当前位置:文档之家› 转向系统结构原理

转向系统结构原理

转向系统结构原理
转向系统结构原理

XX重工集团轮式装载机转向系统介绍

装载机的行驶方向是依靠转向系统来进行操纵的,转向系统能根据作业要求保持装载机稳定地沿直线方向行驶或灵活地改变其行驶方向。装载机的前后机架可绕其铰接销相对偏转,在车架上装双作用液压缸,缸头与前车架铰接,活塞杆与后车架铰接,在液压力驱动下,活塞运动,推动前后车架作相对偏转而进行转向。

全液压转向系统

1、全液压转向系统概述:转向泵来油经过单稳阀以稳定流量供给全液压转向器,方向盘带动转向器的阀芯控制了配油方向,从而驱动转向油缸活塞运动,推动前后车架绕铰接销作相对偏转而进行转向。全液压转向系统,驾驶时,操作轻便,安全可靠。

2、全液压转向系统主要构成:油箱、粗、精滤油器,,转向液压缸等组成。ZL30H机型主要由油箱、粗、精滤油器,CBY2050齿轮液压泵,BZZ1-500型摆线式全液压转向器,FLD-F38W 单路稳定分流阀,FKA10/16阀块,转向液压缸等组成。

3、全液压转向系统工作原理:(系统原理见图)

1、吸油滤油器

2、转向泵

3、回油滤油器

4、单路稳定分流阀

5、全液压转向器

6、阀块

7、转向油缸

转向系统的工作状况可分为:直线行驶和转向(ZL30H最大转向摆动角为38°)

当发动机工作,带动齿轮液压泵旋转。这时油箱内的液压油通过粗滤器粗滤,到转向泵,经过单稳阀以稳定流量供给转向器,方向盘带动转向器的阀芯控制了配油方向。当方向盘不动,转向泵来油经转向器直接返回油箱,系统处于空循环状态,装载机直线行驶。当方向盘左转时,方向盘带动控制阀反时针旋转,转向泵来油经转向器进入左边油缸的小腔和右边油缸的大腔,从而推动左边转向油缸的活塞杆往缸筒里缩进和右边转向油缸的活塞杆往外伸出,实现装载机向左转向,同时转向油缸另一腔的油液沿转向器回油口回油箱。当方向盘右转时,转向泵来油经转向器进入右边油缸的小腔和左边油缸的大腔,从而推动右边转向油缸的活塞杆往缸筒里缩进和左边转向油缸的活塞杆往外伸出,实现装载机向右转向。方向盘旋转一点,装载机就转动一点,直到车架折弯(最大转向摆动角),方向盘停止转动,转向运动亦停止。

4、齿轮泵(作用、结构、原理):齿轮泵是一种中高压通用液压元件。它具有结构简单、工作可靠和维修方便等特点。广泛用于工程机械、起重机械和矿山机械等液压装置上,作为液压动力元件。ZL30H机型选用了CBY2050转向泵,额定工作压力:10Mpa,泵排量:50ml/r。齿轮泵固定在变速箱上。由发动机通过齿轮副驱动。CBG泵为外齿轮啮合齿轮泵,由相互啮合的一对主、被动齿轮、泵体、泵盖、侧板、轴承、密封件等组成。

1、从动齿轮

2、前泵盖

3、滚针轴承

4、油封

5、主动齿轮

6、泵体

7、侧板

8、密封环 9、圆柱销 10、紧定螺钉 11、O型密封圈 12、O型密封圈及衬垫圈

(油泵侧板上的盲孔为卸荷槽,应对准压油腔,侧板上的通孔应对准吸油腔)

当动力带动油泵主动齿轮旋转时带动被动齿轮旋转,轮齿开始退出啮合处为吸油腔(大口),体积由小变大,形成局部真空,油箱中的液压油在大气压的作用下吸入吸油腔,且随齿轮旋转被带到压油腔。这就是齿轮泵的吸油过程。轮齿开始进入啮合处为压油腔(小口),体

积由大变小,油液被除数挤出油腔。这就是齿轮泵的压油过程。吸油腔和压油腔是被齿轮的啮合接触线以及径向间隙和端面间隙所隔开。(见图)

当齿轮继续放置啮合时,在出油腔一侧当第二对齿开始啮合,第一齿尚示脱离啮合时,齿槽内的油液处于封闭状态,形成闭死容积,其闭死容积的油液随容积逐渐减少而产生高压,易引起油温升高,轴承负荷增大,功率损耗增大和零件损坏等,因此在侧板上设有卸压槽卸压,来消除这种不利现象。

齿轮泵常见简单故障的分析和排除:齿轮泵在正常工作一段时间后,出现供油不足或压力上不去,可拆检下列几项,1、侧板工作面是否磨损严重,有无明显沟痕。轻微磨损可通过研磨恢复表面精度,注意要保证侧板两平面的平等度,不得弯曲变形。同时检查齿轮端面,5。并对端面进行研磨和抛光。齿廓应光滑无划手感觉。2、密封件损坏,需要更换密封件。

5、单路稳定分流阀(作用、结构、原理):主要用于液压转向系统在油泵供油量及系统负荷变化的情况下,通过分流阀来保证转向器所需的稳定流量,以满足主机转向性能的要求。由一个流量控制阀和一个安全阀组成。当油泵来油小于稳定流量时,油直接供向转向器,当油泵来油大于稳定流量时,多余的油流回油箱。这样使油泵通往转向器的油流量稳定在一定数值上,不使供给转向的油流量随发动机转速高低而发生很大的变化,以达到转向性能稳定。当A口负载发生变化时,节流阀两端压力形成压差,推动阀芯,多余的油流回油箱,保证通过节流阀后的流量一定,从而保证转向匀速。ZL30H机型选用了FLD-F38W恒流阀,公称稳定流量为38 L/min ,其稳定流量在34∽42L/min,取额定转速2200r/min时的稳流量为42L/min,怠速750r/min时的稳流量为34L/min。

6、摆线式全液压转向器(作用、特点、结构、原理、分解与装配):以ZL30H为例,采用BZZ1-500型摆线式全液压转向器,理论排量500ml/r,最大工作压力10Mpa,允许最大背压 4Mpa,结构形式为开心无反应式。

图Ⅱ全液压式转向器(直线行驶时)

1、圆柱

2、计量马达定子

3、控制阀芯

4、阀套

5、连接轴

6、销

7、定位弹簧片 8、转向轴 9、阀体 10、阀套 11、计量马达转子

图Ⅲ全液压转向器左转时计量马达图Ⅳ摆线式全液压转向器外形中的溢流路线

按工作原理分,全液压转向器主要为二部分,即配油部分和计量部分。它由连接块、阀盖、阀体、定位弹簧片、销、阀套、阀芯、隔盘、定子、转子等组成。

其中转子和定子为一对摆线针齿内啮合齿轮,定子(七齿)固定不动,转子(六齿)在定子内转动,二者相差一个齿,转子绕定子顺转一圈,同时绕自身轴线反向转过一个齿。转向时它起着计量马达的作用,根据方向盘转动角度的大小计量地将液压泵输来的压力油供入

回转液压缸中实现转向。当方向盘不转动时,阀芯和阀套在三对定位弹簧片的作用下,处于中立位置,切断向液压缸供油,阀套上孔b与芯上孔h对齐,此时由液压泵送入进油口A的油液,经图中黑线所示路线直接返回油箱。当方向盘转动时,液压泵输来的压力油带动阀芯转动,此时阀套不动,转过一定角度后,关闭了中立位置。压力油通过阀芯和阀套上的槽和孔进入计量马达,并使转子旋转,从而带动了连接轴和销,使阀套跟随作同步转动,直到阀芯回到中立位置,配油停止。再转动方向盘,又开始下一个动作。

当装载机左转弯时,如图Ⅲ所示,方向盘带动控制阀反时针旋转,阀套不动,由于孔h 与孔b已错开,同液压泵送来的压力油不能再象中立位置那样直接返回油箱,此时控制阀上的六条短槽与阀套上的六个孔沟通,压力油进入计量马达N、D、P油腔。进入这些油腔的压力油力图扩大这些油腔的容积,迫使转子绕定子的轴线按顺时针方向沿定子的齿公转,使Q、R、S、T油腔的容积逐渐缩小,油腔R、S、T里的油液被挤出,沿阀套上另外6个孔与阀芯上6个短槽沟通的孔,经油口D进入左边油缸的小腔和右边油缸的大腔,从而推动左边转向油缸的活塞杆往缸筒里缩进和右边转向油缸的活塞杆往外伸出,实现装载机向左转向,同时转向液压缸另一腔的油液沿着油口C经回油口B回油箱。

