当前位置:文档之家› 弹性波在一维掺杂声子晶体中的多缺陷模特征_刘启能

弹性波在一维掺杂声子晶体中的多缺陷模特征_刘启能

弹性波在一维掺杂声子晶体中的多缺陷模特征_刘启能
弹性波在一维掺杂声子晶体中的多缺陷模特征_刘启能

2008年第27卷12月第12期机械科学与技术

M echanical Science and T echno l ogy for A erospace Eng ineer i ng D ecember V o.l 272008N o .12

收稿日期:2008 02 27

基金项目:重庆市教委科技基金项目(KJ080720)和废油资源化与装

备教育部工程研究中心重大基金项目(07011302)资助

作者简介:刘启能

(1957-),教授,研究方向为应用光学与声学,

ybxyj w c @s i na .co m

刘启能

弹性波在一维掺杂声子晶体中的多缺陷模特征

刘启能

(重庆工商大学计信学院,重庆 400067)

摘 要:推导出弹性波在一维掺杂声子晶体中的转移矩阵,研究了弹性波在一维掺杂声子晶体中的

缺陷模特征。得出:弹性波在一维掺杂声子晶体中会出现多个缺陷模。缺陷模的数目随杂质厚度的增加而增加,缺陷模的半高宽随缺陷模数目的增加而减小。缺陷模的数目也随杂质声阻抗的增加而发生变化,各缺陷模的位置随杂质声阻抗的增加向禁带中心移动。这些特性可以作为设计多通道弹性波滤波器的理论依据。

关 键 词:声子晶体;弹性波;转移矩阵;缺陷模

中图分类号:O77 文献标识码:A 文章编号:1003 8728(2008)12 1619 04

M any Defect M ode Characteristic of F lexi bleW ave i n

1 D Doping Phononic Cryst al

L i u Q i neng

(C oll ege o f Sc i ence ,Chongqi ng T echno logy and Bus i ness U niversity ,Chongqing 400067)

Abst ract :The transfer m atrix of flex i b le w ave in 1 D dop i n g phonon ic cr ystal is derived .The defectm ode charac

teristic o f flex i b le w ave is stud ied .R esults sho w that i n 1 D dop i n g phononic crysta l there are m any defect m odes o f flex i b le w ave .The number o f the de fectm odes increase w ith the i n crease o f the th i c kness of the i m purity ,the fu ll w idth at halfm ax i m um of the defectm ode reducesw it h the increase of t h e nu m ber of the defect m ode .The nu m ber of the defect m ode i n creases w ith the increase o f the sound i m pedance o f t h e i m pur ity .The positi o n of the de fect m ode moves tow ar d the center when the sound i m pedance o f the i m purity i n creases .These characteristics of de fect m ode for m the theoretical basis for design i n g a pho ton ic crysta l filter .K ey w ords :photonic crysta;l flex i b le w ave ;transfer m atr i x ;defectm ode 继1987年S .John 和E .Yab lonov itch 提出光子晶体的概念后

[1,2]

,M.S.Kushw sha 等人于1993年

又提出了声子晶体的概念[3]

。所谓声子晶体就是其内部介质的弹性常数和密度呈周期性变化的功能材料。由于声子晶体中传播的弹性波与介质的周期结构发生相互作用,会产生类似于光波在光子晶体中传播产生的带隙现象。而带隙的出现,为利用声子晶体来实现对弹性波的控制提供了理论基础,这也为声子晶体在技术上的应用展现出美好的前景,

如声滤波、噪声隔离、减振等

[4,5]

。因此对声子晶体

研究很快成为人们十分关注的问题[6~8]

由于弹性波在介质中的传播远比光波在介质中

的传播复杂,因此人们对声子晶体缺陷模的研究远不如对光子晶体缺陷模的研究那样全面和深入。关于一维声子晶体缺陷模的研究,虽有一些文献介绍[9,10]

,但不管是从方法上,还是从内容上都有很多重要的问题有待研究。下面利用弹性波在界面上的边界条件,推导出弹性波在一维掺杂声子晶体的转移矩阵,并利用其研究弹性波在一维掺杂声子晶体中多缺陷模的特征。

1 一维掺杂声子晶体的转移矩阵

在一维介质中声波的压强p i 满足波动方程

机械科学与技术第27卷

2

p i x 2-1c 2i p 2

i

t

2=0

(1)

式中:c i 为声波的波速,下标i 表示介质i 。

方程(1)的平面波解为

p i =P i (x )e

-i t =(A i e

i

k i x +B i e

-i k i x

)e

-i t

(2)

式中: 为声波的圆频率,k i = /c i 为波矢。式中第一项表示沿x 正方向传播的平面波,第二项表示沿x

负方向传播的平面波。介质中质点的振动速度u i 为

[11]

u i =U i (x )e -i t

=

1 i c i

(A i e i k i x -B i

e -i k i x )e -i t

(3)

式中: i 为介质的密度。

引入二维压强态矢P i

来表示压强波的两个空间分量

P i

=

A i e i

k i

x B i e

-i k i

x

(4)

压强态矢P i

通过一个!系统?后转变为压强态矢P j

,即

P i

=M i j P j

(5)

图1 界面的转移矩阵

式中:M i j

为一个2#2矩

阵,称!系统?的转移矩阵。压强波垂直入射到两介质的界面时,其界面的转移矩阵M i j 可以由压强P (x )和质点的振动速度U (x )在界面上满足连续条件推得,如

图1。其中Z = c 为介质的声阻抗,在界面有

A i e

i k i x

+B i e

-i k i x

=A j e

i

k j x +B j e

-i k j x

1Z i (A i e i k i x -B i e -i k i x )=1Z j (A j e i k j x -B j e -i k j x ) 解上两式得

M i j

=

12Z j +Z i Z j Z j -Z i

Z j

Z j -Z i Z j Z j +Z i

Z j

(6)

压强态矢P 1

通过厚度为d i 的介质后变为P 2

转移矩阵M i ,P 1

和P 2

仅有位相的变化 k i d i ,容易得到

P 1

=M i P 2

=

e

-i k i d i

00

e

i

k i d i P 2

(7)

一维掺杂声子晶体的结构如图2,

两边是由声阻抗分别为Z 1和Z 2、厚度分别为d 1和d 2的声子晶

体对称地构成,中间夹了一层声阻抗为Z 3、厚度为

d 3的介质(即掺杂),两边的周期数都为N 。该一维掺杂声子晶体置于声阻抗为Z 0的介质中。

图2 一维掺杂声子晶体的结构

由图2知,一维掺杂声子晶体的转移矩阵为M M =M 01M 1M 12M 2(M 21M 1M 12M 2)

N -1

M 23M 3M 32#

(M 2M 21M 1M 12)

N -1

M 2M 21M 1M 10

(8)

式中:M 01、M 10、M 12、M 21、M 23、M 32可由式(6)求出;

M 1、M 2、M 3由式(7)求出。

设入射空间的态矢P 0

=[A 0e i k 0x

,B 0e

-i k 0

x

],则

出射空间的态矢P N =

[A N e i k 0x

,0],有

P 0 =M P N =M 11M 12M 21M 22P N

(9)

由式(9)可得一维掺杂声子晶体的透射系数t

和反射系数r

t =A N A 0=

1M 11r =

B 0A 0=M 21

M 11

T =|t |

2R =|r |

2

(10)

式中:T 为一维掺杂声子晶体的透射率;R 为反射率。

由式(6)~式(10)可以看出,一维掺杂声子晶体的透射率T 是声阻抗Z 、介质厚度d 以及声波的入射波的频率 =

kc

2!

