当前位置:文档之家› CNT_WO_3气敏材料的显微分析

CNT_WO_3气敏材料的显微分析

CNT_WO_3气敏材料的显微分析
CNT_WO_3气敏材料的显微分析

信息材料

1.根据信息材料的功能,可把信息材料主要分为信息收集材料,信息存储材料,信息处理材料,信息传递材料,信息显示材料2还有一类重要的信息材料是半导体激光器材料。 光信息的存储、处理、传递和显示并不是基于半导体激光材料在外场作用下发生某种物理或化学变化来实现,但这些功能都必须有半导体激光器产生的激光参与才得以实现。 3.半导体激光器是信息功能器件的核心器件和通用器件,半导体激光材料也是信息材料中重要的部分。 4.信息收集材料是指用于信息传感和探测的一类对外界信息敏感的材料。 在外界信息如力、热、光、磁、电、化学或生物信息的影响下,这类材料的物理或化学性质(主要是电学性质)会发生相应变化,通过测量这些变化可方便精确地探测、接收和了解外界信息变化。 5.信息传感材料主要包括力敏传感材料、热敏传感材料、光敏传感材料、磁敏传感材料、气敏材料、湿敏材料、压敏材料、生物传感材料等。 6.力敏传感材料是指在外力作用下电学性质会发生明显变化的材料,主要分为金属应变电阻材料和半导体压阻材料两大类。金属应变电阻材料主要有康铜系合金、锰铜合金、镍铁铝铁合金、镍铬合金、铁铬铝合金等。半导体压阻材料主要是单晶硅。(半导体压阻材料便于力敏传感器件的微型化和集成化,在常温下有大量应用,逐步取代金属型应变计。金属应变电阻材料的电阻温度系数、温度灵敏度系数等都比半导体好,具有很高的延展性和抗拉强度,在耐高温、大应变、抗辐射等场合得到广泛使用。) 7.热敏传感材料是指对温度变化具有灵敏响应的材料,主要是电阻随温度显著变化的半导体热敏电阻陶瓷。根据电阻温度系数的正负,可分为正温度系数(BaTiO3、V2O5为基的热敏陶瓷)和负温度系数(过渡金属氧化物为基的热敏陶瓷)热敏材料两类。 8.光敏传感材料在光照下会因各种效应产生光生载流子,用于制作光敏电阻、光敏三极管、光电耦合器和光电探测器。最常用的光学敏感材料是锗、硅和II-VI族、IV-VI族中的一些半导体化合物等,如CdS、CdSe和PbS等半导体化合物,9.磁敏电阻材料是指具有磁性各向异性效应的磁敏材料。这类材料在磁化方向平行电流方向时,阻值最大;在磁化方向垂直于电流方向时,阻值较小。改变磁化方向与电流方向夹角,即可改变磁敏电阻材料的阻值。强磁性簿膜磁敏电阻材料主要是NiCo和NiFe合金薄膜,可制备磁敏二极管或三极管,灵敏度高、温度特性好,可用于磁场测量。 10.巨磁阻效应是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象(巨磁阻效应读出磁头,磁头存储密度迅速提高到3Gb/in2,磁盘记录从4Gb提升到600Gb或更高) 11.气敏材料是对气体敏感,电阻值会随外界气体种类和浓度变化的材料,如SnO2、ZnO、Fe2O3、ZrO2、TiO2和WO2等n 型或p型金属氧化物半导体。气敏材料用于制作气敏传感器,吸附气体后载流子数量变化将导致表面电阻率变化,进而对气体的种类和浓度进行探测。 12.湿敏材料是指电阻值随环境湿度增加而显著增大或降低的一些材料。陶瓷湿敏材料主要有MgCr2O3系、ZnCr2O3系和MnWO4、NiWO4等。高分子湿敏材料是指吸湿后电阻率或介电常数会发生变化的高分子电解质膜,如吸湿性树脂、硝化纤维系高分子膜。 13.信息存储材料是指用来制作各种信息存储器的一些能够记录和存储信息的材料。 在外加物理场(如电场、磁场、光照等)的影响下,信息存储材料发生物理或化学变化,实现对信息的存储。 14.磁记录材料 磁记录材料可方便地进行数据的存储和读取工作。磁性存贮器具有容量大、成本低等优点; 磁记录装置可将记录下来的信号进行放大或缩小,使科研中的数据处理更为方便灵活;磁卡可用于存取款、图书保存以及乘坐交通工具的票证等,方便人们生活。 15.颗粒涂布型磁记录介质是将磁粉、非磁性胶粘剂和少量添加剂等形成的均匀磁性浆料,涂布于聚酯薄膜上制成。 磁粉包括γ-Fe2O3、BaO-Fe2O3、金属粉等。 16.金属磁粉特点是具有较高的磁感应强度和矫顽力。纯铁磁化强度达1700emu/cm3,可在较薄的磁层内得到较大的读出信号;小针状铁粒子可提供较高矫顽力,使磁记录介质承受较大的外场作用。金属磁粉缺点是稳定性差,易氧化或发生其它反应,常用表面钝化或合金化等办法控制表面氧化,但降低粒子的磁化强度 17.钡铁氧体来源丰富,成本低,有较高的矫顽力和磁能积,抗氧化能力强,是一种应用广泛的永磁材料。钡铁氧体矫顽力高达398kA/m,本不适于作磁记录介质,以下特点使其可成为理想高密度磁记录材料:六方形平板结构和垂直于平板

