当前位置:文档之家› 2.1 指数函数 新人教A版必修1优秀教案

2.1 指数函数 新人教A版必修1优秀教案

2.1  指数函数 新人教A版必修1优秀教案
2.1  指数函数 新人教A版必修1优秀教案

2.1 指数函数 新人教A 版必修1优秀教案

目录(共六个教案)

2.1

指数函数

约6课时

第二章 基本初等函数(Ⅰ)

本章教材分析

教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.

本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点),通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点);知道指数函数y=a x 与对数函数y=log a x 互为反函数(a >0,a≠1),初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 2

1的图象,了解它们的变化情况.

本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.

教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.

本章教学时间约需14课时,具体分配如下(仅供参考)

2.1 指数函数 约6课时 2.2 对数函数 约6课时 2.3 幂函数 约1课时

本章复习

约1课时

2.1 指数函数

2.1.1 指数与指数幂的运算

整体设计

教学分析

我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.

教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.

本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.

根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.

三维目标

1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.

2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.

3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.

4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.

重点难点

教学重点:

(1)分数指数幂和根式概念的理解.

(2)掌握并运用分数指数幂的运算性质.

(3)运用有理指数幂性质进行化简、求值.

教学难点:

(1)分数指数幂及根式概念的理解.

(2)有理指数幂性质的灵活应用.

课时安排

3课时

教学过程

第1课时指数与指数幂的运算(1)

导入新课

思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.

思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.

推进新课

新知探究

提出问题

(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?

(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?

(3)根据上面的结论我们能得到一般性的结论吗?

(4)可否用一个式子表达呢?

活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.

讨论结果:

(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.

(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.

(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.

(4)用一个式子表达是,若x n=a,则x叫a的n次方根.

教师板书n次方根的意义:

一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.

可以看出数的平方根、立方根的概念是n次方根的概念的特例.

提出问题

(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).

①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;

⑥0的7次方根;⑦a6的立方根.

(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?

(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?

(4)任何一个数a的偶次方根是否存在呢?

活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.

讨论结果:

(1)因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.

(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零. (3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.

(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.

类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:

①当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用n a表示,如果是负数,

表示,正的n次方根与负的n次方根合并写成±n a(a>0).

负的n次方根用n a

②n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.

③负数没有偶次方根;0的任何次方根都是零. 上面的文字语言可用下面的式子表示:

a 为正数:?????±.,,

,n

n a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数

a 为负数:?????.,,,次方根不存在

的为偶数次方根只有一个为

的为奇数n a n a n a n n

零的n 次方根为零,记为n 0=0.

可以看出数的平方根、立方根的性质是n 次方根的性质的特例.

思考根据n 次方根的性质能否举例说明上述几种情况? 活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.

解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-,而-27的4次方根不存在等.其中527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式. 根式的概念:

式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数. 思考

n

n a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么?

活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.

〔如33)3(-=327-=-3,44

)8(-=|-8|=8〕.

解答:根据n 次方根的意义,可得:(n a )n =a. 通过探究得到:n 为奇数,n n a =a.

n 为偶数,n

n

a =|a|=?

??<-≥.0,,0,

a a a a

因此我们得到n 次方根的运算性质:

①(n a )n =a.先开方,再乘方(同次),结果为被开方数.

②n 为奇数,n n a =a.先奇次乘方,再开方(同次),结果为被开方数. n 为偶数,n n a =|a|=a,???<-≥.

0,,0,

a a a a 先偶次乘方,再开方(同次),结果为被开方数的绝对值.

应用示例

思路1

例1求下列各式的值:

(1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2

)(b a -(a>b).

活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.

解:(1)33

)8(-=-8;

(2)2

)10(-=10;

(3)44

)3(π-=π-3;

(4)2

)(b a -=a-b(a>b).

点评:不注意n 的奇偶性对式子n n a 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用. 变式训练

求出下列各式的值:

(1)77

)2(-;

(2)33

)33(-a (a≤1);

(3)44

)33(-a .

解:(1)77

)2(-=-2,

(2)33

)33(-a (a≤1)=3a -3,

(3)4

4

)33(-a =?

??<-≥-.1,33,

1,33a a a a

点评:本题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.

思路2

例1下列各式中正确的是( )

(1)44a =a;

(2)62

)2(-=32-;

(3)a 0=1;

(4)105

)12(-=)12(-.

活动:教师提示,这是一道选择题,本题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.

解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n n a =|a|,故本题错.

(2)62

)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论

为62

)2(-=32,故本题错.

(3)a 0=1是有条件的,即a≠0,故本题也错.

(4)是一个正数的偶次方根,根据运算顺序也应如此,故本题正确.所以答案选(4).

点评:本题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.

例223++223-=_________

活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2

)2(221++=2

)21(+=2+1.

223-=122)2(2+-=2)12(-=2-1.

所以223++223-=22.

点评:不难看出223-与223+形式上有些特点,即是对称根式,是

B A 2±形式

的式子,我们总能找到办法把其化成一个完全平方式. 思考

上面的例2还有别的解法吗? 活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.

另解:利用整体思想,x=223++223-,

两边平方得x 2=3+22+3-22+2(223+)(223-)=6+22

2

)22(3-=6+2=8,所

以x=22.

点评:对双重二次根式,特别是

B A 2±形式的式子,我们总能找到办法将根号下面的式子

化成一个完全平方式,问题迎刃而解,另外对

B A B A 22-±+的式子,我们可以把它

们看成一个整体利用完全平方公式和平方差公式去解. 变式训练

若12a -a 2+=a-1,求a 的取值范围.

解:因为12a -a 2+=a-1,而12a -a 2+=2

)1(-a =|a-1|=a-1,

即a-1≥0, 所以a≥1.

点评:利用方根的运算性质转化为去绝对值符号,是解题的关键. 知能训练

(教师用多媒体显示在屏幕上) 1.以下说法正确的是( ) A.正数的n 次方根是一个正数 B.负数的n 次方根是一个负数 C.0的任何次方根都是零

D.a 的n 次方根用n a 表示(以上n >1且n ∈N *). 答案:C

2.化简下列各式:

(1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2

y)-(x .

答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.

3.计算407407-++=__________. 解:407407-++

=2

2

2

2

)2(252)5()2(252)5(+?-++?+ =22)25()25(-++

=5+2+5-2- =25. 答案:25 拓展提升

问题:n n a =a 与(n a )n =a (n >1,n ∈N )哪一个是恒等式,为什么?请举例说明.

活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.

通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论. 解答:①(n a )n =a (n >1,n ∈N ).

如果x n =a (n >1,且n ∈N )有意义,则无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以(n a )n =a 恒成立. 例如:(43)4=3,33)5(-=-5. ②n n a =??

?.

|,|,,为偶数当为奇数当n a n a

当n 为奇数时,a ∈R ,n n a =a 恒成立.