的函数,通过对T 的计算就可以研究一维掺杂声子晶体缺陷模的特征。

2 一维掺杂声子晶体中的多缺陷模

为了计算一维掺杂声子晶体的透射率T 随声波的入射频率 的变化规律,取一维掺杂声子晶体的

介质1、介质2、介质3分别为环氧树脂、塑料和黏合剂,该一维掺杂声子晶体置于水中,当声波从水中垂直入射到声子晶体表面时,声子晶体中只有纵波传播。环氧树脂、塑料、黏合剂、水的密度和波速分别为:

1=1180kg /m 3,c 1=2535m /s ; 2=1850kg /m 3

,c 2=2750m /s ; 3=1738kg /m 3

,c 3=2240m /s ; 0=1000kg /m 3

,c 0=1488m /s 。

1620

第12期刘启能:弹性波在一维掺杂声子晶体中的多缺陷模特征

与光子晶体的研究方法类似[12,13]

,取中心频率

0=10000H z

,则介质1、介质2和介质3中的中心波长?01=c 1/ 0、?02=c 2/ 0、?03=c 3/ 0,取d 1=?01/4、d 2=?02/4、d 3=3?03、N =6。并引入归一化频率g = / 0,此时透射率T 只是归一化频率g 的函数。计算出T 随g 的变化曲线,如图3(a)。为了便于与没有掺杂的一维声子晶体的禁带比较,计算出N =6时没有掺杂的一维声子晶体的禁带,如图3(b)

所示。

图3 透射率随g 的变化曲线

由图3(a)和图3(b)可知:

(1)没有掺杂时,频率 在0!8 0~1!2 0范围内出现了禁带,禁带的中心频率在 = 0处。(2)掺杂后,在禁带中出现了3个具有对称性

的缺陷模。它们的位置分别在 =0!87 0、 = 0、 =1!13 0,以 = 0为对称中心。

由于掺杂使得在透射波的禁带里出现了多缺陷模,多缺陷模的变化规律必然与杂质的特征有关。为了进一步研究多缺陷模的变化规律,下面研究杂质厚度和声阻抗对多缺陷模的影响。2!1 杂质厚度对多缺陷模的影响

为了研究杂质的厚度对缺陷模影响,将杂质的厚度d 3作为变量,令d 3=x ?03,d 3的变化通过x 的变化来反映。计算出缺陷模随x 和g 变化的立体图,如图4(a)。为了更清楚地反映出缺陷模随x 的变化规律,作图4(a)的俯视切面图,如图4(b)。在图4(b)中白色细带为缺陷模随x 的变化曲线,黑色部分为禁带。通过图4(a)、图4(b )可得到出现多缺陷模随杂质的厚度变化规律为:

(1)随着d 3从0!1?03增加到5?03,周期性地出

现了多条缺陷模带。在同一周期内,缺陷模的频率随

杂质厚度的增加近似呈线性减小。各周期缺陷模带的斜率随杂质厚度的增加而减小,当d 3在0!5?03附近取值时(如图4(b )中白线?),禁带中只会出现一个缺陷模;当d 3在1!8?03附近取值时(如图4(b )中白线%),禁带中会出现两个缺陷模;当d 3在3?03附近取值时(如图4(b )中白线&),禁带中会出现3个缺陷模,图3(a)就是这种情况。

图4 缺陷模随x 和g 变化

(2)在同一周期内,缺陷模的半高宽(F WHM )近似不变(除接近禁带边缘处)。而不同周期的缺

陷模的半高宽随杂质厚度的增加而减小。2!2 杂质声阻抗对多缺陷模的影响

为了研究杂质声阻抗对缺陷模影响,令Z 3=qZ 2,Z 2保持不变,让Z 3变化。Z 3的变化通过q 的变化来反映,分别取d 3=0!5?03和d 3=1!8?03(其他参数仍保持图3(a)中所用的数据)计算出缺陷模随q 的变化曲线,如图5(a)和图5(b)。在图5(a)和图5(b)中白色带为缺陷模,黑色部分为禁带。通过图5(a)、图5(b)可得到缺陷模随杂质声阻抗的变化特征:

(1)缺陷模的出现数目与杂质声阻抗的变化密切相关,杂质声阻抗的增加超过某一值时缺陷模的

1621

机械科学与技术第27卷

数目会增加。当d 3=0!5?03时,Z 3在0!1Z 2~1!2Z 2范围内变化禁带中只出现一个缺陷模,而Z 3在1!2Z 2~10Z 2范围内变化禁带中出现了3个缺陷模。当d 3=1!8?03时,Z 3在0!1Z 2~1!1Z 2范围内变化禁带中出现两个缺陷模,而Z 3在1!8Z 2~10Z 2范围内变化禁带中出现了4

个缺陷模。

图5 缺陷模随q 的变化

(2)缺陷模出现的数目随杂质声阻抗的增加遵

从:单数增加为单数,偶数增加为偶数。图5(a)中缺陷模的数目由1增加为3,图5(b)中缺陷模的数目由2增加为4。

(3)各缺陷模的位置随杂质声阻抗的增加向禁带中心移动。

3 结论

(1)弹性波在一维掺杂声子晶体中会出现多个缺陷模。

(2)杂质厚度的变化对缺陷模的数目会产生明显的影响。缺陷模的数目随杂质厚度的增

加而增加。缺陷模的半高宽随缺陷模数目的增加而减小。

(3)杂质声阻抗的变化对缺陷模的数目也要产生很大的影响,杂质声阻抗的增加超过某一值时缺陷模的数目要增加。各缺陷模的位置随杂质声阻抗的增加向禁带中心移动。

一维掺杂声子晶体中弹性波缺陷模的上述特性可以作为设计多通道弹性波滤波器的理论依据。这对一维声子晶体在技术上的应用有重要价值。

[参考文献]

[1] Yab lonov i tch E.