ZL30H机型转向器上装了阀块FKA10/16,由单向阀、溢流阀和双向缓冲阀组成。溢流阀安装在进油孔和回油孔相通的阀孔内,调定压力为10Mpa,限制转向器的最大压力为10Mpa,保护转向系统。当油缸在极限位置时,该阀能保证卸荷。双向缓冲阀保护液压转向系统免受外界反作用力经油缸传来的高压力冲击,确保油路安全,调定压力为16Mpa,当油缸压力超过16Mpa时溢流。用螺丝刀逆时针方向调整转向器阀块调压螺丝,调高压力,顺进针旋转为减压。

7、转向油缸(作用、结构、原理、分解与装配):装载机油缸一般采用HSG型工程用双作用单活塞杆型油缸。主要由后端盖(缸头)、缸筒、活塞、活塞杆、密封件、前端盖组成。后端盖将缸筒一端封闭,并有将液压缸与机架连接的作用,后端盖与缸筒采用焊接的连接型式。前端盖将液压缸的活塞杆腔封闭,并起着为活塞杆导向、防尘和密封的作用。缸筒一般用热轧或冷拔无缝钢管内圆珩磨加工而成,要求有足够的强度和冲出韧性,有些还要求有良好的焊接性能。前端盖与缸筒的连接型式有三种:螺纹连接、内卡环连接、法兰连接。ZL20、ZL30油缸采用螺纹连接,ZL40油缸、ZL50、ZL60提升油缸采用内卡环连接,ZL50、ZL60翻斗油缸采用法兰连接。活塞由活塞体、密封件、导向环组成。活塞体可以选用高强度铸铁HT200—300、球墨铸铁,35钢、45钢等。密封件选用取决于压力、速度、温度和工作介质等因素。一般用O型密封圈、格来圈、导向环。

分解与装配:当油缸使用一段时间后出现质量问题,比如内泄严重、活塞杆卡死、活塞杆折断等现象时,需要对油缸进行解体检查。解体时需注意不能破坏活塞、活塞杆外圆、缸筒内壁等重要表面,所有的零件必须作好标记,分类摆放在干净的地方。组装的顺序与解体顺序相反,组装前所有零件必须清洗干净,一些密封件的装配必须用专用辅助工具,以免损坏零件。组装完成后,用压缩空气检查密封性和活塞杆运行是否自如。

转向油缸总成

1.油杯

2.衬套

3.开口销

4.开槽螺母

5.孔用支承环

6.格来圈

7.O型圈

8.活塞

9.活塞杆 10.缸体 11.导向套 12.轴用支承环 13.斯特封 14.O型圈 15.轴封

16.内卡键 17.挡环 18.轴用挡圈 19.防尘圈 20.关节轴承 21.孔用弹挡

8、全液压转向系统压力调整方法:调节转向器上的调压阀,顺时针旋转系统压力下降,逆时针旋转系统压力上升。

9、技术保养

(1)转向系统的工作油应清洁、干净,根据实际工作情况,半年更换一次。

(2)为了保持系统的油液的清净,滤油器在一个月左右必须清洗一次。

(3)根据实际情况,在半年内至一年内,对转向系统的部件:单路稳定分流阀、转向液压缸等检修清洗一次,装拆时应注意保护,不得碰伤损坏,并要洗干净。

先导流量放大液压转向系统

1.概述:CY966装载机是采用先导流量放大转向系统,方向盘带动全液压转向器的阀芯控制了先导泵来油的配油方向控制转向泵来油经流量放大阀来驱动转向油缸活塞运动,推动前后车架绕铰接销作相对偏转而进行转向。方向盘未转动时,转向泵来油将通过优先阀并入工作液压系统。转向时,转向泵来通过优先阀优先保证转向所需用油。驾驶时,操作轻便,安全可靠。

2.转向系统主要由先导泵、压力管路过滤器、转向泵、卸载阀、优先型流量放大阀、转向油缸、全液压转向器、吸油滤油器、回油滤油器、油散热器等组成。

(一)先导流量放大转向系统工作原理

图3-14为转向系统原理图。流量放大阀上的安全阀调定压力为16Mpa,先导泵安全阀调定压力为2.5Mpa。

当发动机运转、方向盘未转动时,先导泵提供的先导油不流过转向器而去工作装置液压系统的先导控制系统。此时,流量放大阀的阀芯两端没有先导控制油。在弹簧力作用下,

阀芯处在中位,切断转向泵来油,转向泵输出的液压油将通过优先阀并入工作液压系统。

转向时,转向泵输出的液压油通过优先阀优先保证转向所需用油。

当方向盘左转时,先导泵提供的先导油经全液压转向器到达流量放大阀a口,推动阀芯右移。转向泵来油经流量放大阀到达右转向油缸大腔和左转向油缸的小腔,使装载机实现左转行驶。

当方向盘右转动时,先导油经全液压转向器到达流量放大阀b口,推动阀芯右移。转向泵的来油经流量放大阀进入左转向缸大腔和右转向缸小腔,使装载机实现右转向。

图3-7转向系统原理图

1.吸油滤油器

2.转向泵(带先导泵)

3.压力管路过滤器

4.全液压转向器

5.转向油缸

6.优先型流量放大阀

7.卸载阀

8.油散热器

9.回油滤油器 C.先导溢流阀

(二)先导流量放大转向系统主要部件的结构性能

1.转向泵(带先导泵):CBGj2080/1010-XF。

其中CBGj2080为转向泵,理论排量:80ml/r,额定工作压力20Mpa;其中CBGj1010先导泵理论排量:10ml/r,额定工作压力20Mpa。先导泵是为装载机控制系统提供动力的作用,它一方面提供转向器动力,另一方面提供先导操纵系统的动力。先导泵出油口并联了先导溢流阀压力为2.5Mpa。

2. 压力管路过滤器:PLF-C60×10P,公称流量60L/min,过滤精度10μm。

3.全液压转向器: BZZ3-125,结构与开心式全液压转向器基本相同,只是转向器中位时处于断路状态(闭心),即当转向器不工作时,液压油被转向器截止,此时转向器入口为高压力。

4. 转向油缸:缸径φ90,杆径φ50,最小安装距930,行程570,工作压力16Mpa。

5. 优先型流量放大阀:ZLF25A11。

安全阀压力16Mpa,公称流量160L/mi,A、B口稳流范围:110±10L/min。

该阀是利用小流量的先导油推动主阀芯移动,来控制转向泵过来的较大流量的压力油进入转向油缸,完成转向动作。阀芯移动是由方向盘转速控制,转速越快,移动量越大,转向速度越快。当转向系统不工作时,转向泵来油推开优先阀芯合流到工作系统。

6.卸载阀:SXH25A2,卸载压力18Mpa,公称流量160L/mi。

工作系统处于低压大流量时,卸载阀能把转向泵来油合流到工作系统,降低工作泵排量;工作系统处于高压小流量时,实现转向泵来油低压卸荷。

汽车转向电动机工作原理及转向系统概述

汽车转向电动机工作原理及转向系统概述 汽车上配置的转向系统,大致可以分为三类:(1)一种是机械式液压动力转向系统;(2)一种是电子液压助力转向系统;(3)另外一种电动助力转向系统。 一、电动助力转向系统(EPS) 1、英文全称是Electronic Power Steering,简称EPS,它利用电动机产生的动力协助驾车者进行动力转向。EPS的构成,不同的车尽管结构部件不一样,但大体是雷同。一般是由转矩(转向)传感器、电子控制单元、电动机、减速器、机械转向器、以及畜电池电源所构成。 2、主要工作原理:汽车在转向时,转矩(转向)传感器会“感觉”到转向盘的力矩和拟转动的方向,这些信号会通过数据总线发给电子控制单元,电控单元会根据传动力矩、拟转的方向等数据信号,向电动机控制器发出动作指令,从而电动机就会根据具体的需要输出相应大小的转动力矩,从而产生了助力转向。如果不转向,则本套系统就不工作,处于standby(休眠)状态等待调用。由于电动电动助力转向的工作特性,你会感觉到开这样的车,方向感更好,高速时更稳,俗话说方向不发飘。又由于它不转向时不工作,所以,也多少程度上节省了能源。一般高档轿车使用这样的助力转向系统的比较多。