例如:5

52=2,55)2(-=-2.

当n 为偶数时,a ∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a ≥0,那么n n a =a.例如443=3,

4

0=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3.

即(n a na )n =a (n >1,n ∈N )是恒等式,n n a =a (n >1,n ∈N )是有条件的. 点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解. 课堂小结

学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上. 1.如果x n =a,那么x 叫a 的n 次方根,其中n >1且n ∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.

(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).

(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.

(3)负数没有偶次方根.0的任何次方根都是零.

2.掌握两个公式:n 为奇数时,(n a )n =a,n 为偶数时,n n a =|a|=??

?<-≥.

0,,0,

a a a a

作业

课本P 59习题2.1A 组 1. 补充作业:

1.化简下列各式:

(1)681;(2)1532-;(3)48x ;(4)642b a . 解:(1)681=643=323=39; (2)1532-=1552-=32-;

(3)48x =44

2)(x =x 2;

(4)642b a =622)|(|b a ?=32

||b a ?.

2.若5

2)8()5(---a a 的值为__________.

分析:因为5

2)8()5(---a a =a-5-8+a=2a-13.

答案:2a-13.

3.625625-++=__________.

分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,

不难看出625+=2

2)(3+=3+2.

同理625-=2

2)(3-=3-2.所以625++625-=23.

答案:23

设计感想

学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.

第2课时 指数与指数幂的运算(2)

导入新课

思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.

思路 2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂. 推进新课 新知探究 提出问题

(1)整数指数幂的运算性质是什么? (2)观察以下式子,并总结出规律:a >0, ①5

10

a

=352)(a =a 2

=a

5

10;

②8a =2

4)(a =a 4

=a 2

8; ③412a =44

3)(a =a 3=a 412; ④2

10

a

=225)(a =a 5

=a

2

10.

(3)利用(2)的规律,你能表示下列式子吗?

4

35,357,57a ,n m x (x>0,m,n ∈N *,且n>1).

(4)你能用方根的意义来解释(3)的式子吗? (5)你能推广到一般的情形吗?

活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.

讨论结果:(1)整数指数幂的运算性质:a n =a·a·a·…·a,a 0=1(a≠0);00无意义; a -n =

n a

1

(a≠0);a m ·a n =a m+n ;(a m )n =a mn ;(a n )m =a mn ;(ab)n =a n b n . (2)①a 2是a 10的5次方根;②a 4是a 8的2次方根;③a 3是a 12的4次方根;④a 5是a 10的2次方根.实质上①5

10

a =a

5

10,②8

a =a 2

8,③412

a

=a

4

12,④210

a

=a

2

10结果的a 的指数是2,4,3,5

分别写成了

510,28,412,5

10,形式上变了,本质没变. 根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).

(3)利用(2)的规律,435=543,357=735,57a =a 57,n m x =x n

m .

(4)53的四次方根是543,75的三次方根是735,a 7的五次方根是a 57,x m 的n 次方根是x n

m . 结果表明方根的结果和分数指数幂是相通的.

(5)如果a>0,那么a m 的n 次方根可表示为n a m =a n

m ,即a n

m =n a m (a>0,m,n ∈N *,n>1). 综上所述,我们得到正数的正分数指数幂的意义,教师板书:

规定:正数的正分数指数幂的意义是a m

n =n a m (a>0,m,n ∈N *,n>1).

提出问题

①负整数指数幂的意义是怎样规定的? ②你能得出负分数指数幂的意义吗?

③你认为应怎样规定零的分数指数幂的意义? ④综合上述,如何规定分数指数幂的意义?

⑤分数指数幂的意义中,为什么规定a >0,去掉这个规定会产生什么样的后果?

⑥既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?

活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a >0的必要性,教师及时作出评价. 讨论结果:①负整数指数幂的意义是:a -n =

n a

1

(a≠0),n ∈N *. ②既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.

规定:正数的负分数指数幂的意义是a

m

n -=

m

n a

1=

n

m

a 1

(a>0,m,n ∈N *,n>1).

③规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义. ④教师板书分数指数幂的意义.分数指数幂的意义就是:

正数的正分数指数幂的意义是a m

n =n m a (a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是a

m

n -=

m

n a

1=

n

m

a 1

(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.

⑤若没有a >0这个条件会怎样呢?

如(-1)3

1=3-1=-1,(-1)6

2=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a >0的条件,比如式子3a 2

=|a|3

2,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.

⑥规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: (1)a r ·a s =a r+s (a>0,r,s ∈Q ), (2)(a r )s =a rs (a>0,r,s ∈Q ), (3)(a·b)r =a r b r (a>0,b>0,r ∈Q ).

我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题. 应用示例

思路1

例1求值:①83

2;②25

2

1-

③(21)-5;④(81

16)43

-.

活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,

21写成2-1,81

16写成(32

)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①83

2=(23)32=23

23?=22=4; ②25

2

1

-=(52

)

2

1-

=5

)

2

1(2-?=5-1=

5

1; ③(

2

1)-5=(2-1)-5=2-1×(-5)=32; ④(81

16)43

-=(32))43

(4-?=(32)-3=827.

点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如83

2

=328=364=4. 例2用分数指数幂的形式表示下列各式.

a 3·a ;a 2·3

2a ;3a a (a>0).

活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3

·a 2

1

=a

2

13+

=a 2

7;

a 2·32a =a 2·

a 3

2=a 2

32+

=a 3

8;

3

a a =(a·a 31)2

1=(a 3

4)2

1=a 3

2.

点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.

例3计算下列各式(式中字母都是正数): (1)(2a 3

2b 2

1)(-6a 2

1b 3

1)÷(-3a 6

1b 6

5); (2)(m 4

1

n

83-)8.

活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交

流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.

解:(1)原式=[2×(-6)÷(-3)]a 612132-+b

6

53121-+=4ab 0=4a;

(2)(m 4

1

n

83-)8

=(m 41)8

(n

83-

)8

=m 84

1?n

88

3?-=m 2n -3

=32

n

m .

点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:

(1)33·33·6

3; (2)64

6

3

)12527(n

m . 解:(1)33·33·6

3=3·32

1·33

1·361=3

6

131211+++=32=9;

(2)64

6

3

)12527(n

m =(6

4

63

)12527(n m =(6

4633

3

)53(n m =6

466436

43

6

43

)()5()()3(n m =42

259n m =42259-n m . 例4计算下列各式: (1)(125253-)÷425; (2)

3

2

2a

a a ?(a >0).

活动:先由学生观察以上两个式子的特征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答. 解:(1)原式=(253

1-12521)÷2541=(532-523)÷52

1 =5

2

1

32--5

2

123-=56

1-5=65-5;

(2)

32

2a a a ?=

3

22

12a

a a ?=a

3

2212--=a 6

5=65a .