Inh i b ited s pobntaneous e m is s i on i n soli d state

physics and electron ics[J].Phy s .Rev .Lett .,1987,58(20):

2059~2061[2]

J ohn S.S trong l ocalizati on of photons i n certai n d is ordered d i e lectri c s up erlattices [J ].Phys .Rev.Lett .,1987,58(23):2486~2489

[3] Kushw ahaM S .Acou stic band stru cture of p eri od i c elas tic co m

pos ites[J].Phys .Rev .Lett .,1993,71(13):2022~2025[4] 曾广武,肖伟,程远胜.多组声子晶体复合结构的隔声性能

[J].振动与冲击,2007,26(1):80~83

[5] 温激鸿,韩小云,王刚.声子晶体研究概述[J].功能材料,

2003,34(4):364~368

[6] 曹永军,董纯红,周培勤.一维准周期结构声子晶体透射性质

的研究[J].物理学报,2006,55(12):6470~6473

[7] 温激鸿,王刚,刘耀宗.基于集中质量法的一维声子晶体弹性

波带隙计算[J].物理学报,2004,53(10):3384~3387[8] 郁殿龙,刘耀宗,邱静.一维声子晶体振动特性与仿[J].振动

与冲击,2005,24(2):92~95

[9] 刘启能.一维声子晶的传输特性[J].人工晶体学报,2008,37

(1):179~182

[10] 王文刚,刘正猷,赵德刚.声波在一维声子晶体中共振隧穿

的研究[J].物理学报,2006,55(9):4744~4747

[11] 李太宝.计算声学 声场的方程和计算方法[M ].科学出版社,

2005

[12] 刘启能.一维光子晶体禁带的全貌结构[J ].激光与光电子学

进展,2007,44(1):65~68

[13] 刘启能.一维光子晶体的偏振特性[J].半导体光电,2006,27

(6):729~730

1622

一维光子晶体带隙结构研究_张玲

第37卷第9期2008年9月 光 子 学 报 ACTA P HO TON ICA SIN ICA Vol.37No.9 September 2008 Tel :02928220149828313 Email :warltszhang @https://www.doczj.com/doc/943255361.html, 收稿日期:2007204228 一维光子晶体带隙结构研究 张玲,梁良,张琳丽,周超 (西安建筑科技大学物理系,西安710055) 摘 要:在考虑介质色散的基础上,研究了介质层厚度对光子晶体带隙结构的影响.利用传输矩阵法,计算了以Li F 和Si 两种材料组成的一维光子晶体带隙结构.结果表明,介质层厚度的增加会引起禁带的红移,厚度减小会引起蓝移.分析了含空气缺陷层、金属缺陷层的光子晶体结构,发现空气缺陷层对带隙结构的高反射区域变化不大,而在低反射区域,反射系数为零的波带之间出现了两边反射系数增加,中间反射系数减小的情况.在金属缺陷层的带隙结构中,金属对整个波长范围光的吸收作用不同,金属对低反射区1.6μm 、1.85μm 处透射率较大的透射光吸收作用明显,而在1.28~1.38μm 处透射率波长区间,几乎无吸收. 关键词:光子晶体;色散;带隙结构;空气缺陷层;金属缺陷层中图分类号:O734 文献标识码:A 文章编号:100424213(2008)092181524 0 引言 微加工技术的进步,使得光子晶体[1]在理论和实验研究上取得了重大进展,利用光子晶体可以制造出光通信中的许多器件,如光纤、微谐振腔,品质优良的光子晶体滤波器、集成光路等等[223].实验室一般采用不同折射率介质在空间的周期性排列形成光子晶体,Ward 等人提出一种增强块状金属反射能力的方法,他们预测含有Al/玻璃层的一维金属/电介质光子晶体比块状Al 的反射能力更强[4].对Au/MgF 2光子晶体透射性质的研究发现,周期性结构产生的透射共振使得光通过金属层的透射率大大增强,并有效抑制了吸收.通过控制金属层和电介质的厚度以及周期数,可以调节透射区域的波长范围、宽度和陡度[5].如果在光子晶体中引入缺陷,可使光子局域化[6],在有缺陷层的一维光子晶体(AB )n D m (BA )n 的带隙结构发现随着缺陷层厚度的增加,在禁带中出现的缺陷模向低频方向移动[7].还有一些金属/电介质光子晶体可以对某些晶体的闪烁光谱进行修饰,使得其对慢衰减成分的相对抑制比大大提升等等[8].本文在考虑色散关系的基础上对于LiF 与Si 构成的2元一维光子晶体的带隙结构进行了研究,通过改变介质层的厚度,分析了其带隙结构的变化,另外当该结构的光子晶体中有空气缺陷层、金属缺陷层时,其带隙结构的变化[2],并对计算结果做了分析. 1 理论模型 典型的光子晶体是由两种不同介电常量(εa ,εb ),厚度为(d a ,d b )的材料交替排列的其结构如图1,根据光在介质薄膜传播的传输矩阵方法,在第一 介质中的传输矩阵为 M a = cos δa isin δa /ηa i ηa sin δa cos δa (1) 图1 一维光子晶体模型 Fig.1 The structure of 12D photonic crystal 在第二介质中的传输矩阵为 M b = cos δb isin δb /ηb i ηb sin δb co s δb (2) 式(1)、(2)中δj =2πn j d j cos θ/λ,n j 、d j 、θj ,分别为第 j 层(j =(a ,b ))的折射率,介质层厚度,入射角, λ为真空中的波长,对于TE 波:ηj =n j cos θj ,对于TM 波ηj =n j /co s θj , 对于整个光子晶体的传输矩阵,若取层的对数为n ,则 M =(M a ,M b )n = M 11M 12M 21 M 22 (3) 设光子晶体周围材料的折射率为n 0,对于TE 波η0=n 0co s θ0,光在光子晶体传播时的反射系数和透射系数分别为 r = (M 11+M 12η0)η0-(M 21+M 22η0)(M 11+M 12η0)η0+(M 21+M 22η0) (4)

光子晶体的应用及其发展前景

光子晶体的应用及其发展前景 摘要:光子晶体是一种介电常数不同的,是人工设计的由两种或两种以上介质材料排列的一维·二维或三维周期结构的晶体。一维光子晶体已得到实际应用,三维光子晶体仍处于实验室实验阶段。由于光子晶体有带隙和慢光等优良特性,所以具有广泛的应用前景。 关键字:光子晶体物理基础材料制备应用 1、物理基础 (1)1987年,E.Y allonovitch 和S.John在研究抑制自发辐射和光子局域时提出光子这概念。概念提出后,其研究经历了一个从一维、二维到三维的过程,并将带隙不断向短波方向推进。微波波段的逞隙常称为电磁带隙(ElectromagneticBand-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。光子晶体是指具有光子带隙(Photonic Band-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG结构。所谓的光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。这一概念最初是在光学领域提出的,现在它的研究范围已扩展到微波与声波波段。由于这种结构的周期尺寸与“禁带”的中心频率对应的波长可比拟,所以这种结构在微波波段比在光波波段更容易实现。相比一维二维光子晶体只能产生方向禁带,三维光子晶体能产生全方向的禁带,具有更普遍的实用性。 2、光子晶体的原理 (1)什么是光子晶体 光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。 (2)光子晶体的特性 根据固体物理的理论知识,在电子晶体中,由原子排布的晶格结构产生的周期性势场会对其中的运动电子形成调制。类似于电子晶体的一些特性,光子晶体中由于介电常数的空间周期分布带来的调制作用,所以也会形成光波的的带状分布,出现不连续的光子能带,能带的间隙称为光子禁带。禁带中对应频率的光波不能被传播。 光子禁带是光子晶体的两个重要特征之一,它的另一重要特征是光子局域。按照形成光子晶体结构的介电材料的空间周期性,可将其分为一维、二维和三维光子晶体。对于一维的光子晶体来说,由于介电材料只在一个空间方向上周期排列,所以只能在这一方向上产生光子禁带。对于二维光子晶体来说,由于介电常数在两个空间方向上均具有周期分布,所以产生的光子禁带位于这两个方向或这两个波矢交面上。三维光子晶体具有全方位的周期结构,可在所有方向上产生光子禁带。产生的光子禁带又分完全带隙和不完全带隙。在具有完全带隙的光子晶体中,落在光子禁带中的光在任何方向都不能传播,而在具有不完全带隙的光子晶体中,光波只是在某些方向上被禁止。