由于电动助力转向系统只需电力不用液压,与机械式液压动力转向系统相比较省略了许多元件。没有液压系统所需要的油泵、油管、压力流量控制阀、储油罐等,零件数目少,布置方便,重量轻。 而且无“寄生损失”和液体泄漏损失。因此电动助力转向系统在各种行驶条件下均可节能80%左右,提高了汽车的运行性能。因此在近年得到迅速的推广,也是今后助力转向系统的发展方向。 有一些汽车冠以电动助力转向,其实不是真正意义上的纯电动的助力转向,它还需要液压系统,只不过由电动机供油。传统的液压动力转向系统的油泵由发动机驱动。 为保证汽车原地转向或者低速转向时的轻便性,油泵的排量是以发动机怠速时的流量来确定的。而汽车行驶中大部分时间处于高于怠速的速度和直线行驶状态,只能将油泵输出的油液大部分经控制阀回流到储油罐,造成很大的“寄生损失”。 为了减少此类损失采用了电动机驱动油泵,当汽车直线行驶时电动机低速运转,汽车转向时电动机高速运转,通过控制电动机的转速调节油泵的流量和压力,减少“寄生损失”。 二、机械式液压动力转向系统

转向架的作用及组成

. 一、转向架的作用及组成 作用: 1.采用转向架是为了增加车辆载重,长度,容积,提高运行速度,满足铁路运输发展。 2.在正常运行条件下,车体能可靠的坐落在转向架上,通过轴承装置是车轮沿钢轨的 滚动转化为车体沿轨道线路运行的平动。 3.支承车体,承受并传递从车体至轮对之间的各种载荷及作用力,并使轴重均匀分配。 4.保证车辆运行安全,灵活的沿直线线路运行和顺利通过曲线。 5.转向架结构要便于弹簧减震装置的安装,使之具有良好的减震特性,以缓和车辆和 线路之间的相互作用,减小振动和冲击,减小应力,提高车辆运行平稳性和安全性。 6.充分利用轮轨之间的黏着,传递牵引力和制动力,放大制动缸所产生的制动力,是 车辆具有良好的制动效果。 7.转向架为车辆一个独立部件,便于转向架的拆装,单独制造和检修。 组成 1、轮对轴箱装置 2、弹性悬挂装置(两系悬挂,弹簧减振装置) 3、构架 4、基础制动装置 5、转向架支撑车体的装置 6、牵引电机与齿轮变速传动装置

. 二、转向架的分类 1.轴数与类型 按轴数分为二轴、三轴、多轴转向架 按轴型分B、C、D、E型轴转向架 2.轴箱定位方式:约束轮对于构架之间相对运动的机构,称轴箱定位装置 形式有:①固定定位 ②导框式定位 ③摩擦导框式定位 ④油导桶式定位 ⑤拉板式定位 ⑥拉杆式定位 ⑦转臂式定位 ⑧橡胶弹簧定位 3、按弹簧悬挂装置分类 一系弹簧悬挂:车体主轮对之间,只设有一条弹簧减振装置 二系悬挂 4、对心盘集中承载的转向架,根据摇枕悬挂装置中的弹簧的横向跨距的不同,悬挂形式分为: 1.内侧悬挂:弹长度<车长度(横向)

2.外侧悬挂:> 3.中心悬挂:= 中央弹簧横向跨距大小,对于车体在弹簧上的稳定性效果显著,增加其跨距可以增加车体倾覆的复原力矩,提高车体在弹簧上的稳定性,各种型号转向架的主要区别: 橡胶弹簧定位:南京地铁使用 转臂式定位:广州地铁 四、按垂向载荷的分类方式 (一)车体与转向架之间的载荷传递 1.心盘集中承载 2.非心盘集中承载 3.心盘部分承载 (二)转向架中央悬挂装置的载荷传递 1.具有摇动台装置的转向架(缓解横向振动) 2.无摇动台装置的转向架(内有空气弹簧,符合轻量化要求) (三)构架与轴箱之间的载荷传递 1、转向架侧架直接置于轴向轮对上,无轴箱弹簧装置 2、支悬于均衡弹簧之上 3、由轴箱顶部弹簧支撑

动力转向系概述及其工作原理

动力转向系概述及其工作原理 ·动力转向系概述 ·液压动力转向系组成和工作原理 ·一、动力转向系概述 1、动力转向系的功用及应用 ·应用:在转向阻力很大的汽车上,采用动力转向装置 ·转向能源:动力转向的能量只有一小部分是驾驶员提供的,大部分是发动机驱动转向油泵旋转,将发动机输出的部分机械能转化为压力能 ·功用:压力能在驾驶员控制下,对传动装置施加随动渐进压力,实现转向。 2、动力转向的分类 (1)按动力能源分 1)液压式以液压为动力源,目前广泛应用 ·液压动力转向系的工作压力可高达10MPa以上,故其部件尺寸很小

·液压系统工作时无噪声,工作滞后时间短,而且能吸收来自不平路面的冲击 2)气压式以压缩空气为动力源,仅限于重型且采用气压制动的汽车 ·主要应用于一部分其前轴最大轴载质量为3~7t并采用气压制动系统的货车和客车 ·装载质量特大的货车也不宜采用气压转向加力装置,因为气压系统的工作压力较低(一般不高于0.7MPa),用于这种重型汽车上时,其部件尺寸将过于庞大 (2)按动力缸、控制阀及转向器的相对位置分 1)整体式其机械转向器和动力缸设计成一体,并与转向控制阀组装在一起。 2)半整体式其转向控制阀同机械转向器组合成一体,而转向动力缸则作为一个独立的部件。 3)转向加力器其机械转向器独立,而将转向控制阀和转向动力缸组合成一体。 3、动力转向系的基本结构组成和工作原理

1)结构组成 ·在机械转向系统的基础上加设一套转向加力装置而形成·转向加力装置是由机械转向器、转向动力缸和转向控制阀三大部分组成 2)液压动力转向系的工作过程 ·当驾驶员逆时针方向转动转向盘时,转向摇臂将拉动转向直拉杆向前运动。

液压助力转向的工作原理

液压助力转向的工作原理: 如图1(a)所示,助力转向系统主要由油泵3、控制阀(滑阀7和阀体9)、螺杆螺母式转向器(11、12)及助力缸15等组成。 滑阀7同转向螺杆11连为一体,两端设有两个止推轴承。由于滑阀7的长度比阀体9的宽度稍大,所以两个止推轴承端面与阀体端面之间有轴向间隙h,使滑阀连同转向螺杆一起能在阀体内做轴向移动。回位弹簧10有一定的预紧力,将两个反作用柱塞顶向阀体两端,滑阀两端的挡圈正好卡在两个反作用柱塞的外端,使滑阀在不转向时一直处于阀体的中间位置。滑阀上有两道油槽C、B,阀体的相应配合面上有三道油槽A、D、E。油泵3由发动机通过带或齿轮来驱动,压力油经油管流向控制阀,再经控制阀流向动力缸L、R腔。 汽车直线行驶时,如图1(a)所示,滑阀7在回位弹簧10和反作用阀8的作用下处于中间位置,动力缸15两端均与回油孔道连通,油泵输出的油液通过进油道量孔4进入阀体9的环槽A,然后分成两路:一路通过环槽B和D,另一路流过环槽C和E。由于滑阀7在中间位置,两路油液经回油孔道流回油箱,整个系统内油路相通,