思路2

例1比较5,311,6123的大小.

活动:学生努力思考,积极交流,教师引导学生解题的思路,由于根指数不同,应化成统一的根指

数,才能进行比较,又因为根指数最大的是6,所以我们应化为六次根式,然后,只看被开方数的大小就可以了.

解:因为5=635=6125,311=6121,而125>123>121,所以6125>6123>6121. 所以5>6123>311.

点评:把根指数统一是比较几个根式大小的常用方法. 例2求下列各式的值:

(1)4

3

2981?; (2)23×35.1×612.

活动:学生观察以上几个式子的特征,既有分数指数幂又有根式,应把根式转化为分数指数幂后再由运算法则计算,如果根式中根指数不同,也应化成分数指数幂,然后分析解答,对(1)应由里往外4

3

2981?=4

2

1344

)3(3?,对(2)化为同底的分数指数幂,及时对学生活动进行评价.

解:(1)4

3

2981?=[34×(334)21]4

1=(3

3

24+

)41=(3

3

14)41=36

7=633;

(2)6

3125.132??=2×32

1

×(2

3)31

×(3×22)61

=231

311++·36

1

3121++=2×3=6.

例3计算下列各式的值: (1)[(a

2

3

-b 2)-1

·(ab -3)21(b 21)7]3

1;

(2)

1

112

12

1-+-

++-

-a a a a

a

;

(3)14323

)(---÷a b b a

.

活动:先由学生观察以上三个式子的特征,然后交流解题的方法,把根式用分数指数幂写出,利用指数的运算性质去计算,教师引导学生,强化解题步骤,对(1)先进行积的乘方,再进行同底数幂的乘法,最后再乘方,或先都乘方,再进行同底数幂的乘法,对(2)把分数指数化为根式,然后通分化简,对(3)把根式化为分数指数,进行积的乘方,再进行同底数幂的运算. 解:(1)原式=(a

2

3-b 2)

3

1-

(ab -3)6

1·(b 21)37=a 2

1b

3

2-

a 6

1b

2

1-

b 67=a

6

121+b

6

72132+--=a 32b 0=a 3

2;

另解:原式=(a 23b -2

a 2

1b 2

3-·b 27)3

1

=(a

2

123+b

2

7232+

--)31=(a 2b 0)3

1=a 3

2;

(2)原式=

1

111

1-+

-

++

a a

a a

a =

)

1(1-+a a a =

)

1(11-+-

a a a a

=

)1

1

1(1-+-

a a a

= )

1(2

--a a =

)1(2a a a

-;

(3)原式=(a 2

1

b 3

2)-3

÷(b -4a -1)2

1

=a

2

3-

b -2÷b -2

a

2

1

-

=a

2

123+-b -2+2=a -1=

a

1. 例4已知a >0,对于0≤r≤8,r ∈N *,式子(a )8-r ·

)1(4a

r

能化为关于a 的整数指数幂的情形有几种? 活动:学生审题,考虑与本节知识的联系,教师引导解题思路,把根式转化为分数指数幂后再由运算法则计算,即先把根式转化为分数指数幂,再进行幂的乘方,化为关于a 的指数幂的情形,再讨论,及时评价学生的作法.

解:(a )8-r

·)1

(4a

r =a 2

8r -·a

4

r

-

=a

4

48r

r --=a

4

316r -.

16-3r 能被4整除才行,因此r=0,4,8时上式为关于a 的整数指数幂. 点评:本题中确定整数的指数幂时,可由范围的从小到大依次验证,决定取舍.利用分数指数幂进行根式运算时,结果可以化为根式形式或保留分数指数幂的形式. 例5已知f (x )=e x -e -x ,g (x )=e x +e -x . (1)求[f (x )]2-[g (x )]2的值; (2)设f (x )f (y )=4,g (x )g (y )=8,求

)

()

(y x g y x g -+的值.

活动:学生观察题目的特点,说出解题的办法,整体代入或利用公式,建立方程,求解未知,如果学生有难度,教师可以提示引导,对(1)为平方差,利用公式因式分解可将代数式化简,对(2)难以发现已知和未知的关系,可写出具体算式,予以探求. 解:(1)[f (x )]2-[g (x )]2=[f (x )+g (x )]·[f (x )-g (x )] =(e x -e -x +e x +e -x )(e x -e -x -e x -e -x )=2e x (-2e -x )=-4e 0=-4; 另解:(1)[f (x )]2-[g (x )]2=(e x -e -x )2-(e x +e -x )2 =e 2x -2e x e -x +e -2x-e 2x -2e x e -x -e -2x =-4e x -x=-4e 0=-4; (2)f (x )·f (y )=(e x -e -x )(e y -e -y )=e x +y+e -(x+y)-e x -y -e -(x-y)=g (x+y )-g (x -y )=4, 同理可得g (x )g (y )=g (x+y )+g (x -y )=8,

得方程组?

??=++=+8,y)-g(x y)g(x 4,

y)-g(x -y)g(x 解得g (x+y )=6,g (x -y )=2.

所以

)()(y x g y x g -+=2

6=3.

点评:将已知条件变形为关于所求量g (x+y )与g (x -y )的方程组,从而使问题得以解决,这种处理问题的方法在数学上称之为方程法,方程法所体现的数学思想即方程思想,是数学中重要的数学思想. 知能训练

课本P 54练习 1、2、3. [补充练习]

教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.

1.(1)下列运算中,正确的是( ) A.a 2·a 3=a 6 B.(-a 2)3=(-a 3)2 C.(a -1)0=0 D.(-a 2)3=-a 6

(2)下列各式①42)4(n -,②41

2)4(+-n ③54a ,④45a (各式的n ∈N ,a ∈R )中,有意义的是

( )

A.①②

B.①③

C.①②③④

D.①③④ (3)24

3

6234

6)()(

a a ?等于( )

A.a

B.a 2

C.a 3

D.a 4

(4)把根式-232

)(--b a 改写成分数指数幂的形式为( )

A.-2(a-b)5

2-

B.-2(a-b)

2

5-

C.-2(a

5

2--b 5

2-) D.-2(a

2

5-

-b 2

5-)

(5)化简(a 3

2b 2

1)(-3a 2

1b 3

1)÷(3

1a 61

b 65

)的结果是( )

A.6a

B.-a

C.-9a

D.9a 2.计算:(1)0.027

3

1--(-7

1

)-2+25643

-3-1+(2-1)0=________.

(2)设5x =4,5y =2,则52x -y =________.

3.已知x+y=12,xy=9且x <y,求

2

12

1212

1y

x y x +-的值.

答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

3.解:

2

12

12121y

x y x +-=

)

)(())((2

12

12

12

12

1212121y x y x y x y x -+--=

y

x y

y x x -+-2

1212.