晶体光学课后题

第一章 1、为什么一轴晶光率体所有椭圆切面上都有No?二轴晶光率体任意切面上是否都有Nm?在哪些切面上才有Nm?(P15) 答:一轴晶光率体是以Ne轴为旋转轴的旋转椭球体,所有斜交光轴的切面都与圆切面相交,因此,所有斜交光轴的椭圆切面的长、短半径中必有一个是主轴No。 否。(1)垂直光轴OA切面(2)垂直锐角等分线Bxa切面(3)垂直钝角等分线Bxo切面(4)垂直光轴面NgNp的斜交切面 2、怎样定义一轴晶光率体的光性符号?(P14)怎样定义二轴晶光率体的光性符号?(P20) 答:一轴晶光率体只要比较出Ne′、No的相对大小即可确定出矿物的光性符号。因为一轴正晶Ne>Ne′>No,一轴负晶Ne<Ne′<No,即只要确定出No<Ne′,则矿物光性符号为正,No>Ne′则矿物光性符号为负。二轴晶光率体必须确定Bxa方向是Ng轴还是Np轴:若Bxa=Ng(Bxo=Np),则光性符号为正;若Bxa=Np(Bxo=Ng),则光性符号为负。 3、什么叫光轴角(2V),写出光轴角公式。(P19) 答:两光轴相交的锐角称为光轴角。光轴角公式: tan2α=Ng2(Nm+Np)(Nm-Np)/Np2(Ng+Nm)(Ng-Nm)此式分子中的Ng2大于分母中的Np2,但分子中的(Nm+Np)小于分母中的(Ng+Nm),可以近似认为Ng2(Nm+Np)∕Np2(Ng+Nm)=1,这样可简化为:tan2α=(Nm-Np)/(Ng-Nm)。 4、画出一轴晶正光性光率体和一轴晶负光性光率体垂直OA、平行OA、斜交OA切面的形态,指出各切面的双折射率。(详见P15) 5、画出二轴晶光率体垂直OA、垂直Bxa、垂直Bxo、平行OAP切面的形态,指出各切面的双折射率,并在二轴负晶平行OAP切面上标出全部光率体要素。(见P22) 6、一轴晶正光性光率体放倒了是否能成为负光性光率体?反之,一轴负光性光率体竖直了是否能成为正光性光率体?为什么? 不能。一轴晶光率体的光轴与结晶轴c轴方向一致,正、负光率体的倒放的同时改变了其光轴方向,所以错误。 7、当Ne趋近于No时,光率体有什么变化? 答:最大双折率越来越小,趋近于均质体的光率体,即趋近于圆球体。 8、当Nm趋近于Np或Nm趋近于Ng时,光率体有什么变化?当Nm=Np或Nm=Ng时,分别是几轴晶、什么光性符号? 答:当Nm趋近于Np或Nm趋近于Ng时,光率体趋近于二轴椭球体。当Nm=Np时是一轴晶,正光性。当Nm=Ng时是一轴晶,负光性。 9、指出中级晶族、斜方晶系、单斜晶系、三斜晶系矿物的光性方位。(P24) 答:中级晶族(一轴晶)矿物的光率体形态是旋转椭球体,其旋转轴是晶体的对称轴; 斜方晶系矿物的光性方位是光率体的三个主轴(Ng、Nm、Np)与三个结晶轴(a、b、c)分别一致;单斜晶系矿物的光性方位是光率体三个主轴中有一个主轴与b轴一致(或平行),其余两主轴在ac平面内分别与a、c轴斜交; 三斜晶系矿物的光性方位是光率体的三个主轴与结晶轴均斜交,斜交的方向和角度则因矿物种属不同而异。 11、什么是折射率色散、双折射率色散、光率体色散?(P26) 答:透明矿物的折射率随入射光波的不同而发生改变的现象称为折射率色散; 非均质体矿物斜交OA切面的双折射率一般随入射光波波长的改变而改变的现象称为双折射率色散;由于非均质体的折射率色散强度随方向不同而不同,则随着入射光波长的改变,其光率体的大小、形态发生改变的现象称为光率体色散。 12、二轴晶正光性光率体,当2V增大到90°时,光性符号有什么变化?(P20)

光子晶体简介及应用

光子晶体及其应用的研究 (程立锋物理电子学) 摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G £lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。的滤波特性,加以优化,则可以实现带通滤波器。迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。 关键词:光子晶体;算法;应用;

1光子晶体简介 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。人们感到了电子产业发展的极限,转而把目光投向了光子。与电子相比,以光子作为信息和能量的载体具有优越性。光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。近来大量的理论和实验表明确实存在这样一种材料,其典型的结构是一个折射率周期变化的三维物体,它的周期为光的波长,折射率变化比较大时,会出现类似于电子情况的光子能带和带隙。这种具有光子能带和带隙的材料被称为光子晶体。 在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在

晶体光学试题与答案-重庆科技学院综述

晶体光学试题 一、填空题:(19分) 1. 均质体矿物为___ 系,其光率体形态为_ ___;二轴晶矿物包括 ___,___ ____,__ ____晶系,光率体形态为__ _____,有 _个园切面(3.5分)。 2. 已知某矿物Ne=1.485,No=1.657,该矿物具__ ___突起,当Ne平行下偏光镜的振动方向时显___ ___突起,提长镜筒贝克线向__ _移动;当No平行下偏光镜的振动方向时显___ _突起,提升镜筒贝克线向__ ____移动,该矿物为___ __光性,具 _ _干涉色( 3.5分)。 3.已知普通角闪石的三个主折射率1.700、1.691、1.664,Ng与Z轴的夹角为28度,β=106度,薄片厚度为0.03mm,求:?折射率值:Ng=_ _;Nm=_ _ _;Np=_ _,该矿物的突起等级大致为__高突起_?最大双折射率_______,最高干涉色 _____?,光性______?,⊥Bxa切面的双折射率值________相应的干涉色 ________?在(010)切面上消光角______延性符号______;在下列切面上的消光类型分别是:(010)面______;(001)面________(6.5分)。 4.根据矿物边缘、糙面的明显程度及突起高低,可将突起划分为六个等级,它们的折射率范围分别是:负高突起<_____<负低突起<_____<正低突起<_____<正中突起<_____正高突起<_____<正极高突起(2.5分)。 5. 普通辉石在(001)面上能见到____组解理,在(100)面上能见到______组解理,在此面上为______消光,在(010)面上为______消光。紫苏辉石在(100)面上为______消光(2.5分)。 6.石英的最大双折射率为0.009,平行光轴切面干涉色为Ⅱ级蓝,问这块薄片的厚度是多少____________(0.5分)。 二、选择题(20分,每题2分): 1. 平行偏光镜间(上下偏光镜平行),当光程差为多少时,干涉结果相互削减() A. R=0.5nλ B. R=0.5(n+1)λ C. R=nλ D. R=0.5(2n+1)λ 2. 二轴晶除了⊥Bxa、⊥Bxo、⊥OA的切片外,能观察到Nm的切面有() A.1个 B. 2个 C. 没有 D. 有无数个 3. 某矿物Ng-Np=0.018,Ng-Nm=0.008,该矿物为:() A.一轴正晶 B. 一轴负晶 C. 二轴正晶 D. 二轴负晶 4. 刚玉为一轴负晶,问斜交C轴的切片上,慢光的振动方向是() A. No B. Ne C. No' D. Ne' 5. 在镜下,同种矿物的不同颗粒,测得的光性符号:() A. 一定不同 B. 一定相同 C. 不一定相同 D. 不能确定 6. 将石英颗粒置于N=1.70的浸油中,该矿物的突起是:() A. 负低突起 B. 负高突起 C. 正低突起 D. 正高突起 7. 在镜下,同种矿物的不同颗粒,测得的延性符号:() A.一定不同 B. 一定相同 C. 不一定相同 D. 不能确定 8. 在物台上放一个石膏试板,在试板孔中插入云母试板,转动物台一周的过程中,可观测到下列那种情况:() A.一次黄、一次蓝、一次紫红 B. 二次黄、二次蓝、二次紫红 B.二次黄、二次蓝、四次灰白 D. 二次黄、二次蓝、四次紫红