油压处于低压状态。 图1汽车液压助力转向系统工作原理 1 油箱 2 溢流阀 3 齿轮油泵 4 进油道量孔 5 单向阀 6 安全阀 7 滑阀 8 反作用阀 9 阀体10 回位弹簧 11 转向螺杆12 转向螺母13 纵拉杆14 转向垂臂15 助力缸 汽车向右转弯时,转向螺杆11(左旋螺纹)顺时针方向转动,与转向轴制成一体的滑阀7和转向螺杆克服回位弹簧10及反作用阀8一侧的油压的作用力而向右移动。此时如图1(b)所示,环槽A与C,B与D分别连通,而环槽C与E使进油道与助力缸15的L腔相通,形成高压回路;B与D使回油道与R腔相通,形成低压回路。在油压差的作用下,活塞向右移动,而转向螺母12向左移动。纵拉杆13也向右移动,带动转向轮向右偏转。由于系统压力很高(一般为6.9Mpa以上),汽车转向主要依靠推力。驾驶作用于转向盘的转向力基本上是打开滑阀所需的力,一般为5~10N,最大不超过10N, 因而转向操纵十分轻便。 汽车左转弯时滑阀7左移,如图1(c)所示,油路改变流通方向,助力缸15加力方向相反。 在转向过程中,助力缸的油压随转向阻力而变化,二者相互平衡。汽车转向时,助力缸只提供动力,而转向过程仍由驾驶员通过转向盘进行控制

汽车转向系统工作原理

汽车转向系统工作原理 本文包括: 我们知道,当转动汽车方向盘时,车轮就会转向。这是一种因果关系,不是吗?但是,为了使车轮转向,方向盘和轮胎之间发生了许多有趣的运动。 在本文中,我们将了解两种最常见的汽车转向系统的工作原理:齿条齿轮式转向系统和循环球式转向系统。随后,我们将介绍动力转向,并了解一些有趣的转向系统发展趋势,这些趋势大多源于人们对汽车省油功能的需求。不过,让我们先看一下让汽车转向所必须执行的操作。这并不像您想像的那么简单! 当汽车转向时,两个前轮并不指向同一个方向,对此您可能会感到奇怪。

要让汽车顺利转向,每个车轮都必须按不同的圆圈运动。由于内车轮所经过的圆圈半径较小,因此它的转向角度比外车轮要大。如果对每个车轮都画一条垂直于它们的直线,那么线的交点便是转向的中心点。转向拉杆具有独特的几何结构,可使内车轮的转向角度大于外车轮。 转向器分为几种类型。最常见的是齿条齿轮式转向器和循环球式转向器。 齿条齿轮式转向系统 作者:Karim Nice (本文为博闻网版权所有, 未经许可禁止以任何形式转载或使用。违者必究。) 推荐到: 本文包括: 齿条齿轮式转向系统已迅速成为汽车、小型货车及SUV上普遍使用的转向系统类型。其工作机制非常简单。齿条齿轮式齿轮组被包在一个金属管中,齿条的各个齿端都突出在金属管外,并用横拉杆连在一起。

小齿轮连在转向轴上。 转动方向盘时,齿轮就会旋转,从而带动齿条运动。 齿条各齿端的横拉杆连接在转向轴的转向臂上(请参见上图)。 齿条齿轮式齿轮组有两个作用: ? 将方向盘的旋转运动转换成车轮转动所需的线性运动。 ? 提供齿轮减速功能,从而使车轮转向更加方便。 在大多数汽车中,一般要将方向盘旋转三到四周,才能让车轮从一个锁止位转到另一个锁止位(从最左侧转到最右侧)。 转向传动比是指方向盘转向程度与车轮转向程度之比。 例如,如果将方向盘旋转一周(360度)会导致车轮转向 20度,则转向传动比就等于360除以20,即18:1。比率 越高,就意味着要使车轮转向达到指定距离,方向盘所需 要的旋转幅度就越大。 但是,由于传动比较高,旋转方 向盘所需要的力便会降低。 一般而言,轻便车和运动型汽车的转向传动比要小于大型 车和货车。 比率越低,转向反应就越快,您只需小幅度 旋转方向盘即可使车轮转向达到指定距离。这正是运动型 汽车梦寐以求的特性。 由于这些小型汽车很轻,因此比 率较低,转动方向盘也不会太费力。 有些汽车使用可变传动比转向系统,在此系统中,齿条齿轮式齿轮组的中心与外侧具有不同的齿距(每厘米的齿数)。 这不仅能提高汽车转向时的响应速度(齿条靠近中心位置),还能减少车轮在接近转向极限时的作用力。

汽车EPS系统原理

从上世纪50年代出现了汽车助力转向系统以来,经历了机械式、液压式、电控液压式等阶段,80年代人们开始研制电子控制式电动助力转向系统,简称 EPS(ElectricPowerSteering)。EPS在机械式助力转向系统的基础上,用输入轴的扭矩信号和汽车行驶速度信号控制助力电机,使之产生相应大小和方向的助力,获得最佳的转向特性。EPS用仅在转向时才工作的助力电机替代了在汽车运行过程中持续消耗能量的液压助力装置,简化了结构,降低了能耗,动态地适应不同的车速条件下助力的特性,操作轻便,稳定性和安全性好,同时,不存在油液泄漏和液压软管不可回收等问题。可以说,EPS是集环保、节能、安全、舒适为一体的机电一体化设计。 电动助力转向系统EPS是当前世界最发达的转向助力系统,20世纪80年代,日本铃木公司首次开发。因其具有独特的按需助力、随动跟踪、反映路感、节能高效、环保免维护、系统成本低等一系列优点,在中小排量汽车中即将以较大产品份额取代液压助力转向总成(HPS)。与传统的转向系统相比较,汽车电动助力转向系统(EPS)结构简单,灵活性好,能充分满足汽车转向性能的要求,在操作的舒适性、安全性和节能、环保等方面显示出显著的优越性。 EPS的特点及工作原理 (1)EPS系统的特点。 随着电子技术的发展,电子技术在汽车上的应用越来越广泛。电动助力转向已成为汽车动力转向系统的发展方向。 由于采用动力转向可以减少驾驶员手动转向力矩,改善汽车的转向轻便性,因此在商用车、中高级轿车和轻型车上得到广泛的应用。传统的动力转向系大多采用固定放大倍数的液压动力转向,缺点是不能实现汽车在各种车速下驾驶时的轻便性和路感。为了克服以上缺点,研制出电子控制液压动力转向系(EHPS),使汽车在各种速度下都能得到满意的转向助力。但EHPS 系统结构更复杂、价格更昂贵,而且效率低、能耗大。 EPS是一种机电一体化的新一代汽车智能转向助力系统。与液压动力转向系统(HPS)相比,有如下优点: 1 效率高,HPS系统效率一般为60%~70%,而EPS系统效率可达90%以上; 2 能耗少,对于HPS系统,汽车燃油消耗率增加4%~6%;而EPS系统汽车燃油消耗率仅增加%左右; 3 路感好,使汽车在各种速度下都能得到满意的转向助力; 4 回正性好,EPS系统内部阻力小,可得到最佳的回正特性; 5 对环境污染少,EPS对环境几乎没有污染; 6 可以独立于发动机工作,EPS系统只要电源电力充足,即可产生助力;

转向架结构及常见故障分析

第一节:转向架的作用 转向架是承载车体重量和传递走行动力的导向部件,是大型养路机械的重要组成部分,其主要作用如下: 1)承载车体重量 转向架作为一个独立的走行装置,它直接支撑车体,承受和传递车架以上各部分(车体,车架,动力传递装置及作业装置等)的重量; 2)传递走行动力 把轮轨接触处产生的轮轴牵引力,以及通过曲线时轮轨之间的横向作用力传至转向架构架,经过减震环节再传向车体,同时,转向架引导车辆在线路上运行; 3)曲线通过 转向架可相对车体回转,其固定轴距也较小,故能使车辆顺利通过半径较小的曲线,并大大减少车辆的运行阻力。 4)提高车辆的运行平稳性 转向架的结构要便于弹簧减振装置的安装,使之具有良好的减振特性,以缓和车辆和线路之间的相互作用,减小振动和冲击,使车体在各振动方向上的位移量减小,提高车辆运行平稳性和安全性。 5)保证必要的粘着力和制动力

充分利用轮轨之间的粘着,传递牵引力和制动力,放大制动缸所产生的制动力,使车辆具有良好的制动效果,以保证在规定的距离之内停车。 6)便于检修 转向架是车辆的一个独立部件,在转向架于车体之间尽可能减少联接件。易于从车辆底架下推进,推出,便于检修,有利于劳动条件的改善和检修质量的提高。