因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因为x <y,所以x-y=-2×33=-63.所以原式3

6612--=3

3

-

. 拓展提升

1.化简

1

1

11

13

13

13

13

13

2---

+++

++-x x

x x x x x x .

活动:学生观察式子特点,考虑x 的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到: x-1=(x 31)3

-13

=(x 31-1)·(x 32+x 3

1+1); x+1=(x 31)3+13

=(x 31+1)·(x 32-x 3

1+1); x-x 3

1

=x 3

1[(x 31)2

-1]=x 3

1(x 3

1-1)(x 3

1+1). 构建解题思路教师适时启发提示.

解:

1

1

11

13

13

13

13

13

2---

+++

++-x x

x x x x x x =

1

1

1)(1

1

)(3

13

132313

13

3

313

13

23

3

31---

+++

++-x x x x x x x x x

=

)

1()

1)(1(1

)

1)(1(1

)

1)(1(3

13

1313

13

13

13

23

12

13

23

13231-+--

++-++

++++-x x x x x x x x x x x x x

=x 31-1+x 32-x 31+1-x 32-x 31=-x 3

1. 点拨:解这类题目,要注意运用以下公式, (a 21-b 21)(a 21+b 2

1)=a-b, (a 2

1±b 21)2=a±2a 21b 2

1+b, (a 3

1±b 3

1)(a

3

2 a 31b 31+b 3

2)=a±b.

2.已知a 2

1

+a 2

1-=3,探究下列各式的值的求法.

(1)a+a -1;(2)a 2+a -2;(3)

2

12

1232

3-

-

--a

a a a .

解:(1)将a 2

1+a

2

1-

=3,两边平方,得a+a -1+2=9,即a+a -1=7;

(2)将a+a -1=7两边平方,得a 2+a -2+2=49,即a 2+a -2=47;

(3)由于a 2

3-a

2

3-

=(a 21)3

-(a

21-

)3

,

所以有

2

12

12

32

3--

--a

a a a =

2

12

12

12

112

12

1)

)((----

-++-a

a a a a a a a =a+a -1+1=8.

点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值. 课堂小结 活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:

(1)分数指数幂的意义就是:正数的正分数指数幂的意义是a m

n =n a m (a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是a

m

n -=

m

n a

1=

n

m

a 1

(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的

负分数指数幂没有意义.

(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. (3)有理数指数幂的运算性质:对任意的有理数r 、s,均有下面的运算性质: ①a r ·a s =a r+s (a>0,r,s ∈Q ), ②(a r )s =a rs (a>0,r,s ∈Q ), ③(a·b)r =a r b r (a>0,b>0,r ∈Q ). (4)说明两点:

①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.

②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用(a n )n

m =n

m n a

?

=a m 来计算.

作业

课本P 59习题2.1A 组 2、4.

设计感想

本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务.

第3课时 指数与指数幂的运算(3)

导入新课 思路1.

同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是——实数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题(指数与指数幂的运算(3))之无理数指数幂. 思路2.

同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本堂课的课题.

推进新课

新知探究

提出问题

①我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

②多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?

2的过剩近似值5 52的近似值

1.5 11.18033989

1.42 9.82935328

1.415 9.750851808

1.4143 9.73987262

1.41422 9.738618643

1.414214 9.738524602

1.4142136 9.738518332

1.41421357 9.738517862

1.414213563 9.73817752

52的近似值2的不足近似值

9.518 269 694 1.4

9.672 669 973 1.41

9.735 171 039 1.414

9.738 305 174 1.414 2

9.738 461 907 1.414 213

9.738 508 928 1.414 213

9.738 516 765 1.414 213 5

9.738 517 705 1.414 213 56

9.738 517 736 1.414 213 562

③你能给上述思想起个名字吗?

④一个正数的无理数次幂到底是一个什么性质的数呢?如52,根据你学过的知识,能作出判断并合理地解释吗?

⑤借助上面的结论你能说出一般性的结论吗?

活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:

问题①从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.

问题②对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.

问题③上述方法实际上是无限接近,最后是逼近.

问题④对问题给予大胆猜测,从数轴的观点加以解释.

问题⑤在③④的基础上,推广到一般的情形,即由特殊到一般.

讨论结果:①1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而

1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值.

②第一个表:从大于2的方向逼近2时,52就从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向逼近52.

第二个表:从小于2的方向逼近2时,52就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向逼近52.

从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面52从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向接近52,而另一方面52从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向接近52,可以说从两个方向无限地接近52,

即逼近52,所以52是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.4143,51.41422,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示52的点靠近,但这个点一定在数轴上,由此我们可得到的结论是52一定是一个实数,即51.4<51.41<51.414<51.414 2<51.414 21<…<52<…<51.41422<51.4143<51.415<51.42<51.5. 充分表明52是一个实数.

③逼近思想,事实上里面含有极限的思想,这是以后要学的知识.

④根据②③我们可以推断52是一个实数,猜测一个正数的无理数次幂是一个实数.

⑤无理数指数幂的意义:

一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.

也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实

高中必修一指数和指数函数练习题及答案

指数和指数函数 一、选择题 1.( 36 9a )4(6 3 9a )4等于( ) (A)a 16 (B )a 8 (C )a 4 (D )a 2 2.若a>1,b<0,且ab +a -b =22,则ab -a-b 的值等于( ) (A)6 (B)±2 (C)-2 (D)2 3.函数f (x )=(a2 -1)x 在R 上是减函数,则a 的取值范围是( ) (A)1>a (B)2b,ab 0≠下列不等式(1)a 2 >b2 ,(2)2a >2b ,(3)b a 11<,(4)a 31>b 31 ,(5)(31)a<(3 1) b 中恒成立的有( ) (A)1个 (B)2个 (C)3个 (D )4个 7.函数y =1 21 2+-x x 是( ) (A)奇函数 (B )偶函数 (C)既奇又偶函数 (D)非奇非偶函数 8.函数y = 1 21 -x 的值域是( ) (A)(-1,∞) (B)(-,∞0)?(0,+∞) (C )(-1,+∞) (D)(-∞,-1)?(0,+∞) 9.下列函数中,值域为R + 的是( ) (A)y=5 x -21 (B )y=( 3 1)1-x (C)y=1)21(-x (D )y=x 21- 10.函数y=2 x x e e --的反函数是( ) (A )奇函数且在R + 上是减函数 (B)偶函数且在R+ 上是减函数 (C )奇函数且在R +上是增函数 (D)偶函数且在R+ 上是增函数 11.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B)(21)31<(21)32<(51 )32