气敏材料敏感机理研究进展

摘要:为研究气敏材料的敏感机理,获得提高材料气敏性能、开发新 型气敏材料的理论指导,介绍了气敏材料的概念、 分类,并从气体与敏感材料的物理、化学等相互作用出发,结合气敏材料电学性质的变化,对其敏感机理及模型进行了较为详细的阐述,指出气敏机理研究对于解决气敏材料选择性、稳定性差以及工作温度高等现存问题有着重要的意义。 关键词:气敏材料;气敏机理;模型中图分类号:TP212.2 文献标识码:A 文章编号:1008-5548(2007)04-0042-04 ResearchDevelopmentofSensitiveMechanismofGasSensingMaterials LIUHai-feng,PENGTong-jiang,SUNHong-juan, MAGuo-hua,DUANTao (InstituteofMineralMaterials&Application,SouthwestUniversityof Science&Technology,Mianyang621010,China) Abstract:Inordertostudythesensitivemechanismofgassensing materials,improveitssensitivityanddevelopnewgassensingmaterials,thedefinitionandclassificationofgassensingmaterialwereintroduced.Thesensitivemechanismsandmodelsofgassensingmaterialswerereviewedbasedontheelectricchangeofsensingmaterialscausedbyactionsbetweengasesandmaterials. Itispresentedthatstudyingthe sensitivemechanismofgassensingmaterialsisimportanttoimproveitsunstablesensitivityandhighworktemperature. Keywords:gassensingmaterials;sensitivemechanism;model 气敏材料是一种对某种环境中某种气体十分敏感的材料,一般都是某种类型的金属氧化物,通过掺杂或非化学计量比的改变而使其半导化,其电阻随其所处环境的气氛而变。不同类型的气敏材料,对某一种或几种气体特别敏感,其阻值将随该种气体的浓度(分压)有规律地变化,其检测灵敏度为百万分之一的量级,个别可达十亿分之一的量级,远远超过动物的 嗅觉感知度,故有“ 电子鼻”之称[1 ̄3]。目前,对于各种气敏材料的研究已经引起许多研究者的关注,但对气敏机理的认识还较为模糊。有学者提出了表面电阻控制模型、体电阻控制模型、吸附气体产生新能级模型、隧道效应模型、控制栅极模型和接触燃烧模型等气敏模型[4]。本文主要从气体与敏感材料的相互作用出发,结合气敏材料电学性质的变化,对气敏材料的敏感机理进行较为详细的阐述。 1吸、 脱附模型吸、脱附模型是指利用待测气体在气敏材料上进行物理或化学吸、脱附,引起材料电阻等电学性质变化从而达到检测目的的模型。该模型建立较早,是最为公认的气敏机理模型。通常情况下,材料对气体的物理和化学吸附不可分离的,只是对于不同的材料,起主导作用的吸附方式不同。1.1物理吸、 脱附模型物理吸、脱附模型是利用气体与敏感材料的物理吸、脱附进行检测的。如水蒸气(湿敏)传感器就是利用物理吸附的水分子引起材料表面的电导率发生变化进行检测,也可利用吸附的水分子引起材料电容变化而进行检测。 严白平等[5]通过对MgCr2O4-TiO2湿敏陶瓷的机理进行微观研究表明,材料表面颗粒存在电子电导,产生这种电子电导的原因不是水的化学吸附,因为水的化学吸附在低温下是不可逆的,其化学反应式是: H2O+O-→2OH+e。反应生成的OH不会在低温下还 原成H2O。显然,湿敏材料表面电子电导产生的原因 是物理吸附水。物理吸附水在湿敏材料表面是以弱氢键的形式吸附于表面OH上,由于水分子的强极性,水分子的物理吸附等效于表面上吸附了电偶极子。物理吸附水是容易脱附的,水分子的吸附、脱附等效于表面电偶极子的偶极矩增大、减小。这种表面偶极矩的变化使表面能变化,表面与材料内部实现电子转移。 收稿日期:2006-11-28。 基金项目:国家高技术研究发展计划(863计划)资助项目,编号: 2004AA302032。 第一作者简介:刘海峰(1983-),男,硕士研究生。 气敏材料敏感机理研究进展 刘海峰,彭同江,孙红娟,马国华,段 涛 (西南科技大学矿物材料与应用研究所,四川绵阳 621010)