第二章 晶体结构与晶体缺陷

2-1 (a )MgO 具有NaCl 结构。根据O 2-半径为0.140nm 和Mg 2+半径为0.072nm ,计算球状离子所占有的空间分数(堆积系数)。 (b )计算MgO 的密度。 解:(a )MgO 具有NaCl 型结构,即属面心立方,每个晶胞中含有4个Mg 2+和4个O 2-,故Mg 所占有体积为: 2233MgO Mg O 334 4()34 4(0.0720.140) 3 0.0522nm V R R ππ+- ?+?+=== 因为Mg 2+和O 2-离子在面心立方的棱边上接触: 22Mg O 2()20.0720.1400.424nm a R R +-++==()=() 堆积系数=%=)(=5.68424.00522 .033 MgO a V (b ) 37233 )10424.0(1002.6) 0.163.24(4·0MgO -???+?= = a N M n D =3.51g/cm 3 2-2 Si 和Al 原子的相对质量非常接近(分别为28.09和26.98),但SiO 2和Al 2O 3的密度相差很大(分别为2.65g/cm 3和3.96g/cm 3)。试计算SiO 2和Al 2O 3的堆积密度,并用晶体结构及鲍林规则说明密度相差大的原因。 解: 首先计算SiO 2堆积系数。每cm 3中含SiO 2分子数为: 3223 22343223 2322223 2.65SiO /cm 2.6410/cm (28.0932.0)/(6.0310) Si /cm 2.6410/cm O /cm 2.64102 5.2810/cm +-?+?????= =个=个==个 每cm 3 中Si 4+ 和O 2- 所占体积为: 2-32273 Si432273 O 4 /cm 2.6410(0.02610)3 0.001954 /cm 5.2810(0.13810)3 0.5809V V ππ-+-????????==== Si 2O 3晶体中离子堆积系数=000195+0.5809=0.5829或58.29% Al 2O 3堆积系数计算如下:

2011晶体光学试题答案

2010晶体光学试题答案 1、要测定矿物的轴性和光性符号,应该选择在正交偏光下干涉色最高的切面。(×) 2、在同一岩石薄片中,同种矿物不同方向的切面上,其干涉色不同。(√) 3、对于一轴晶矿物来说,其延性和光性总是一致的。(√) 4、两非均质体矿片在正交镜间的45°位重迭,当异名半径平行时,因总光程差为零而使矿片变黑暗的现象,称为消色。(√) 5、贝克线的移动规律是下降物台,贝克线总是向折射率大的物质移动。(√) 6、二轴晶光率体,当Np>Nm>Ng时,为负光性。(×) 7、矿物的多色性在垂直光轴的切面上最不明显。(√) 8、一轴晶光率体的旋转轴永远是Ne轴。(√) 9、某矿物的最高干涉色为Ⅱ级紫红,因此该矿物的某些切面可能出现Ⅰ级紫红。(√) 10、一轴晶平行光轴切面的干涉图与二轴晶平行光轴面切面的干涉图特点完全一样,在轴性明确的情况下也不能用作光性正负的测定。(×) 11、两非均质矿片在正交镜间的45°位置重叠,当异名半径平行时,总光程差等于两矿片光程差之差。(√) 12、在单偏光镜下,黑云母颜色最深时的解理缝方向可以代表下偏光的振动方向。(√) 13、同一岩石薄片中,同一种矿物的干涉色相同,不同种矿物的干涉色不同。(×) 14、某矿物的干涉色为二级绿,在45°位加云母试板,如同名半径平行,干涉色升高为二级蓝,如异名半径平行,干涉色降低为二级黄。(×) 15、角闪石的多色性只有在垂直Bxa的切面上观察才最明显。(×) 16、当非均质体矿片上的光率体椭圆半径与上、下偏光的振动方向平行时,矿片就会变黑而消色。(×)

17、在岩石薄片中透明矿物所呈现的颜色是矿片对白光中各单色光波折射和散射的结果。(×) 18、矿片干涉色的高低取决于矿物性质和矿片厚度,在标准厚度下则受切面双折射率的影响。(√) 19、二轴晶垂直光轴切面的干涉图用途有:确定轴性、光性、切面方向和估计折射率的大小。(×) 20、矿片糙面的明显程度是受矿物软硬和矿片表面光滑程度的影响。(×) 21、在一轴晶平行光轴切面的干涉图中,从中心到边缘干涉色逐渐升高的方向就是Ne的方向。(×) 22、根据Ng、Nm和Np的相对大小可以确定二轴晶矿物的光性正负,当Ng―NmNm―Np为负光性。(×) 23、中级晶族的光性方位是一轴晶光率体的旋转轴与晶体的三个结晶轴之一重合。(×) 24、在岩石薄片中,矿物突起愈低,其折射率就愈小。(×) 25、矿物折射率与光波传播的速度紧密相关,因此光波在矿物中传播速度愈快,矿物折射率就愈大。(×) 1、单偏光下晶体光学性质的研究内容有、、和等四种。 (参考答案:矿物的形态、解理、颜色、突起) 2、突起正否确定的依据是。 (参考答案:提升镜筒或下降镜筒时,贝克线的移动方向) 3、正交偏光下晶体光学性质的研究内容有和。 (参考答案:消光和干涉现象) 4、斜长石按An值可分为、和等三类。其中,具有卡钠联晶和聚片双晶的斜长石为。