第二节转向架的主要技术要求 转向架是大型养路机械的主要组成部分之一,它用来传递车辆的各种载荷,并利用轮轨间的粘着作用保证牵引力的产生。转向架结构性能的好坏,直接影响大型路养机械的牵引能力、运行品质、轮轨磨耗和运行安全。 转向架应具有的技术要求是: (1)强度和刚度 转向架各部分必须保证足够的强度和刚度,特别是转向架构架对刚度的要求较高,因为它是转向架的基础,若刚度不足,会影响转向架各部分之间的相对位置。 (2)运行横向稳定性 在直线地段运行,应有良好的横向稳定性,也即大型养路机械达到最高运行时速时,绝不容许发生蛇行失稳。若发生剧烈蛇行,会产生很大的横向轮轨作用力,造成车轴轴承过热及对线路的破坏,同时影响横向运行品质和运行安全。 (3)运行平稳性 运行平稳性表示人所感觉到的运行品质,即通常说的舒适度。运行平稳性就表示舒适度,容易使人疲劳,降低机组人员作业的熟练程度。因此,对于大型养路机械转向架的垂向与横向振动,都有明确的限度要求。

转向架的作用及组成

一、转向架的作用及组成 作用: 1.采用转向架是为了增加车辆载重,长度,容积,提高运行速度,满足铁路运输发展。 2.在正常运行条件下,车体能可靠的坐落在转向架上,通过轴承装置是车轮沿钢轨的滚动转化为车体沿轨道线路运行的平动。 3.支承车体,承受并传递从车体至轮对之间的各种载荷及作用力,并使轴重均匀分配。 4.保证车辆运行安全,灵活的沿直线线路运行和顺利通过曲线。 5.转向架结构要便于弹簧减震装置的安装,使之具有良好的减震特性,以缓和车辆和线路之间的相互作用,减小振动和冲击,减小应力,提高车辆运行平稳性和安全性。 6.充分利用轮轨之间的黏着,传递牵引力和制动力,放大制动缸所产生的制动力,是车辆具有良好的制动效果。 7.转向架为车辆一个独立部件,便于转向架的拆装,单独制造和检修。 组成 1、轮对轴箱装置 2、弹性悬挂装置(两系悬挂,弹簧减振装置) 3、构架 4、基础制动装置 5、转向架支撑车体的装置 6、牵引电机与齿轮变速传动装置 二、转向架的分类 1.轴数与类型 按轴数分为二轴、三轴、多轴转向架 按轴型分B、C、D、E型轴转向架 2.轴箱定位方式:约束轮对于构架之间相对运动的机构,称轴箱定位装置 形式有:①固定定位 ②导框式定位 ③摩擦导框式定位 ④油导桶式定位 ⑤拉板式定位 ⑥拉杆式定位 ⑦转臂式定位 ⑧橡胶弹簧定位 3、按弹簧悬挂装置分类 一系弹簧悬挂:车体主轮对之间,只设有一条弹簧减振装置 二系悬挂

4、对心盘集中承载的转向架,根据摇枕悬挂装置中的弹簧的横向跨距的不同,悬挂形式分为: 1.内侧悬挂:弹长度<车长度(横向) 2.外侧悬挂:> 3.中心悬挂:= 中央弹簧横向跨距大小,对于车体在弹簧上的稳定性效果显著,增加其跨距可以增加车体倾覆的复原力矩,提高车体在弹簧上的稳定性,各种型号转向架的主要区别:橡胶弹簧定位:南京地铁使用 转臂式定位:广州地铁 四、按垂向载荷的分类方式 (一)车体与转向架之间的载荷传递 1.心盘集中承载 2.非心盘集中承载 3.心盘部分承载 (二)转向架中央悬挂装置的载荷传递 1.具有摇动台装置的转向架(缓解横向振动) 2.无摇动台装置的转向架(内有空气弹簧,符合轻量化要求) (三)构架与轴箱之间的载荷传递 1、转向架侧架直接置于轴向轮对上,无轴箱弹簧装置 2、支悬于均衡弹簧之上 3、由轴箱顶部弹簧支撑 三.轮对 轮对组成及基本要求 1.轮对:一根车轴,两个车轮组成,轮轴接合采用过盈配合,保证车轮、车轴 无任何松动。 2.对车轴轮对的要求:①足够的强度②弹性③阻力小,耐磨性好④直线,曲线 运行,抵抗脱轨的安全性。 车轴 1车轴各部分名称及作用 车轴绝大多数是圆截面实心轴,高铁是圆截面空心轴,车轴为全锻压成形a.轴颈(安装轴承,精加工) b.轮座(装车轮) c.防尘板座(防止灰尘进入轴箱,防止轴箱油脂甩出油箱 d.轴身 e.制动盘座(盘形制动) 2车轴材质及要求 ①质碳素钢加热

转向架结构原理及基本部件

转向架结构原理及基本部件 1.转向架的作用 采用转向架可增加车辆的载重、长度和容积 转向架相对车体可自由回转,使较长的车辆能自由通过小半径曲线,减少运行阻力与噪声,提高运行速度 安装了弹簧减振装置,保证车辆具有良好的动力性能和运行品质 支承车体,承受并传递从车体至轮轨的各种载荷及作用力,使各轴重均匀分配 安装了制动装置,传递制动力,满足运行安全要求 安装了牵引电机及减速装置,提供动力,驱动轮对(或车轮),使车辆沿着轨道运行 转向架为车辆的一个独立部件,便于转向架的互换和制造、维修 2.转向架的组成及功能 轮对轴箱装置 弹簧悬挂装置 构架或侧架 基础制动装置 电机及齿轮箱装置 附件---传感器、撒砂装置、空气管路等 轮缘润滑装置 2.1轮对轴箱装置 轮对分为动力轮对和非动力轮对,动力轮对组成包括:车轮、车轴、轴箱组成、齿轮箱和牵引电机;非动力轮对包括:车轮、车轴、轴箱组成及动车驱动装置。 其作用: 轮对:引导车辆沿钢轨的运动,传递车辆的重量外,以及轮轨之间的各种作用力 轴箱与轴承装置:联系构架和轮对的活动关节,使轮对的滚动转化为车体沿着轨道的平动 2.2弹性悬挂装置

减少线路不平顺和轮对运动对车体各种动态影响 2.2.1轴箱悬挂装置(也称一系悬挂装置)-在轮对与构架之间 由三个主要零部件组成:二个圆锥形弹性橡胶弹簧单元及一个基座型轴箱。一系悬挂有三个主要功能: 1.保护转向架及车辆以防从轨道上传递过多的振动荷载 2.保护车辆在指定的轨道状况下操作时不会出轨 3.达到良好的曲线性能,同时保证转向架在整个工作速度范围内的动态稳定 性。 弹簧单元安装在轴箱上,一系悬挂的纵向及横向运动由弹簧单元高径向刚度控制。起吊止挡和缓冲挡相结合限制轮对垂向偏转。橡胶弹簧具有一定的减振性能,因此不需要安装一系垂向减振器。 2.2.1 中央悬挂装置(也称二系悬挂装置)-构架与车体(摇枕)之间 二系悬挂装置由空气弹簧、高度阀及减振器等零部件组成。 二系悬挂的作用: 1.保证乘客及车体的乘坐舒适度良好 2.保证车辆轮廓在指定的、所有车辆的动态状况下保持不变。 2.3构架或侧架 转向架的基础,把转向架各零、部件组成一个整体 承受、传递各作用力及载荷 满足各零、部件的结构形状及组装的要求 2.4基础制动装置 包括带停放制动缸、手柄、闸线。 传递和放大制动缸的制动力,使闸瓦与轮对之间产生的转向架的内摩擦力转换为轮轨之间的外摩擦力(即制动力)

汽车转向系统工作原理

汽车转向系统工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

汽车转向系统工作原理 本文包括: 1. 1. 引言 2. 2. 汽车转向过程 3. 3. 齿条齿轮式转向系统 4. 4. 循环球式转向系统 5. 5. 动力转向系统 6. 6. 动力转向系统的未来 7.7. 了解更多信息 8.8. 阅读所有引擎盖下类文章 我们知道,当转动汽车方向盘时,车轮就会转向。这是一种因果关系,不是吗但是,为了使车轮转向,方向盘和轮胎之间发生了许多有趣的运动。 在本文中,我们将了解两种最常见的汽车转向系统的工作原理:齿条齿轮式转向系统和循环球式转向系统。随后,我们将介绍动力转向,并了解一些有趣的转向系统发展趋势,这些趋势大多源于人们对汽车省油功能的需求。不过,让我们先看一下让汽车转向所必须执行的操作。这并不像您想像的那么简单! 当汽车转向时,两个前轮并不指向同一个方向,对此您可能会感到奇怪。