必修一指数与指数函数

指数函数 典例分析 题型一 指数函数的定义与表示 【例1】 求下列函数的定义域 (1)32 x y -= (2)21 3 x y += (3)512x y ??= ??? (4)()10.7x y = 【例2】 求下列函数的定义域、值域 ⑴11 2 x y -= ; ⑵3x y -=; ⑶2 120.5x x y +-= 【例3】 求下列函数的定义域和值域: 1.x a y -=1 2.31 )2 1(+=x y 【例4】 求下列函数的定义域、值域 (1)11 0.4 x y -=; (2)y = (3)21x y =+ 【例5】 求下列函数的定义域 (1)13x y =; (2)y =

【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f , (3)f -的值. 【例7】 若1a >,0b >,且b b a a -+=b b a a --的值为( ) A B .2或2- C .2- D .2 题型二 指数函数的图象与性质 【例8】 已知1a b c >>>,比较下列各组数的大小: ①___b c a a ;②1b a ?? ??? 1c a ?? ??? ;②11 ___b c a a ;②__a a b c . 【例9】 比较下列各题中两个值的大小: ⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9. 【例10】 比较下列各题中两个值的大小 (1)0.80.733, (2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01, (4) 3.3 4.50.990.99, 【例11】 已知下列不等式,比较m 、n 的大小 (1) 22m n < (2)0.20.2m n > (3)()01m n a a a <<< (4)()1m n a a a >>

高中数学必修1《指数函数》说课稿

指数函数说课稿 尊敬的各位评委、各位老师:大家好! ◆ 我是来自说课的题目是《指数函数》 著名教育学家布鲁纳说过:“知识的获得是一个主动过程. 学习者不是信息的被动接受者,而是知识获取的主动参与者.”《数学课程标准》又提出数学教育要以有利于学生的全面发展为中心;以提供有价值的数学和倡导有意义的学习方式为基本点. 本节课的设计正是以此为理念,在整个授课过程中努力体现学生的主体地位,使学生亲自参与获取知识和技能的全过程,亲身体验知识的发生和发展,从而激发学生数学学习兴趣,培养学生运用数学的意识与能力◆ 下面我将从几个部分具体阐述对本节课的分析和设计。 第一部分、教学内容分析◆ 二、教材分析 1.本节教材的地位、作用 本节课是《普通高中课程标准实验教科书(苏教版)数学必修1》第二章第二节第1课时《指数函数》。因为我所教的学生是省一级示范学校的平行班,根据学生的实际情况,同时也为了理顺知识间的逻辑关系,让学生能在观察、探究、比较、识别中把握概念和性质的内涵,教学中我对这部分内容进行了整合处理,我将《指数函数》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。教材在之前的学习中给出了两个实际例子(细胞分裂和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但从学生学习的角度看,学生感受指数函数的实际背景的知识储备仍不够丰富,理解和掌握这些 内容仍有一定难度,因此, 教师在进行这一内容的教学时,不可拔高要求,追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展、完善。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。 2.教学目标 ⑴知识与技能: 初步理解指数函数的概念和意义;能够借助计算器画出具体的指数函数的图像,探索并理解指数函数的单调的特点。 从实例探究中感知指数函数的概念,并体会指数函数是一类重要的函数模型。 利用计算工具比较指数函数增长差异,体会指数等不同函数的类型增长的含义。 ⑵过程与方法:

高一数学必修一指数函数、对数函数习题精讲

指数函数、对数函数习题精讲 一、指数及对数运算 [例1](1)已知x 21 +x 21-=3,求3 2222323++++--x x x x 的值 (2)已知lg(x +y )+lg(2x +3y )-lg3=lg4+lg x +lg y ,求y x 值. (1)【分析】 由分数指数幂运算性质可求得x 23+x 23 -和x 2+x -2的值. 【解】 ∵x 21+x 21-=3 ∴x 23 +x 23 -=(x 21+x 21 -)3-3(x 21+x 21-)=33-3×3=18 x 2+x -2=(x +x -1)2-2=[(x 21+x 21 -)2-2]2-2 =(32-2)2-2=47 ∴原式= 347218++=5 2 (2)【分析】 注意x 、y 取值范围,去掉对数符号,找到x 、y 关系式. 【解】 由题意可得x >0,y >0,由对数运算法则得 lg(x +y )(2x +3y )=lg(12xy ) 则(x +y )(2x +3y )=12xy (2x -y )(x -3y )=0 即2x =y 或x =3y 故y x =21或y x =3 二、指数函数、对数函数的性质应用 [例2]已知函数y =log a 1(a 2x )·log 2a ( ax 1)(2≤x ≤4)的最大值为0,最小值为-81,求a 的值. 【解】 y =log a 1(a 2x )·log 2a ( ax 1)=-log a (a 2x )[-21log a (ax )] = 21(2+log a x )(1+log a x )=21(log a x +23)2-8 1 ∵2≤x ≤4且-8 1≤y ≤0 ∴log a x +23=0,即x =a 23-时,y min =-81

高中必修一指数和指数函数练习题及答案

指数和指数函数 一、选择题 1.( 36 9a )4(6 3 9a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.若a>1,b<0,且a b +a -b =22,则a b -a -b 的值等于( ) (A )6 (B )±2 (C )-2 (D )2 3.函数f (x )=(a 2 -1)x 在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2b,ab 0≠下列不等式(1)a 2>b 2,(2)2a >2b ,(3)b a 11<,(4)a 31> b 31 ,(5)(31)a <(31) b 中恒成立的有( ) (A )1个 (B )2个 (C )3个 (D )4个 7.函数y=1 21 2+-x x 是( ) (A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y= 1 21 -x 的值域是( ) (A )(-1,∞) (B )(-,∞0)?(0,+∞) (C )(-1,+∞) (D )(-∞,-1)?(0,+∞) 9.下列函数中,值域为R + 的是( ) (A )y=5 x -21 (B )y=( 31)1-x (C )y=1)2 1(-x (D )y=x 21- 10.函数y=2 x x e e --的反函数是( ) (A )奇函数且在R + 上是减函数 (B )偶函数且在R + 上是减函数 (C )奇函数且在R +上是增函数 (D )偶函数且在R + 上是增函数 11.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)32

