ab+b2)=______. ③(a-b)(a3+a2b+ab2+b3)=______.

平方差公式练习题精选(含问题详解)

1、利用平方差公式计算: (1)(m+2) (m-2) (2)(1+3a) (1-3a) (3) (x+5y)(x-5y) (4)(y+3z) (y-3z) 2、利用平方差公式计算 (1)(5+6x) (5-6x) (2)(x-2y) (x+2y) (3)(-m+n)(-m-n) 3利用平方差公式计算 (1)(1)(-41x-y)(-4 1x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n 2 4、利用平方差公式计算 (1)(a+2)(a-2) (2)(3a+2b)(3a-2b) (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

5、利用平方差公式计算 (1)803×797 (2)398×402 7.下列多项式的乘法中,可以用平方差公式计算的是() A.(a+b)(b+a) B.(-a+b)(a-b) C.(1 3 a+b)(b- 1 3 a) D.(a2-b)(b2+a) 8.下列计算中,错误的有() ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2. A.1个 B.2个 C.3个 D.4个 9.若x2-y2=30,且x-y=-5,则x+y的值是() A.5 B.6 C.-6 D.-5 10.(-2x+y)(-2x-y)=______. 11.(-3x2+2y2)(______)=9x4-4y4. 12.(a+b-1)(a-b+1)=(_____)2-(_____)2. 13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 14.计算:(a+2)(a2+4)(a4+16)(a-2).

平方差公式习题精选

平方差公式习题精选 一、选择题 1.下列各式能用平方差公式计算的是:() A. B. C. D. 2.下列式子中,不成立的是:() A. B. C. D. 3.,括号内应填入下式中的(). A. B. C. D. 4.对于任意整数n,能整除代数式的整数是().A.4 B.3 C.5 D.2 5.在的计算中,第一步正确的是(). A. B. C. D. 6.计算的结果是(). A.B.C.D. 7.的结果是(). A.B.C.D. 二、填空题 1.. 2.. 3..

4.. 5.. 6.. 7.. 8.. 9.,则 10.. 11.(1)如图(1),可以求出阴影部分的面积是_________.(写成两数平方差的形式) 12.如图(2),若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是___________.(写成多项式乘法的形式) 13.比较两个图阴影部分的面积,可以得到乘法公式__________.(用式子表达) 三、判断题 1..() 2..() 3..() 4..() 5..() 6..() 7..() 四、解答题 1.用平方差公式计算:

(1);(2); (3); (4); (5);(6). 2.计算: (1); (2); (3); (4); (5); (6). 3.先化简,再求值,其中 4.解方程:. 5.计算:. 6.求值:. 五、新颖题 1.你能求出的值吗? 2.观察下列各式: 根据前面的规律,你能求出的值吗? 参考答案:

一、1.B 2.B 3.A 4.C 5.C 6.D 7.B 二、1.x,4;2;3. 4. 5. 6. 7.; 8.;9.; 10.0.9999 11. 12. 13. 三、1.×2.√3.×4.×5.×6.×7.√ 四、1.(1);(2);(3);(4); (5)8096(提示:);(6). 2.(1)1;(2);(3); (4);(5);(6). 3.原式=. 4.. 5.5050. 6.. 五、1..提示:可以乘以再除以. 2.

平方差公式经典练习题

平方差公式经典练习题 二、课后练习 一、选择题 1.下列各式能用平方差公式计算的是:(?? ) A .)23)(32(a b b a -- ? B .)32)(32(b a b a --+- C .)23)(32(a b b a +-- ? D .)23)(32(b a b a +- 2.下列式子中,不成立的是:(?? ) A.22)())((z y x z y x z y x --=--+- B .2 2)())((z y x z y x z y x --=---+ C .22)())((y z x z y x z y x --=-+-- D .22)())((z y x z y x z y x +-=++-- 3.( )4422916)43(x y y x -=-- ,括号内应填入下式中的(?? ) . A .)43(2 2 y x - ? B .2 2 34x y - ? C .2 2 43y x -- ? D .2 2 43y x + 4.对于任意整数n ,能整除代数式)2)(2()3)(3(-+--+n n n n 的整数是(?? ). A .4? B .3? C .5? D .2 5.在))((b a y x b a y x ++--++ 的计算中,第一步正确的是(?? ). A .2 2 )()(a y b x --+ B .))((2 2 2 2 b a y x -- C .22)()(b y a x --+ D .2 2)()(a y b x +-- 6.计算)1)(1)(1)(1(2 4-+++x x x x 的结果是( ). A .18 +x ? B .14 +x ? C .8 )1(+x ?? D .18 -x 7.)1)(1)(1(2 22++-+c b a abc abc 的结果是( ).