要让汽车顺利转向,每个车轮都必须按不同的圆圈运动。由于内车轮所经过的圆圈半径较小,因此它的转向角度比外车轮要大。如果对每个车轮都画一条垂直于它们的直线,那么线的交点便是转向的中心点。转向拉杆具有独特的几何结构,可使内车轮的转向角度大于外车轮。 转向器分为几种类型。最常见的是齿条齿轮式转向器和循环球式转向器。 齿条齿轮式转向系统 作者:Karim Nice (本文为博闻网版权所有, 未经许可禁止以任何形式转载或使用。违者必究。)推荐到: 本文包括: 1. 1. 引言 2. 2. 汽车转向过程 3. 3. 齿条齿轮式转向系统 4. 4. 循环球式转向系统 5. 5. 动力转向系统 6. 6. 动力转向系统的未来 7.7. 了解更多信息 8.8. 阅读所有引擎盖下类文章 齿条齿轮式转向系统已迅速成为汽车、小型货车及SUV上普遍使用的转向系统类型。其工作机制非常简单。齿条齿轮式齿轮组被包在一个金属管中,齿条的各个齿端都突出在金属管外,并用横拉杆连在一起。

汽车转向系统工作原理

汽车转向系统工作原理 我们知道,当转动汽车方向盘时,车轮就会转向。为了使车轮转向,方向盘和轮胎之间发生了许多复杂的运动。最常见的汽车转向系统的工作原理包括:齿条齿轮式转向系统和循环球式转向系统。 当汽车转向时,两个前轮并不指向同一个方向。 要让汽车顺利转向,每个车轮都必须按不同的圆圈运动。由于内车轮所经过的圆圈半径较小,因此它的转向角度比外车轮要大。如果对每个车轮都画一条垂直于它们的直线,那么线的交点便是转向的中心点。转向拉杆具有独特的几何结构,可使内车轮的转向角度大于外车轮。转向器分为几种类型。今天讲述的的是齿条齿轮式转向。

齿条齿轮式转向系统已迅速成为汽车、小型货车及SUV上普遍使用的转向系统类型。其工作机制非常简单。齿条齿轮式齿轮组被包在一个金属管中,齿条的各个齿端都突出在金属管外,并用横拉杆连在一起。 小齿轮连在转向轴上。转动方向盘时,齿轮就会旋转,从而带动齿条运动。齿条各齿端的横拉杆连接在转向轴的转向臂上(参见上图)。 齿条齿轮式齿轮组有两个作用: ?将方向盘的旋转运动转换成车轮转动所需的线性运动。 ?提供齿轮减速功能,从而使车轮转向更加方便。 在大多数汽车中,一般要将方向盘旋转三到四周,才能让车轮从一个锁止位转到另一个锁止位(从最左侧转到最右侧)。 转向传动比是指方向盘转向程度与车轮转向程度之比。 20度,则转向传动比就等于360除以20,即18:1。比率 越高,就意味着要使车轮转向达到指定距离,方向盘所需 要的旋转幅度就越大。但是,由于传动比较高,旋转方 向盘所需要的力便会降低。 一般而言,轻便车和运动型汽车的转向传动比要小于大型 车和货车。比率越低,转向反应就越快,您只需小幅度 旋转方向盘即可使车轮转向达到指定距离。这正是运动型 汽车梦寐以求的特性。由于这些小型汽车很轻,因此比 率较低,转动方向盘也不会太费力。 有些汽车使用可变传动比转向系统,在此系统中,齿条齿轮式齿轮组的中心与外侧具有不同的齿距(每厘米的齿数)。这不仅能提高汽车转向时的响应速度(齿条靠近中心位置), 还能减少车轮在接近转向极限时的作用力。

转向架结构原理及基本部件 讲课

转向架结构原理及基本部件 产品研发中心.转向架室 2009年12月3日

目 录 一、转向架概述: (4) 1.运行的稳定性 (4) 2.通过曲线的良好性能 (5) 3.满足旅客舒适度的要求 (5) 二、转向架的作用、要求及基本组成 (6) 1、转向架的基本作用及要求: (6) 2、转向架的组成 (7) 三、转向架的分类 (8) 1、按转向架的轴数、类型及轴箱定位方式分类 (8) 1.1 轴数与类型 (8) 1.2 轴箱定位方式 (8) 2、按弹簧悬挂装置分类 (13) 3、按摇枕弹簧横向跨距分类 (14) 4、按垂向载荷的传递方式分类 (15) 4.1 车体与转向架之间的载荷传递 (15) 4.2 转向架中央(摇枕)悬挂装置的载荷传递 (16) 4.3 构架(侧架)与轴箱轮对之间的载荷传递 (17) 四、转向架主要部件介绍: (18) 1、轮对 (18) 2、构架和摇枕 (20) 3、弹簧减振装置 (20)

3.1 分类 (20) 3.2 车辆弹簧装置的主要作用 (20) 3.3 车辆上采用橡胶元件的优点 (21) 3.4 空气弹簧装置 (21) 4、基础制动装置 (23)

一、转向架概述: 支承客、货车车体并使之在轨道上运行的装置称为转向架,亦称走行部。转向架配置在车体下方,它在结构上是一个独立的部件。除了有轮对、轴箱、轴承和构架等基本部件外,在轮对与构架之间、构架与车体之间设有弹性元件,分别称为轴箱弹簧装置和中央弹簧装置(即车体悬挂装置)。其构造简图示如下: 转向架应具有的性能: 为了要确保列车安全、平稳地运行,转向架应具备以下性能: 1.运行的稳定性 由于铁路车辆的车轮踏面具有锥度,轮缘与钢轨侧面之间有间隙,因此车辆在运行中,压装在同一车轴上的左右两个车轮就会以不同的滚动直径与轨面接触。于是,轮对在前进的同时,还作周期性的左右运动,轮轴中心的运动轨迹如下图所示。轮对如此周而复始地运动就是所谓的蛇行运动。

单轨车辆及其转向架

单轨车辆及其转向架 作者姓名高山 成文时间二〇一七年八月十六日

单轨车辆及其转向架 高山(CRRC) 摘要:伴随着城市的快速发展,各式各样的交通工具应运而生。单轨车辆作为一种中等运量的轨道交通车辆在国内的研发应用正在如火如荼的进行。本文将梳理国内主要研制的跨坐式和悬挂式单轨车辆,并对各种单轨车辆的转向架进行了较为详细的介绍。 关键字:单轨车辆跨坐式悬挂式转向架 1.单轨车辆的研制情况 由于我国人口众多与城市化快速发展,使得城市交通问题日益严峻。为了解决城市交通问题,各个大城市竞相发展轨道交通。随着国家对城市轨道交通建设审批权的下放,中小城市也将迎来了轨道建设的快速发展。根据客流量和经济实力,大城市较多的选择大运量的地铁列车作为主要方式,而中小城市将会选择现代有轨电车和单轨列车等中运量的城市轨道交通形式。

1.1跨坐式单轨车辆研制情况 世界第一条跨座式单轨诞生于1888年2月,由法国人设计并在爱尔兰利斯特维尔铺设。此后,各国开始了对单轨交通的不断研究和尝试。经过反的试验,研究人员最终确认采用跨座式、混凝土轨道和橡胶充气轮胎能够达到最好的效果。在1960年至1965年,日本引进多种单轨技术,研制出多种日式单轨车,并迅速将其发展应用。自第一条单轨交通建成以来的100多年间,世界各国已建成单轨铁路50多条。 在我国,为解决城市交通拥堵日益严重的问题,轨道交通发展迅速。2004年9月,重庆市从日本引进了跨座式单轨交通系统,中车长春轨道客车股份有限公司主要负责完成车辆系统的国产化。重庆轨道交通2号线(30.05公里)和重庆轨道交通3号线(67.09公里)已经成为跨坐式轨道交通的代表。2014年11月,中车南京浦镇车辆有限公司与庞巴迪运输公司在安徽芜湖设立合资公司中车浦镇庞巴迪运输系统有限公司,该公司将为芜湖轨道交通提供跨坐式单轨车辆。2016年5月,中车青岛四方机车车辆股份有限公司研制的基于永磁牵引的双轴转向架大运量跨座式单轨车辆下线。2016年10月,新能源汽车制造企业比亚迪公司研制的跨坐式单轨车辆下线,通过一系列商业投资,比亚迪已经获得逾十个城市订单。

转向架结构原理及基本部件...