第二章 晶体结构缺陷习题答案电子教案

第二章晶体结构缺陷 1.(错)位错属于线缺陷,因为它的晶格畸变区是一条几何线。 2.(错)螺型位错的柏氏失量与其位错线垂直,刃型位错的柏氏失量与其位错线是平行。 3. (错)肖特基缺陷是由于外来原子进入晶体而产生的缺陷。 4.(错)弗伦克尔缺陷是由于外来原子进入晶体而产生的缺陷。 二选择题 1.非化学剂量化合物Zn1+x O中存在 A 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 2. 非化学计量化合物UO2+x中存在 C 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 3.非化学剂量化合物TiO2-x中存在 D 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 4.螺型位错的位错线是 A 。 A. 曲线 B. 直线 C. 折线 D. 环形线 5.非化学剂量化合物ZnO1-x中存在 D 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 6. 非化学计量化合物UO2+x中存在 C 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 三、名词解释 1. 弗仑克尔缺陷 原子离开其平衡位置二进入附近的间隙位置,在原来位置上留下空位所形成的缺陷,特点是填隙原子与空位总是成对出现。 2.固溶体: 物种数:凡在固体条件下,一种组分(溶剂)内“溶解”了其它组分(溶质)而形成的单一、均匀的晶态固体称为固溶体。

四、解答题 1.完成下列缺陷方程式,并且写出相应的化学式 (1)NaCl 溶入CaCl 2中形成空位型固溶体; (2)CaCl 2溶人NaC1中形成空位型固溶体; 解:(1)NaCl Na Ca ’+ Cl Cl + V Cl · Ca 1-x Na x Cl 2-x (2)CaCl 2 Ca Na · + 2Cl Cl + V Na ’ Na 1-2x Ca X Cl 2完成下列缺陷方程式,并且写出相应的化学式(6分) (1)M gCl 2固溶在LiCl 晶体中形成填隙型 Li 1-x Mg x Cl 1+x (2) SrO 固溶在Li 2O 晶体中形成空位型 Li 2-2x Sr x O 3.写出下列缺陷反应式 ①.NaCl 形成肖脱基缺陷。 ②.AgI 形成弗伦克尔缺陷(Ag +进入间隙)。 ③KCl 溶入CaCl 2中形成空位型固溶体。 解:1、O→VNa ′+VCl˙ 2、Ag Ag+Vi →A g i ˙+V Ag′ ③ KCl K Ca ’+ Cl Cl + V Cl · Ca 1-x K x Cl 2-x 4 对于MgO 、Al 2O 3和Cr 2O 3,其正、负离子半径比分别为0.47,0.36和0.40。Al 2O 3和Cr 2O 3形成连续固溶体。(4分) (a )这个结果可能吗?为什么? (b )试预计,在MgO -Cr 2O 3系统中的固溶度是有限还是很大的?为什么? 答(a )可能,Al 2O 3和Cr 2O 3的正离子半径之比小于15%。晶体结构又相同。 所以可能 O Li Li O Li O V Sr S SrO +'+??→??. 2)(Cl i Li LiCl Cl Cl Mg S MgCl ++?? →??')(.2

光子晶体原理及应用

一、绪论 1.1光子晶体的基本概念 光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。人们又将光子晶体称为光子带隙材料。 与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。二维光子晶体是介电常数在二维空间呈周期性排列的结构。 光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。 1.2光子带隙 光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。 二、光子晶体的晶体结构和能带结构特性研究 2.1一维光子晶体的传输矩阵法 设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的

晶体光学课后答案看完后考试局对没问题讲解

第一章 1.当入射光波射入一轴晶矿物时,发生双折射和偏光化,分解为两种振动方向相互垂直且传播速度不等的偏光,其中一种偏光无论入射光方向如何改变,其振动方向总是垂直于c轴的,相应折射率No 也始终保持不变。所以一轴晶光率体所有椭圆切面上都有No。 不是。(1)垂直光轴(OA)的切面(2)垂直锐角等分线(Bxa)的切面 (3)垂直钝角等分线(Bxo)的切面 2.一轴晶:Ne>No,光性符号为正;Ne<No,光性符号为负 二轴晶:确定Bxa方向是Ng轴还是Np轴,若Bxa=Ng(Bxo=Np),则光性符号为正;若bxa=Np(Bxo=Ng),则光性符号为负。 3.二轴晶两光轴相交的锐角称为光轴角以符号“2V”表示。 公式为tan2α= 4.P15图1-14,P16图1-15 (1)垂直光轴切面:双折射率为零(2)平行光轴切面:一轴正晶最大双折射率为Ne-No,一轴负晶最大双折射率为No-Ne (3)斜交光轴切面:一轴正晶Ne>Ne'>No,一轴负晶Ne<Ne'<No。5.P22图1-21 (1)垂直光轴(OA)的切面:双折射率为零(2)平行光轴面(OAP)的切面:最大双折射率Ng-Np (3)垂直锐角等分线(Bxa)的切面:二轴正晶Nm-Np,二轴负晶Ng-Nm (4)垂直钝角等分线(Bxo)的切面:二轴正晶Ng-Nm,二轴负晶Nm-Np 6.均不能。光率体是表示在晶体中传播的光波振动方向与晶体对该光波的折射率之间关系的立体几何图形。光性正负取决于Ne与No的相对大小,当Ne>No时为正光性,Ne<No时为负光性。无论正光性还是负光性其光率体直立旋转轴必定是Ne,水平旋转轴是No,放倒不能改变其光性正负。 7.由旋转椭球体逐渐变为圆球体。 8.光率体形状由三轴椭球体逐渐变为旋转椭球体。 Nm=Np时为一轴晶,光性符号为(+) Nm=Ng时为一轴晶,光性符号为(—) 9.中级晶族:三方晶系、四方晶系、六方晶系中,无论光性符号正、负,Ne轴总是与晶体的高次对称轴L3、L4、L6一致(或说平行)。 斜方晶系:其光性方位是光率体的三个主轴(Ng、Nm、Np)与三个结晶轴(a、b、c)分别一致(或说平行)。 单斜晶系:其光性方位是光率体三个主轴中有一个主轴与b轴一致(或平行),其余两主轴在ac平面内分别与a、c轴斜交。 三斜晶系:其光性方位是光率体的三个主轴与三个结晶轴均斜交,斜交的方向和角度则因矿物种属不同而异。 10.绿光下,Ne=No,为均质体;红光白光下,Ne>No,为一轴正晶;紫光下,Ne<No,为一轴负晶。 11.折射率色散:透明物质的折射率随入射光波长的不同而发生改变的现象。 双折射率色散:非均质体矿物斜交OA切面的双折射率一般随入射光波波长的改变而改变的现象。 光率体色散:由于非均质体的折射率色散强度随方向不同而不同,则随着入射光波长的改变,其光率体的大小、形态发生改变的现象。 12.变为均质体。 13.变为一轴晶。 15.(1)单斜(2)负(4)长轴Ng,短轴Nm (6)1.701-1.691 17.一轴晶,正光性。三组切面均有一相同值且其他两值均大于这一相同值。 第二章透明造岩矿物及宝石晶体光学鉴定常用仪器 1 透射偏光显微镜与生物显微镜和反射偏光显微镜的主要区别是什么?(31)

第二章晶体结构与晶体中的缺陷

第二章晶体结构与晶体中的缺陷 内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

一维光子晶体的禁带宽度分析

闽江学院 本科毕业论文(设计) 题目一维光子晶体的禁带宽度分析 学生姓名 学号 系别电子系 年级03 专业电子科学与技术 指导教师 职称副教授 完成日期2007.05.16