必修一:指数与指数函数

指数与指数函数 级级: 姓名: 学号: 得分: 一、选择题(每题5分,共40分) 1.(369a )4(639a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.下列函数中,定义域为R 的是( ) (A )y=5x -21 (B )y=(3 1)1-x (C )y=1)2 1 (-x (D )y=x 21- 3.已知01,b <0 B .a >1,b >0 C .00 D .0a a 且)的图象经过二、三、四象限,则一定有 A.10<b B.1>a 且0>b C.10<a 且0

y A.a <b <1<c <d B.b <a <1<d <c C.1<a <b <c <d D.a <b <1<d <c 二、填空题(每题5分,共30分) 10.已知函数()14x f x a -=+的图像恒过定点P ,则点P 的坐标是___________ 11.方程96370x x -?-=的解是_________ 12.指数函数x a x f )1()(2-=是减函数,则实数a 的取值范围是 . 13.函数221x x y a a =+-(0>a 且1≠a )在区间]1,1[-上的最大值为14,a 的值是 14.计算:412121325.0320625.0])32.0()02.0()008.0()9 45()833[(÷?÷+---_______________ 15.若()10x f x =,则()3f =———————— 三、解答题(16/17/19题各5分,18题15分,共30分) 16.设关于x 的方程02 41=--+b x x 有实数解,求实数b 的取值范围。),1[+∞- 17.设0a 522-+x x . 18.已知2()()1 x x a f x a a a -=-- (0>a 且1≠a ). (1)判断)(x f 的奇偶性;(2)讨论)(x f 的单调性;(3)当]1,1[-∈x 时,b x f ≥)(恒成立,求b 的取值范围。 19.若函数4323x x y =-+的值域为[]1,7,试确定x 的取值范围。

北师大版数学高一必修1练习 指数函数及其性质的应用

[A 基础达标] 1.当x ∈[-1,1]时,f (x )=3x -2的值域是( ) A.??? ?-53,1 B .[-1,1] C.????1,53 D .[0,1] 解析:选A.f (x )在R 上是增函数,由f (-1)=-53 ,f (1)=1得当x ∈[-1,1]时,f (x )=3x -2的值域是??? ?-53,1. 2.设f (x )=????12|x |,x ∈R ,那么f (x )是( ) A .奇函数且在(0,+∞)上是增函数 B .偶函数且在(0,+∞)上是增函数 C .奇函数且在(0,+∞)上是减函数 D .偶函数且在(0,+∞)上是减函数 解析:选D.f (x )的定义域为R ,f (-x )=f (x ),所以f (x )为偶函数,排除A 、C ;当x >0时,y =????12x 为减函数,排除B.故选D. 3.函数y =6x 与y =-6-x 的图像( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y =x 对称 解析:选C.y =f (x )与y =-f (-x )的图像关于原点对称. 4.函数y =????12x 2-2在下列哪个区间上是减少的( ) A .(-∞,0] B .[0,+∞) C .(-∞,2] D .[2,+∞) 解析:选B.设u =x 2-2,u 在(-∞,0]是减函数,在[0,+∞)上是增加的,y =????12u 是 减函数, 所以y =????12x 2 -2在[0,+∞)上是减少的.

5.下列图像中,二次函数y =ax 2+bx 与指数函数y = ????b a x 的图像只可能是( ) 解析:选A.由指数函数图像可以看出0

人教版高中数学必修一《指数函数及其性质》教案

指数函数及其性质教案 一、教学目的 1、使学生掌握指数函数的概念、图象和性质;能初步简单应用。 2、使学生理解数形结合的基本数学思想方法,培养学生观察、联想、类 比、猜测、归纳的能力。 3、使学生体验从特殊到一般的学习规律,认识事物之间的普遍联系与相 互转化,培养学生用联系的观点看问题。 4、通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、 概括、分析、综合的能力。 二、教学重点、难点 教学重点:指数函数的定义、图象、性质. 教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。 三、教具、学具准备: 多媒体课件:使用多媒体教学手段,增大教学容量和直观性,提高教学效率与质量。 四、教学方法 遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。 五、学法指导 1.再现原有认知结构。在引入两个实例后,请学生回忆有关指数的概 念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。 2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到 分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。 3.在互相交流和自主探究中获得发展。在实例的课堂导入、指数函数 的性质研究、例题与训练、课内小结等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。 4.注意学习过程的循序渐进。在概念、图象、性质、应用的过程中按 照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。 六、教学过程 1、复习回顾,以旧悟新 函数的三要素是什么?函数的单调性反映了函数哪方面的特征? 答:函数的三要素包括:定义域、值域、对应法则。函数的单调性反映了函数值随自变量变化而发生变化的一种趋势,例如:某个函数当自变量取值增大时对应的函数值也增大则表明此函数为增函数,图象上反应出来越往右图象

高中数学必修一《指数函数及其性质》说

人教版高中数学必修一《指数函数及其性质》说课稿 各位评委,你们好,今天我说课的内容是普通高中课程标准实验教科书数学必修的第1个模块中第二章的2.1.2指数函数及其性质的第一节课。 下面我从教材分析;教学目标分析;教法、学法分析;教学过程分析;板书设计分析;评价分析等六个方面对本设计进行说明。 一、教材分析 1、教材的地位与作用 (1)本节内容既是函数内容的深化,又是今后学习对数函数、三角函数的基础,具有非常高的实用价值,在教材中起到了承上启下的关键作用。 (2)在指数函数的研究过程中蕴含了数形结合、分类讨论、归纳推理、演绎推理等数学思想方法,通过学习可以帮助学生进一步理解函数,培养学生的函数应用意识,增强学生对数学的兴趣。 2、教材处理 根据学生的认知规律,本节课从具体到抽象,从特殊到一般,由浅入深地进行教学,使学生顺利地掌握知识,发展能力。在教学过程中,运用多媒体辅助教学,提高教学效率。本节教材我分两节完成,第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。本节课是第一课时。 3、教学重点、难点 教学重点:指数函数的定义、图象、性质. 教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。 4、教具、学具准备:多媒体课件。 二、教学目标分析 根据教材特点及教学大纲要求,我认为学生通过本节内容的学习要达到以下目标: 1、知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题; 2、能力目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力; 3、品德目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。 三、教法、学法分析 1、教法分析 遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。 2、学法指导 本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

高中数学必修一指数与指数函数练习题及答案基础题

指数与指数函数 一、选择题: 1已知集合11 -11=x|24,}2 x M N x Z +=<<∈{,},{ 则M N ?等于 A -11{,} B -1{} C 0{} D -10{,} 1、化简11111 32168421212121212-----??????????+++++ ?????????? ?????????,结果是( )A 、1 132 1122--??- ? ?? B 、1 13212--??- ??? C 、1 3212-- D 、1321122-??- ??? 2、44366399 a a 等于( )A 、16 a B 、8 a C 、4 a D 、2 a 4、函数 ()2 ()1x f x a =-在R 上是减函数, 则a 的取值范围是( )A 、1>a B 、2

必修一指数函数教案

1对1个性化教案 学生 学 校 年 级 教师 张玉妮 授课日期 授课时段 课题 指数函数 重点 难点 教学步骤及教学内容 【错题再练】 【知识梳理】 一、指数函数的概念 一般地,函数 )1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 指数函数的特征:(1)系数:1(2)底数:常数,且是不等于1的正实数(3)指数:仅是自变量x (4)定义域:R 注意:○1 指数函数的定义是一个形式定义 ○2 注意指数函数的底数的取值范围,底数为什么不能是负数、零和1. 例题 31 171)6(;3 )5(;)4(;)2()3(;2)2(;2211x y y x y y y y x x x x =====?? ? ???=- -π)(数的是() 、下列函数中是指数函 2、已知指数函数y=(m2+m+1)·x )51(,则m=( ) 课堂练习 1、指出下列函数中,哪些是指数函数: )1,2 1 ()12()7(;)6(;24)5(;)4(;)4()3(;)2(;414≠>-====-===a a x a y x y y y y x y y x x x x x 且)(π