转向架结构原理及基本部件 第一节转向架的作用与组成 1.1转向架的作用 车辆的发展:铁路运输发展初期,世界各国均采用将轮对直接安装在车体下面二轴车辆。(如图2-1) 二轴车的缺点:载重小、长度短和容积小。通过小半径曲线、困难。 与二轴车结构相仿的多轴车辆(如图2-2) 与二轴车结构相仿的多轴车辆

(1)增加载重量 (2)通过小半径曲线困难 (2.1)轴距仍受限制 (2.2)车辆结构复杂,中间轮对相对车体要有较大横向游动量带有转向架的车辆:把两个或几个轮对用专门的构架(侧架)组成一个小车,称为转向架,车体支承在前后两个转向架上(如下图) 转向架的作用及要求: 采用转向架可增加车辆的载重、长度和容积 转向架相对车体可自由回转,使较长的车辆能自由通过小半径曲线,减少运行阻力与噪声,提高运行速度 便于安装弹簧减振装置,保证车辆具有良好的动力性能和运行品质 支承车体,承受并传递从车体至轮轨的各种载荷及作用力,使各轴重均匀分配 便于安装制动装置,传递制动力,满足运行安全要求 便于在转向架上安装牵引电机及减速装置,驱动轮对(或车轮),使车辆沿着轨道运行 转向架为车辆的一个独立部件,便于转向架的互换和制造、维修 1.2转向架的组成 轮对轴箱装置 弹簧悬挂装置 构架或侧架 基础制动装置 电机及齿轮箱装置 1.2.1轮对轴箱装置 轮对:引导车辆沿钢轨的运动,传递车辆的重量外,以及轮轨之间的各种作用力 轴箱与轴承装置:联系构架和轮对的活动关节,使轮对的滚动转化为车体沿着轨道的平动 1.2.2弹性悬挂装置 减少线路不平顺和轮对运动对车体各种动态影响

轴箱悬挂装置(也称一系悬挂装置)-在轮对与构架 中央悬挂装置(也称二系悬挂装置)-构架与车体(摇枕)之间弹性悬挂装置包括弹簧装置、减振装置和定位装置等。 1.2.3构架或侧架 转向架的基础,把转向架各零、部件组成一个整体 承受、传递各作用力及载荷 满足各零、部件的结构形状及组装的要求 1.2.4基础制动装置 传递和放大制动缸的制动力,使闸瓦与轮对之间产生的转向架的内摩擦力转换为轮轨之间的外摩擦力(即制动力)

电子控制转向系统的结构与工作原理

电子控制转向系统的结构与工作原理 摘要: 为了使汽车在低速行驶时能轻松的操作方向盘,使方向改变,提高使用性能。现在汽车都装有电子控制转向系统。因此,对其电子控制转向系统的结构以及工作原理变得至关重要。文章对其结构和工作原理作了论述。 关键词: 结构,工作原理 。 前言: 随着人们的生活水平提高和汽车工业的不断发展,人们对汽车的操作稳定和舒适性的要求越来越高。电子控制转向系统的诞生使得在驾驶时更加稳定和舒适,得到了广大群众的好评。随它在汽车上的广泛应用,也为汽车修理行业带来了无限商机。本文从结构和工作原理入手作了详细地介绍。 正文: 1. 电子控制转向系统 1.1 概述 1.2 电子控制转向系统的结构与工作原理 1.1 概述 汽车转向系同可按转向的能源不同分为机械转向系统和动力转向系统两类。机械转向系统是依靠驾驶员操作转向盘的转向力来实现车轮转向;动力转向系统则是在驾驶员元的控制下,借助于汽车发动机产生的液体压力或电机驱动力来实现车转向。所以动力转向系统也称为转向动力放大器装置。但是,具有固定放大倍率的动力转向系统的缺点是:如果所设计的固定放大倍率的动力转向系统是为了减小汽车在停车或低速行驶时状态下转动转向盘的力,则当汽车在高速行驶时,这一固定放大倍率的动力转向系统会使转动转向盘的力显得太小,不利于对高速行驶的汽车进行方向控制;反之,如果所设计的固定方的倍率的动力转向系统是为了增加汽车在高速行驶时的转向力,则当汽车停驶或低速行驶时,转动方向盘就会显得非常吃力。电子控制技术在汽车动力转向系统的应用,使汽车驾驶性能达到令人满意的程度。电子控制动力转向系统在低速行驶时刻是转向轻便,灵活;当汽车在高速区域行驶时,又能保证提供最优的放大倍率和稳定的转向手感,从而提高了高速行驶的稳定性。 液压动力转向系统,存在制造工艺复杂,易漏油,对密封要求严格,维修保养困难等缺点。同时随着人们对轿车的经济性,环保,主动安全新的日益重视,以及低排放汽车(LEV),混合动力汽车(HEV),燃料电池汽车(FCEV)电动汽车(EV)四大“EV”的长足发展,电子控制技术在汽车上得到广泛应用。转向系统中愈来愈多的采用电子器件和电控技术,相应

动力转向器工作原理

动力转向器工作原理 1.1、转向工作原理 动力转向系统由转向油罐1、转向油泵2、转向管路3、动力转向器4组成。转向系统工作时,转向油泵不停顿的随发动机转动而工作,把油从油罐吸出向动力转向器控制阀供油。无转向动作时,控制阀处于常开中间位置,油通过控制阀直接回到转向油罐。 转向时,司机通过方向盘将转向力矩传递给转向器的输入轴。输入轴与转向螺杆通过扭杆连接在一起。转向螺杆通过转向螺母(齿条活塞)、转向摇臂轴、转向摇臂、转向直拉杆与车轮连接在

一起。来自输入轴的转向力矩通过扭杆传到螺杆,由于上述循环球机构的作用,螺杆试图使齿条活塞沿缸孔做轴向运动,但来自车轮的地面阻力通过拉杆系统使摇臂轴限制了齿条活塞的轴向运动,因此扭杆被扭转,输入轴上的油槽与阀套上的油槽相对位置发生了改变---即控制阀起作用,并引导高压油流向指定的油缸,即上油缸或下油缸,在相对应的齿条活塞端面产生了液压作用力,并推动齿条活塞轴向移动,使摇臂轴产生转动,实现了汽车转向。 动力转向系统是一个典型的液压随动系统,所有的过程都是在动态下实现的:输入轴转动打开了油路,油泵向工作腔供油,当地面阻力大时活塞不动,工作腔油压就会不断增大,油压增大到一定程度在活塞一侧产生的推力大到能克服车轮的转向阻力就会推动 齿条活塞带动车轮转向。车轮转向阻力减小,工作腔油压就会降低,降到仍能维持车轮继续转动。此时另一腔的油在齿条活塞推动下沿回油路回到转向油罐。输入轴停止转动时,在扭杆弹性恢复力和油压力的继续作用下,输入轴上的油槽与阀套上的油槽回到中间常开位置,油泵供来的油不再流入任何一腔,直接回到转向油罐,直到下一次转向动作开始又重复上述过程。 转阀的工作原理见图三:

动车组总体与转向架复习题及参考答案

中南大学网络教育课程考试复习题及参考答案 动车组总体及转向架 一、名词解释: 1.动车组 2.动力集中型配置 3.铰接式转向架动车组 4.车辆定距 5.转向架固定轴距 6.列车风 7.列车头部长细比 8.转臂式轴箱定位 9.体悬式驱动转装置 10.电磁涡流轨道制动 11.牵引网 12.电机变频调速 13.缓冲器的容量 14.缓冲器的能量吸收率 15.列车自动防护系统 16.列车信息控制系统 17.列车运行控制系统 18.行车指挥自动化系统 二、判断题: 1.动车组以固定编组运营,不能解编。 2.现代城市轨道车辆通常采用动车组的形式。 3.动力转向架的车轴可以是全动轴,也可以是部分动轴。 4.高速动车组通常采用电气制动与空气制动的复合制动。 5.CRH6型动车组适用于城市间以及市区和郊区间的短途客运。 6.CRH系列动车组均采用磨耗型车轮踏面。 7.CRH动车组的车轴轴承均采用滚动轴承。 8.高速动车组的轴箱弹簧一般采用双圈钢弹簧。 9.CRH2动车组制动卡钳的夹紧动作是由液压缸驱动的。 10.脉冲宽度调制技术把变压与变频集中在逆变器中一起完成。 11.列车速度越高,允许的制动力越大。 12.CRH2动车组紧急制动时,采用压缩空气作为指令压力,实施纯空气制动。 13.密接式车钩允许两相连接车钩在铅垂面有相对位移。 14.正常运行时,动车组不需要使用过渡车钩。 15.CRH1动车组中间车钩可以自动连接,但需要手动解钩。 三、问答题: 1.高速动车组的主要技术特点有哪些? 2.高速动车组对车体结构的要求有哪些? 3.高速动车组减小空气阻力的措施有哪些? 4.高速列车的噪声源有哪些? 5.动车组轻量化设计的措施有哪些? 6.高速动车组车体为什么需要密封,密封措施有哪些? 7.减小动车组噪声源发出的噪声强度的措施有哪些? 8.动车组转向架的作用有哪些?由哪些部分组成?非动力转向架与动力转向架的最主要区别是什么?

转向系统结构原理

XX重工集团轮式装载机转向系统介绍 装载机的行驶方向是依靠转向系统来进行操纵的,转向系统能根据作业要求保持装载机稳定地沿直线方向行驶或灵活地改变其行驶方向。装载机的前后机架可绕其铰接销相对偏转,在车架上装双作用液压缸,缸头与前车架铰接,活塞杆与后车架铰接,在液压力驱动下,活塞运动,推动前后车架作相对偏转而进行转向。 全液压转向系统 1、全液压转向系统概述:转向泵来油经过单稳阀以稳定流量供给全液压转向器,方向盘带动转向器的阀芯控制了配油方向,从而驱动转向油缸活塞运动,推动前后车架绕铰接销作相对偏转而进行转向。全液压转向系统,驾驶时,操作轻便,安全可靠。 2、全液压转向系统主要构成:油箱、粗、精滤油器,,转向液压缸等组成。ZL30H机型主要由油箱、粗、精滤油器,CBY2050齿轮液压泵,BZZ1-500型摆线式全液压转向器,FLD-F38W 单路稳定分流阀,FKA10/16阀块,转向液压缸等组成。 3、全液压转向系统工作原理:(系统原理见图) 1、吸油滤油器 2、转向泵 3、回油滤油器 4、单路稳定分流阀 5、全液压转向器 6、阀块 7、转向油缸 转向系统的工作状况可分为:直线行驶和转向(ZL30H最大转向摆动角为38°)

当发动机工作,带动齿轮液压泵旋转。这时油箱内的液压油通过粗滤器粗滤,到转向泵,经过单稳阀以稳定流量供给转向器,方向盘带动转向器的阀芯控制了配油方向。当方向盘不动,转向泵来油经转向器直接返回油箱,系统处于空循环状态,装载机直线行驶。当方向盘左转时,方向盘带动控制阀反时针旋转,转向泵来油经转向器进入左边油缸的小腔和右边油缸的大腔,从而推动左边转向油缸的活塞杆往缸筒里缩进和右边转向油缸的活塞杆往外伸出,实现装载机向左转向,同时转向油缸另一腔的油液沿转向器回油口回油箱。当方向盘右转时,转向泵来油经转向器进入右边油缸的小腔和左边油缸的大腔,从而推动右边转向油缸的活塞杆往缸筒里缩进和左边转向油缸的活塞杆往外伸出,实现装载机向右转向。方向盘旋转一点,装载机就转动一点,直到车架折弯(最大转向摆动角),方向盘停止转动,转向运动亦停止。 4、齿轮泵(作用、结构、原理):齿轮泵是一种中高压通用液压元件。它具有结构简单、工作可靠和维修方便等特点。广泛用于工程机械、起重机械和矿山机械等液压装置上,作为液压动力元件。ZL30H机型选用了CBY2050转向泵,额定工作压力:10Mpa,泵排量:50ml/r。齿轮泵固定在变速箱上。由发动机通过齿轮副驱动。CBG泵为外齿轮啮合齿轮泵,由相互啮合的一对主、被动齿轮、泵体、泵盖、侧板、轴承、密封件等组成。 1、从动齿轮 2、前泵盖 3、滚针轴承 4、油封 5、主动齿轮 6、泵体 7、侧板 8、密封环 9、圆柱销 10、紧定螺钉 11、O型密封圈 12、O型密封圈及衬垫圈 (油泵侧板上的盲孔为卸荷槽,应对准压油腔,侧板上的通孔应对准吸油腔) 当动力带动油泵主动齿轮旋转时带动被动齿轮旋转,轮齿开始退出啮合处为吸油腔(大口),体积由小变大,形成局部真空,油箱中的液压油在大气压的作用下吸入吸油腔,且随齿轮旋转被带到压油腔。这就是齿轮泵的吸油过程。轮齿开始进入啮合处为压油腔(小口),体

主动转向系统的组成及其工作原理

课程:汽车新技术 课程论文题名:自动转向系统的组成及其工 作原理 作者: 南京理工大学紫金学院 2014年12月

自动转向系统的组成及其工作原理 摘要:主要介绍宝马主动转向系统的原理及组成、核心部件双行星齿轮机构及其工作模式、系统主要功能及其实现原理 关键词:宝马; 主动转向;双行星;齿轮机构 The composition and working principle of automatic steering system Xiang Da,Wang Jun Jie Abstract:.Mainly introduces the principle and composition of BMW's active steering system Core parts dual planetary gear mechanism system main function and its realization principle and its working mode Keyword: BMW; Active Steering ;Double-planet; Gear 引言 自从汽车发明以来,驾驶转向的传动装置通常都是固定的。换句话说,不论是在市区窄小的街道缓行或是高速公路上奔驰,方向盘与前轮的转向角度比始终一成不变。因而这也是工程师们面临的一个比较困难的选择:如果采用直接转向,驾驶者在过急弯时就不需要大幅转动方向盘,但是在高速行驶时,方向盘细微的动作都将会影响到行驶稳定性;反过来说,转向系统越是间接,车辆在高速公路上的行驶稳定性就越高,但是必须牺牲过弯时的操控性。所以,传统的转向系统都必须在安全性与舒适性之间做出权衡。 传统的转向系统不论车速快慢,都采用18:1的固定传动比率,这表示方向盘转向18度,车轮转动1度。而宝马主动式转向系统的比率则在一定的范围内,从静止状态的10:1到高速时的20:1。也就是说,当方向盘转动半圈(180度)时,车速若低,车轮就转动18度,车速若高,则车轮只转动不足9度。由此汽车主动转向技术开始正式应用于中高档车辆。也解决了安全与舒适的兼容问题。 但问题也在这种技术不断发展的过程中出现了,汽车在曲线行驶或者紧急转向过程中,由于离心力的作用使得汽车前、后轮达到轮胎与路面之间附着极限的先后顺序有可能不同,因此汽车失去侧向稳定性时可能表现出不同的运动状态。严重时后轴的侧滑将发生激转和甩尾的危险工况。而前轴的侧滑将失去转向能力以及失去路径跟踪的能力,从而出现各种危险工况。因此汽车能否实现安全转向保持侧向稳定性是非常重要的,同时也是能否避免弯道事故发生的有效手段。在这种大的前提需求下,我们对主动转向技术在汽车侧向稳定性控制中的应用展开研究。。 1 主动转向系统 1.1 组成 宝马主动转向系统保留了传统转向系统中的机械构件,包括转向盘、转向柱、齿轮齿条转向机以及转向横拉杆等。其最大特点就是在转向盘和齿轮齿条转向机之间的转向柱上集成了一套双行星齿轮机构,用于向转向轮提供叠加转向角

相关主题
文本预览
相关文档 最新文档