目录 摘要 (2) ABSTRACT (3) 第一章绪论 (4) 1.1什么是光子晶体? (4) 1.2光子晶体理论计算方法 (5) 1.3光子晶体的应用 (8) 第二章一维光子晶体基本理论 (9) 2.1光子禁带的产生 (9) 2.2一维光子晶体的特征矩阵 (11) 第三章一维光子晶体带隙变化规律的研究 (13) 3.1带隙随厚度比的变化 (13) 3.2带隙随折射率差的变化 (16) 3.3带隙随角度的变化 (19) 3.4厚度比与折射率差同时变化下的最大带隙 (22) 总结 (24) 参考文献 (25)

摘要 光子晶体的研究领域非常广泛,涉及到光学的方方面面。由于它所具有的特殊的性质,故被称为光的半导体,足见它对光学领域的影响力。虽然这个领域的工作也才刚开始10年多一点,但是进展非常地快。通过对这个领域的深入研究.不仅对光子晶体研究本身有意义,而且对光学领域的理论发展也具有重要的价值。使得人们对光的理解更加深入。 介绍了一维光子晶体的基本概念和原理系统综述了对一维光子晶体的研究进展和应用前景。 作为一维光子晶体的应用基础,一维光子晶体的禁带是研究的重点。一维光子晶体的带隙决定了工作频率范围,因此研究其带隙变化规律是其应用的关键,通过改变各种参数确定带隙的依赖因素及其定量关系。 通过传输矩阵的方法分析了一维光子晶体禁带的特性,讨论了影响带宽的因素,说明了相对带宽对光子晶体设计的重要性。在这个基础上讨论了扩展一维光子晶体带宽的方法,:1、使各层介质的厚度d微微变化,形成规则递增,达到展宽禁带的目的。2、角度 逐渐变化,使晶体在角度域化互相叠加,达到扩展带宽的目的。3、使晶体的折射率n1逐渐变化(n2=4.6),达到扩展带宽的目的。通过画出改变各种参数的情况下的带隙曲线图,得到带隙随各参数变化的规律,从而达到对一维光子晶体带隙变化规律的分析。 关键词:光子晶体;光子禁带;相对带宽;展宽。

光子晶体的应用与研究

光子晶体的应用与研究 IsSN1009—3044 Compu~rKnowledgeandTechnology电脑知识与技术 V o1.7,No.22.August2011. 光子晶体的应用与研究 陆清茹 (东南大学成贤学院,江苏南京210000) E—mail:kfyj@https://www.doczj.com/doc/943255361.html,.ell https://www.doczj.com/doc/943255361.html, Tel:+86—551~56909635690964 摘要:光子晶体是指具有光子带隙(PhotonicBand~Gap,简称为PBG)g~性的人造周期性电介质结构.有时也称为PBG光子晶体结 构.该文系统的阐述了光子晶体的产生,制备及应用. 关键词:光子晶体;光子频率禁带;激光全息: 中图分类号:TN364文献标识码:A 光子晶体激光器:微波天线 文章编号:1009—3044(2011)22—5468—02 进入2O世纪后半叶以来,全球迎来了电子时代,电子器件被极其广泛的应用于工作和生活的各个领域,尤其是促进了计算机 和通讯行业的发展.但是进入21世纪以后,伴随着电子器仲不断深入的小型化,低耗能,高速度,其进一步的提升也越来越困难.人 们感到了电子器件发展的瓶颈,开始把目光转向了光子,有人提出了使用光子代替电子作为新一代信息载体的设想.电子器件的基 础是电子在半导体中的运动,类似的,光子器件的基础是光子在光子晶体中的运动.光子的性质决定了光子器件的主要特点是能量 损耗小,运行速度快,所以工作效率高.光子器件在高效率发光二极管,光子开关,光波导器件,光滤波器等方面都具备巨大的应用

潜力.近年来,光子晶体相关的理论研究,实验科学以及实际应用都已经得到了迅速的发展,光子晶体领域已经成为现在世界范围 的研究热点.1999年l2月17日,《科学》杂志就已经把光子晶体的研究列为全球十大科学进展之一. 1光子晶体的由来 1987年S.John和E.Yablonovitch等人分别提出了光子晶体的概念:光子晶体是指具有光子带隙(PhotonicBand—Gap,简称为 PBG)特性的人造周期性电介质结构,有时也称为PBG光子晶体结构.它是根据电子学上的概念类比得出的.我们知道,在固体物理 学的研究中,晶体中的呈周期性排列的原子产生的周期性电势场会对其中电子有特殊的约束作用.在介电常数周期性分布的介质 中的电磁波的一些频率是被禁止的,光子晶体也类似.通常这些被禁止的频率区间为光子带隙,也叫光子频率禁带,而将具有"光子 频率禁带"的材料称作为光子晶体 2光子晶体的分类与结构 我们可以根据光子晶体的结构进行分类根据其能隙空间分布的不同,我们把光子晶体分为一维光子晶体,二维光子晶体,三 维光子晶体. 3光子晶体的制造 光子晶体在自然界中几乎不存在,它是一种人造做结构,其制备工艺主要有以下几种: 3.1机械加工法 机械加工法又叫精密机械加工法.这种加工法是存光子晶体的早期研究中发展起来的方法.机械加工法通过在集体材料上进 行机械接卸钻孑L,利用空气介质和集体材料的折射率差束获得光子晶体,这种方法可以用于制备制作起来比较容易的晶格常熟在 厘米至毫米量级的微波波段光子晶体. 3.2半导体微制造法 半导体制备技术中的"激光刻蚀","反应离子束刻蚀","电子束刻蚀"以及"化学汽相

晶体光学与光性矿物学考试习题附答案

一.名词解释 1.光轴角(2V): 两光轴相交的锐角 2.xx线: 在偏光显微镜下观察矿物切面光线较集中的一方沿矿物边缘形成的一条亮带。 3.洛多奇xx色散效应: 当两种介质折射率相差很小时,贝克线发生变化,在折射率较低的矿物一边出现橙黄色细线,在折射率较高的矿物一边出现浅蓝色细线的现象。 4.糙面: 是在偏光显微镜下所见矿物粗糙的表面,是光线通过矿片后产生的一种光学效应。 5.闪突起: 是旋转物台时,矿物切面的突起时高时低,发生闪动变化的现象。 6.矿物的颜色: 是矿物在单偏光镜下的色泽。 7.多色性: 是非均质体矿物颜色色彩发生改变呈多种色彩的现象。 8.糙面: 偏光显微镜下所见的矿物的粗糙表面,是光线通过矿片后产生的一种光学效应。 9.吸收性:

矿物颜色深浅发生改变的现象。 10.消光: 正交偏光镜下透明矿物矿片呈现黑暗的现象。 11.消光位: 在正交偏光镜下处于消光时的位置。 12.全消光: 旋转物台360度,矿片始终保持黑暗的现象。 13.干涉色: 正交显微镜下用白光观察时,非均质体矿片呈现的各种颜色。 14.补色法则: 在正交偏光镜间,两个非均质体任意方向的切片(除垂直光轴外的),在45度位置重叠时,两矿片光率体椭圆半径同名半径平行,总光程差等于原来两矿片光程差之和,表现为干涉色升高。异名半径平行时,总光程差等于原来两矿片光程差之差,其干涉色降低。 15.消色: 当光率体椭圆异名半径平行时,总光程差R=0时,矿片黑暗的现象。 16.延性: 矿物晶体沿着一个或两个光率体椭圆半径方向延长的习性。 17.正延性: 切面延长方向与其光率体椭圆长半径平行或交角小于45度。 18.负延性: 切面延长方向与其光率体椭圆短半径平行或交角小于45度。