初等数论 第五章 二次同余式与平方剩余

初等数论第五章二次同余式与平 方剩余 第五章二次同余式与平方剩余第五章二次同余式与平方剩余§1二次同余式与平方剩余二次同余式的一般形式是ax2?bx?c?0(modm),a??0(modm)(1)下面讨论它的解的情况。?k?1?2令m?p1p2?pk,则(1)有解的充要条件为ax2?bx?c?0(modpi?i),i?1,2,?,k有解,而解f(x)?ax2?bx?c?0(modp?),p为质数(2)又可以归结为解f(x)?ax2?bx?c?0(modp),p为质数(3)。当p?2时,同余式(3)极易求解,因此,我们只需讨论二次同余式f(x)?ax2?bx?c?0(modp),p为奇质数(4)若p?|a,用4a乘(4)再配方得(2ax?b)2?4ac?b2?0(modp),令y?2ax?b,A?b2?4ac,得y2?A?0(modp)可以证明:同余式(4)和(5)是等价的。证明

必要性显然;反之,设(5)有一解y?y0,因为(p,2a)?1,所以2ax?b?y0(modp)有解,即(4)有解。以上讨论可知,二次同余式可以化为x2?a(modp),p为奇质数(6)(5)来求解,当p|a时,(6)仅有一个解x?0(modp),所以我们下面总假定p?|a或(p,a)?1。因此,下面主要研究形如x2?a(modp),(p,a)?1,p为奇质数同余式。 (7)的定义若同余式x2?a(modp),(a,p)?1,p为奇质数有解,则a 叫做模p的平方剩余(二次剩余),若无解,则a叫做模p的平方非剩余(二次非剩余)。定理1(欧拉判别条件)若(a,p)?1,则a是模p的平方剩余的充要条件为ap?12?1(modp);a是模p的平方非剩余的充要条件为a- 1 - p?12??1(modp)。若a是模p的平方剩余,则(7)式恰有两解。第五章二次同余式与平方剩余证明(1)设a是模p 的平方剩余,则同余式x2?a(modp),(a,p)?1有解,设为?,于是??a(modp),从而欧拉定理可知反之,若

奥数第二十五讲 同余式

第二十五讲* 同余式 数论有它自己的代数,称为同余理论.最先引进同余的概念与记号的是数学王子高斯. 先看一个游戏:有n+1个空格排成一行,第一格中放入一枚棋子,甲乙两人交替移动棋子,每步可前移1,2或3格,以先到最后一格者为胜.问是先走者胜还是后走者胜?应该怎样走才能取胜? 取胜之道是:你只要设法使余下的空格数是4的倍数,以后你的对手若走i格(i=1,2,3),你走4-i格,即每一次交替,共走了4格.最后只剩4个空格时,你的对手就必输无疑了.因此,若n除以4的余数是1,2或3时,那么先走者甲胜;若n除以4的余数是0的话,那么后走者乙胜. 在这个游戏里,我们可以看出,有时我们不必去关心一个数是多少,而要关心这个数用m除后的余数是什么.又例如,1999年元旦是星期五,1999年有365天,365=7×52+1,所以2000年的元旦是星期六.这里我们关心的也是余数.这一讲中,我们将介绍同余的概念、性质及一些简单的应用. 同余,顾名思义,就是余数相同. 定义1给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m同余,记作 a≡b(modm), 并读作a同余b,模m. 若a与b对模m同余,由定义1,有 a=mq1+r,b=mq2+r. 所以 a-b=m(q1-q2), 即 m|a-b. 反之,若m|a-b,设 a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1, 则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2. 于是,我们得到同余的另一个等价定义: 定义2若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a与b对模m同余.

《数论算法》教案 4章(二次同余方程与平方剩余)

第 4 章 二次同余方程与平方剩余 4.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1) (二) 化简 设m =k k p p p α αα 2 121,则方程(1)等价于同余方程 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp )

变量代换, y =2ax +b (3) 有 2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论 2x ≡a (mod αp ) (5) 【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9))

(完整版)平方差公式练习题精选(含答案)

(1)(m+2) (m-2) (2)(1+3a) (1-3a) (3) (x+5y)(x-5y) (4)(y+3z) (y-3z) 2、利用平方差公式计算 (1)(5+6x) (5-6x) (2)(x-2y) (x+2y) (3)(-m+n)(-m-n) 3利用平方差公式计算 (1)(1)(-41x-y)(-4 1x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n 2 4、利用平方差公式计算 (1)(a+2)(a-2) (2)(3a+2b)(3a-2b) (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

(1)803×797 (2)398×402 7.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b) C.(1 3 a+b)(b- 1 3 a)D.(a2-b)(b2+a) 8.下列计算中,错误的有() ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2. A.1个B.2个C.3个D.4个 9.若x2-y2=30,且x-y=-5,则x+y的值是() A.5 B.6 C.-6 D.-5 10.(-2x+y)(-2x-y)=______. 11.(-3x2+2y2)(______)=9x4-4y4. 12.(a+b-1)(a-b+1)=(_____)2-(_____)2. 13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 14.计算:(a+2)(a2+4)(a4+16)(a-2).

相关主题
文本预览
相关文档 最新文档