1 0.3.1.31.)2(22≠>====-=a a D a C a B a a A a a y x 且或是指数函数,则()、函数 二、指数函数的图象和性质 注意内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 指数函数的图象如右图: 4.指数函数的性质 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都在x 轴上方 函数的值域为R+ 函数图象都过定点(0,1) 1a 0= 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 1a ,0x x >> 1a ,0x x <> 在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1 1a ,0x x << 1a ,0x x >< 图象上升趋势是越来越陡 图象上升趋势是越来越缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢; 利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上, )1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数 )1a 0a (a )x (f x ≠>=且,总有a )1(f =;

高一数学必修一指数与指数函数测试题

高一数学必修一指数 与指数函数测试题Revised on November 25, 2020

高一数学必修一指数与指数函数测试题 一、选择题: 1、化简111 1132 16 8 4 2 12 12121212-----? ?????????+++++ ????????? ? ???? ?? ???,结果是()A 、1 132 1122--??- ???B 、1 132 12--??- ???C 、1 3212--D 、1321122-??- ??? 2 、44等于()A 、16a B 、8a C 、4a D 、 2a 3、若1,0a b ><, 且b b a a -+=则b b a a --的值等于()A 、6 B 、2± C 、2- D 、24、 函数()2()1x f x a =-在R 上是减函数,则a 的取值范围是()A 、1>a B 、2≠,下列不等式(1)22a b >;(2)22a b >;(3)b a 1 1<; (4)113 3 a b >;(5)1133a b ????< ? ????? 中恒成立的有()A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是()A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数9、函数121 x y =-的值域是()A 、(),1-∞B 、()(),00,-∞+∞C 、()1,-+∞D 、()(,1)0,-∞-+∞10、已知 01,1a b <<<-,则函数x y a b =+的图像必定不经过()A 、第一象限B 、第二象限C 、第三象限D 、第四象限11、2()1()(0)21x F x f x x ? ?=+?≠ ?-?? 是偶函数,且()f x 不恒等于零,则 ()f x ()A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不 是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为() A 、(1%)na b - B 、(1%)a nb - C 、[1(%)]n a b - D 、(1%)n a b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若103,104x y ==,则10x y -=。

高中数学必修1 指数函数教案1(高一数学)

指数函数教案1(高一数学) 教学目标 1. 理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用. 2. 通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法. 3. 通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣. 教学重点和难点 重点是理解指数函数的定义,把握图象和性质. 难点是认识底数对函数值影响的认识. 教学过程 一、复习回顾,新课引入 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出 细胞分裂 之间的函数关系式吗? 与 与之间的关系式,可以表示为. 由学生回答: 问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子 次后绳子剩余的长度为米,试写出与之间的函数关系. 的一半,……剪了 由学生回答:. 在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数. 二、师生互动,新课讲解: 1.定义:形如的函数称为指数函数. 2.几点说明 (1) 关于对的规定: 教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有 会有什么问题?如,此时,等在实 困难,可将问题分解为若 数范围内相应的函数值不存在. 若 x a对于都无意义,若则无论取何值,它总是1,对它没有 且. 研究的必要.为了避免上述各种情况的发生,所以规定 (2)关于指数函数的定义域 教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实 当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为.扩充的另一个原因是因为使她它更具代表更有应用价值. (3)关于是否是指数函数的判断

人教版必修一指数函数说课稿第一课时

§2.1.2指数函数及其性质 第一课时(说课) 各位评委、老师,大家好! 今天我说课的课题是:人教A版普通高中课程标准实验教科书《数学》, 必修一第二章第二节“指数函数及其性质”的第一课时——指数函数的定义、 图象及性质.下面我将从教材分析,教法学法分析、教学过程分析、板书设 计、教学反思几个方面加以说明. 一、教材分析 1、教材的地位和作用 (1)函数是高中数学学习的重点和难点,函数思想贯穿于整个高中数学之中; (2)学生已掌握函数的一般性质和简单的指数运算; (3)研究指数函数,可以进一步深化学生对函数概念的理解与认识; (4)为研究对数函数打下基础. 2、教学目标 (新课标指出教学目标应包括知识与技能、过程与方法和情感态度与价值观这三个方面,而这三维目标又应是紧密联系的一个有机整体, 学生学会知识与技能的过程也同时成为学生学会学习,形成正确的价值观的过程.以此为指导我制定了以下的教学目标) 1)知识与技能: 了解指数函数模型的实际背景,理解指数函数的概念和意义,掌握指数函数的图象、性质及其简单应用; 2)过程与方法: 借助计算器或计算机画出具体指数函数的图象,根据图象归纳出指数函数的性质,体会数形结合和分类讨论思想,体验从特殊到一般的学习方法; 3)、情感、态度与价值观: (通过本节课的学习使学生在数学活动中感受数学思想方法之美,体会数学思想方法之重要,并培养学生主动学习的意识). 3、教学的重点和难点 教学重点: 指数函数的定义、性质及简单的应用.

教学难点: 指数函数图象和性质,以及指数函数图象与底数的关系. 二、教法学法分析 1、学情分析 1)知识层面:学生在初中已经掌握了用描点法描绘函数图象的方法,通过第一章集合与函数概念的学习后初步具备了数形结合的思想. 2)能力层面:学生已经初步掌握了函数的基本性质和简单的指数运算技能. 3)情感层面:学生对数学新内容的学习有一定的兴趣和积极性. 4)不足之处:学生的分析能力和概括能力不是很强. 2、教法分析: 1)教学方法:探究式的教学(本节课我采用“探究式”的教学方法,通过教师在教学过程中的点拨,引导学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和同化,培养学生的观察、分析、归纳等思维能力) 2)教学工具:利用多媒体辅助教学(并充分利用多媒体辅助教学) (从指数函数的研究过程中得到相应结论固然重要,但是更重要的是应该使学生了解系统研究一类函数的方法,使得他们以后可以迁移到其他函数的研究中去.) 3、学法分析 1)观察、思考问题 2)描点画图 3)观察图像、合作交流总结出指数函数的性质 (先让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关.再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,最后观察图像、合作交流总结出指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力.) 三、教学过程分析 总体设计:引入—讲授新课—课堂练习—课时小结—课后作业—教学反思 具体安排: (一)引入(5分钟)