第二章 晶体结构缺陷习题答案

第二章晶体结构缺陷 1、(错)位错属于线缺陷,因为它得晶格畸变区就是一条几何线。2.(错)螺型位错得柏氏失量与其位错线垂直,刃型位错得柏氏失量与其位错线就是平行。 3、(错)肖特基缺陷就是由于外来原子进入晶体而产生得缺陷。 4、(错)弗伦克尔缺陷就是由于外来原子进入晶体而产生得缺陷。 二选择题 1.非化学剂量化合物Zn1+x O中存在 A 。 A、填隙阳离子 B、阳离子空位 C、填隙阴离子 D、阴离子空位 2、非化学计量化合物UO2+x中存在 C 。 A、填隙阳离子 B、阳离子空位 C、填隙阴离子 D、阴离子空位 3.非化学剂量化合物TiO2-x中存在 D 。 A、填隙阳离子 B、阳离子空位 C、填隙阴离子 D、阴离子空位 4、螺型位错得位错线就是 A 。 A、曲线 B、直线 C、折线 D、环形线 5.非化学剂量化合物ZnO1-x中存在 D 。 A、填隙阳离子 B、阳离子空位 C、填隙阴离子 D、阴离子空位 6、非化学计量化合物UO2+x中存在 C 。 A、填隙阳离子 B、阳离子空位 C、填隙阴离子 D、阴离子空位 三、名词解释 1、弗仑克尔缺陷 原子离开其平衡位置二进入附近得间隙位置,在原来位置上留下空位所形成得缺陷,特点就是填隙原子与空位总就是成对出现。 2.固溶体: 物种数:凡在固体条件下,一种组分(溶剂)内“溶解”了其它组分(溶质)而形成得单一、均匀得晶态固体称为固溶体。 四、解答题 1.完成下列缺陷方程式,并且写出相应得化学式 (1)NaCl溶入CaCl2中形成空位型固溶体;

(2)CaCl 2溶人NaC1中形成空位型固溶体; 解:(1)NaCl Na Ca ’+ Cl Cl + V Cl · Ca 1-x Na x Cl 2-x (2)CaCl 2 Ca Na · + 2Cl Cl + V Na ’ Na 1-2x Ca X Cl 2完成下列缺陷方程式,并且写出相应得化学式(6分) (1)M gCl 2固溶在LiCl 晶体中形成填隙型 Li 1-x Mg x Cl 1+x (2) SrO 固溶在Li 2O 晶体中形成空位型 Li 2-2x Sr x O 3.写出下列缺陷反应式 ①、NaCl 形成肖脱基缺陷。 ②、AgI 形成弗伦克尔缺陷(Ag +进入间隙)。 ③KCl 溶入CaCl 2中形成空位型固溶体。 解:1、O→VNa ′+VCl˙ 2、Ag Ag+Vi →A g i ˙+V Ag′ ③ KCl K Ca ’+ Cl Cl + V Cl · Ca 1-x K x Cl 2-x 4 对于MgO 、Al 2O 3与Cr 2O 3,其正、负离子半径比分别为0、47,0、36与0、40。Al 2O 3与Cr 2O 3形成连续固溶体。(4分) (a )这个结果可能吗?为什么? (b )试预计,在MgO -Cr 2O 3系统中得固溶度就是有限还就是很大得?为什 么? 答(a )可能,Al 2O 3与Cr 2O 3得正离子半径之比小于15%。晶体结构又相同。 所以可能 (b )MgO -Cr 2O 3系统中得固溶度就是有限得,由于得晶体结构不同。 O Li Li O Li O V Sr S SrO +'+??→??. 2)(Cl i Li LiCl Cl Cl Mg S MgCl ++?? →??')(.2

晶体光学试题

晶体光学试题 判断题 1、要测定矿物的轴性和光性符号,应该选择在正交偏光下干涉色最高的切面。 2、在同一岩石薄片中,同种矿物不同方向的切面上,其干涉色不同。 3、对于一轴晶矿物来说,其延性和光性总是一致的。 4、两非均质体矿片在正交镜间的45°位重迭,当异名半径平行时,因总光程差为零而使矿片变黑暗的现象,称为消色。 5、贝克线的移动规律是下降物台,贝克线总是向折射率大的物质移动。 6、二轴晶光率体,当Np>Nm>Ng时,为负光性。 7、矿物的多色性在垂直光轴的切面上最不明显。 8、一轴晶光率体的旋转轴永远是Ne轴。 9、某矿物的最高干涉色为Ⅱ级紫红,因此该矿物的某些切面可能出现Ⅰ级紫红。 10、一轴晶平行光轴切面的干涉图与二轴晶平行光轴面切面的干涉图特点完全一样,在轴性明确的情况下也不能用作光性正负的测定。 11、两非均质矿片在正交镜间的45°位置重叠,当异名半径平行时,总光程差等于两矿片光程差之差。 12、在单偏光镜下,黑云母颜色最深时的解理缝方向可以代表下偏光的振动方向。 13、同一岩石薄片中,同一种矿物的干涉色相同,不同种矿物的干涉色不同。 14、某矿物的干涉色为二级绿,在45°位加云母试板,如同名半径平行,干涉色升高为二级蓝,如异名半径平行,干涉色降低为二级黄。 15、角闪石的多色性只有在垂直Bxa的切面上观察才最明显。 16、当非均质体矿片上的光率体椭圆半径与上、下偏光的振动方向平行时,矿片就会变黑而消色。 17、在岩石薄片中透明矿物所呈现的颜色是矿片对白光中各单色光波折射和散射的结果。 18、矿片干涉色的高低取决于矿物性质和矿片厚度,在标准厚度下则受切面双折射率的影响。 19、二轴晶垂直光轴切面的干涉图用途有:确定轴性、光性、切面方向和估计折射率的大小。 20、矿片糙面的明显程度是受矿物软硬和矿片表面光滑程度的影响。 21、在一轴晶平行光轴切面的干涉图中,从中心到边缘干涉色逐渐升高的方向就是Ne的方向。 22、根据Ng、Nm和Np的相对大小可以确定二轴晶矿物的光性正负,当Ng―NmNm―Np为负光性。 23、中级晶族的光性方位是一轴晶光率体的旋转轴与晶体的三个结晶轴之一重合。 24、在岩石薄片中,矿物突起愈低,其折射率就愈小。 25、矿物折射率与光波传播的速度紧密相关,因此光波在矿物中传播速度愈快,矿物折射率就愈大。 填空题 1、单偏光下晶体光学性质的研究内容有____、_____、_____和_____等四种。 2、突起正否确定的依据是_____________________________。 3、正交偏光下晶体光学性质的研究内容有____________和_____________。 4、斜长石按An值可分为_________、________和_________等三类。其中,具有卡钠联晶和聚片双晶的斜长石为_________。

相关主题
文本预览
相关文档 最新文档