新课标人教版高中数学必修一 2.1基本初等函数--指数函数 教学设计

2.1 指数函数 [教学目标] 1.通过具体实例了解指数函数模型的实际背景. 2.理解有理指数幂的含义,理解扩张指数范围的必要性. 3.通过具体实例了解实数指数幂的意义,掌握幂的运算. 4.理解指数函数的概念和意义. 5.能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点. 6.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型. [教学要求] 指数函数是本章的重点内容之一,也是高中新引进的第一个基本初等函数.学习指数函数时,建议首先通过实际问题引入分数指数幂,为此先将平方根与立方根的概念扩充到n 次方根,将二次根式的概念扩充到一般根式的概念,然后进一步介绍分数指数幂及其运算性质,最后结合具体实例,通过有理数幂的方法介绍了无理指数幂的意义,从而将指数的取值范围扩充到了实数.在实数指数幂的基础上,学习指数函数及其图象和性质. 教学中应通过具体的实例从正整数指数幂开始到现实中出现的分数指数幂,引出指数的取值范围需要进行必要的扩充. 根式是教学的一个难点,教材第一部分安排根式这部分内容,为讲分数指数幂做准备,所以只需要讲根式的概念、方根的性质.为了分散难点,在教学中可以适当放慢进度,多举几个具体的例子,之后再给出n 次方根的一般定义.为突破方根的性质的难点,要抓住立方根与平方根的性质,通过探究得到当n 分奇偶数时方根的性质. 分数指数幂是教学上的又一个难点,也是指数概念的又一次推广.教学时应注意循序渐进.教学中要让学生反复理解分数指数幂的意义,明确它是根式的一种新的写法. 教科书通过比较本节开始时的问题引入指数函数,教学中要让学生体会指数函数的概念来自实践,并体会其中蕴含的函数关系,可引导学生在探究中获得函数的共同特征,这样就可以很自然地给指数函数下定义了. 教学中注意对底数规定的合理性解释:0>a 且1≠a . 在理解指数函数定义的基础上,建议通过列表描点绘图或者利用信息技术绘图,教学中

必修一指数与指数函数总结

第二章 第一节 指数计算与指数函数 一、 指数计算公式:()Q s r a ∈>,,0 练习 计算下列各式的值: (1))4()3)((6 36131212132 b a b a b a ÷- (2)() 3 22 1 75.00 3 129721687064 .0+?? ? ??++??? ??--- (3)4 21 03 3 )2 1(25.0)21()4(--?+-- (4)33)3(625π-+- 2.已知31 =+-x x , 则=+-22x x 已知23=a ,5 13=b ,则=-b a 23=____________. 3. 若210 25x =,则10x -等于_________________ 1、2)(f 1 -=+x a x )10(≠>a a 且过定点______________ 2、函数y=4+a x -1的图象恒过定点P 的坐标是________________ 3.已知指数函数图像经过点)3,1(-p ,则=)3(f 题型2、 图像问题 1.下列说法中: ①任取x ∈R 都有3x >2x ; ②当a >1时,任取x ∈R 都有a x >a - x ;③函数y =(3)- x 是增函数;④函数y =2|x |的最小值为1 ;⑤在同一坐标系中,y =2x 与y =2- x 的图象对称于y 轴。正确的是___________________ 2.在同一坐标系下,函数y =a x ,y =b x ,y =c x ,y =d x 的图象如下图,则a 、b 、c 、d 、1之间从小到大的顺序是__________. 3、函数y =2x +k -1(a >0,a ≠1)的图象不经过第四象限,则k 的取值范围是__________.

高一数学必修一指数与指数函数测试题

高一数学必修一指数与指数函数测试题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高一数学必修一指数与指数函数测试题 一、选择题: 1、化简111 1132 16 8 4 2 12 12121212-----? ?????????+++++ ????????? ? ???? ?? ???,结果是()A 、1 132 1122--??- ???B 、1 132 12--??- ???C 、1 3212--D 、1321122-??- ??? 2 、44等于()A 、16a B 、8a C 、4a D 、 2a 3、若1,0a b ><, 且b b a a -+=则b b a a --的值等于()A 、6 B 、2± C 、2- D 、24、 函数()2()1x f x a =-在R 上是减函数,则a 的取值范围是()A 、1>a B 、2≠,下列不等式(1)22a b >;(2)22a b >;(3)b a 1 1<; (4)113 3 a b >;(5)1133a b ????< ? ????? 中恒成立的有()A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是()A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数9、函数121 x y =-的值域是()A 、(),1-∞B 、()(),00,-∞+∞C 、()1,-+∞D 、()(,1)0,-∞-+∞10、已知 01,1a b <<<-,则函数x y a b =+的图像必定不经过()A 、第一象限B 、第二象限C 、第三象限D 、第四象限11、2()1()(0)21x F x f x x ? ?=+?≠ ?-?? 是偶函数,且()f x 不恒等于零,则 ()f x ()A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不 是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为() A 、(1%)na b - B 、(1%)a nb - C 、[1(%)]n a b - D 、(1%)n a b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若103,104x y ==,则10x y -=。

高中数学 必修1 指数函数及幂函数 总复习

必修1 数学 ——指数函数及幂函数 一、指数函数 1.整数指数幂 )0(10 ≠=a a ; )0,(1≠∈= -a N n a a n n ; n m n m a a = 2、指数函数 【1】一般形式:()0,1x y a a a =>≠; 【2】定义域:(,)-∞+∞;值域:(0,)+∞; 【3】函数值变化情况: 当1a >时,1(0)1(0)1(0)x x a x x >>??==??<?? ==??>时,x y a =是增函数;当01a <<时,x y a =是减函数 【类型题归纳】 【例题1】下列哪些是指数函数:(1)(4)x y =-;(2)2 1 2 x y -=;(3)x y a =; (4)1(21)(,1)2 x y a a a =-> ≠;(5)23x y =?. 【总结升华】判断一个函数是否为指数函数,要紧扣指数函数的定义:其一,底数大于0且不等于1;其二,幂指数是单一的自变量x ;其三,系数为1,且没有其他的项. 2、设137 x = ,则( ) A 、21x -<<- B 、32x -<<- C 、10x -<< D 、01x << 3、若函数()(0,1)x f x a a a =>≠,则下列等式不正确的是( ) A 、()()()f x y f x f y += B 、 ()()()n n n f xy f x f y ??=?? C 、 ()()() f x f x y f y -= D 、 ()()n f nx f x = 【总结】对于()()()f x y f x f y +=类型的抽象函数,x y a =可以作为它的一个经典原型,用来解决实际 问题。 4、化简4 63 9436 9)( )( a a ?的结果为( ) A 、a 16 B 、a 8 C 、a 4 D 、a 2 【例题5】求下列函数的定义域、值域:

相关主题
文本预览
相关文档 最新文档