CHR-01阻抗型高分子湿度传感器湿敏电阻产品规格书

CHR-01阻抗型高分子湿度传感器 (湿敏电阻)产品规格书 一.应用范围: 本资料适用于阻抗型高分子湿度传感器,型号CHR-01 二.外型尺寸及内部结构示意图: 1—外壳(ABS) 2—基片(AL2O3) 3—电极4—感湿材料5—引脚 三.电性能参数表1 工作电压1V AC(50Hz ~ 2 K Hz) 检测范围20%~ 90% RH 检测精度±5% 工作温度范围最高使用温度0℃~+85℃120℃ * 特征阻抗范围30 (21 ~ 40.5) KΩ ( 60%RH, 25℃) 响应时间≤12 s (20%~ 90%) 湿度飘移(/年)≤±2% RH 湿滞≤ 1.5%RH * 元件使用在(85 - 120℃)时,需在高温下标定,器件外壳需另制 ** 25℃标准曲线见图2 *** 0-60℃阻抗特性数据见表2及图3

表2:0~60℃湿度阻抗特性数据 单位: KΩ * 所有数据均由LCR数字电桥在1VAC/1KHZ测试所得。 四、应用电路建议 1、如使用模拟电路,建议将湿度信号变为电压信号输出,请向厂家索取。 2、可采用555时基或RC振荡电路,将湿度传感器等效为阻抗值,测量振荡频率输出,振荡频率在1K Hz左右,(在60%RH,25℃)(建议串联电容采用温度系数低,精度在±5% J级有机聚合物电容,例如涤纶或聚丙烯类电容) 3、对于采用单片机电路采集信号,可参考厂家提供的《湿度传感器单片机应用指南》 五.引用标准 GB/T15768-95 电容式湿敏元件及湿度传感器总规范 SJ/T10431-93 湿敏元件用湿度发生器和湿度测试方法 SJ20760-99 高分子湿度传感器总规范 六.注意事项 1.不要对元件使用直流电源,检测时请使用电桥阻抗(LCR)测试设备 2.避免硬物或手指直接接触元件表面,以免划伤或污染敏感膜 3.焊接时温度不能过高(<180℃,2S 膜表面),使用低温烙铁或用镊子保护 4.尽量避免在以下环境中直接使用:盐雾,腐蚀性气体:强酸(硫酸,盐酸), 强碱,有机溶剂(酒精,丙酮等)

高分子湿敏电阻规格书

DHR01-3035型 高分子高分子湿敏电阻湿敏电阻湿敏电阻规格规格规格说明说明说明书书 一、原理 阻抗型高分子湿度传感器(湿敏电阻), 采用功能高分子膜涂敷在带有导电电极陶瓷衬底上,形成阻抗随相对湿度变化成对数变化的敏感部件,导电机理为水分子的存在影响高分子膜内部导电离子的迁移率。 二、应用 适合电气电力设备、仪器仪表、除湿加湿设备、电子温湿表、制冷、干燥、气象等需湿度测量的场所。 三、特性 高精度,高可靠,高耐水性,高、低湿适应性; 稳定,低漂移,反应快速。 四、电气规格 工作电压 1V AC(50Hz ~ 2 K Hz) 检测范围 20%~ 95% RH 检测精度 ±5% 储存温度 -20℃~﹢60℃ 95%RH 以下(无结露) 工作温度范围 -20℃~﹢80℃ 95%RH 以下(无结露) 特征阻抗 30 KΩ (60%RH, 25℃) 响应时间 ≤12 s (20%~ 90%) 湿度飘移(/年) ≤±2% RH 湿滞 ≤ 1.5% RH 五、外型尺寸及内部结构示意图如下:

六、型号命名 D HR HR 010101 —— XXXX XXXX 公司代号公司代号 湿敏电阻湿敏电阻湿敏电阻 编号编号编号 阻值阻值阻值((30-35KΩ) ) 备注: 1、标称阻值是指在温度为25℃,相对湿度为60%RH 下所测量阻抗值 2、本规格书所有参数均由LCR 数字电桥在(1K Hz,1V)下所测阻抗 3、基本参数:温度为25℃下,特征阻抗值 (单位:KΩ) 型号 湿度rh 30% 40% 50% 60% 70% 80% 90% DHR01-3035 阻值KΩ 352.8 166.6 60.6 29.9 15.4 9.13 4.6 4、各温度下,不同湿度/阻抗数据表 见表1 5、各温度下,不同湿度/阻抗3D 图 见图3 七、可靠性测试: 1、热测试:放置在50℃,30%RH 环境1000小时后,在通常环境下1小时后,阻抗变化不超过初始值对应湿度的±5%RH; 2、冷测试:放置在-10℃环境1000小时后,在通常环境下1小时后,阻抗变化不超过初始值对应湿度的±5%RH。 八、应用电路建议 1、如使用模拟电路,建议将湿度信号变为电压信号输出,请向厂家索取; 2、可采用555时基或RC 振荡电路,将湿度传感器等效为阻抗值,测量振荡频率输出,振荡频率在1K Hz 左右,(在60%RH,25℃)(建议串联电容采用温度系数低,精度在±5% J 级有机聚合物电容,例如涤纶或聚丙烯类电容); 3、对于采用单片机电路采集信号,可参考厂家提供的《湿度传感器单片机应用指南》 。 九、引用标准 GB/T15768-95 电容式湿敏元件及湿度传感器总规范; SJ/T10431-93 湿敏元件用湿度发生器和湿度测试方法; SJ20760-99 高分子湿度传感器总规范。 十、注意事项 1.不要对元件使用直流电源,检测时请使用电桥阻抗(LCR)测试设备; 2.避免硬物或手指直接接触元件表面,以免划伤或污染感湿膜; 3.焊接时温度不能过高(<180℃,2S 膜表面),使用低温烙铁或用镊子保护; 4.尽量避免在以下环境中直接使用: 盐雾,腐蚀性气体:强酸(硫酸,盐酸),强碱,有机溶剂(酒精,丙酮)等; 5.推荐储存条件:温度:10℃~40℃ 湿度:20%RH --60%RH 。

湿敏电阻

湿敏电阻 湿敏电阻是利用湿敏材料吸收空气中的水分而导致本身电阻值发生变化这一原理而制 成的。 工业上流行的湿敏电阻主要有:氯化锂湿敏电阻,有机高分子膜湿敏电阻 氯化锂湿敏电阻 多片电阻组合式氯化锂湿敏传感器是利用湿敏元件的电气特性(如电阻值),随湿度的变化而变化的原理进行湿度测量的传感器,湿敏元件一般是在绝缘物上浸渍吸湿性物质,或者通过蒸发、涂覆等工艺制各一层金属、半导体、高分子薄膜和粉末状颗粒而制作的,在湿敏元件的吸湿和脱湿过程中,水分子分解出的离子H+的传导状态发生变化,从而使元件的电阻值随湿度而变化。 氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强。 氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。 氯化锂感湿基片的结构为选用绝缘材料的衬底,在上方制作一对金属电极,涂覆一层电解质溶液感湿膜,氯化锂是典型的离子晶体,属于非亲合型电解质,氯化锂溶液中,Li+对极性水分子的吸引力极强,离子水分程度最高。氯化锂感湿膜由氯化锂和聚乙烯醇混合制作,其主要特性: 1、是可在120度高温环境中稳定工作,这一点是其他高分子电容是湿度传感器不可比拟的; 2、氯化锂湿敏元件线性测湿量程较窄大约在20%RH左右,在该测量范围内,其线性误差小于2%RH。所以,在全范围湿度测量环境中要想达到高精度的湿度测量,目前普遍采用的单片湿敏元件测量方法就很难实现了。

气敏材料

气敏材料 气敏材料指的是当某一种材料吸附某种气体后,该材料的电阻率发生变化的一种功能材料。它是用二氧化锡等材料经压制烧结而成的,对许多气体反映十分灵敏,可应用于气敏检漏仪等装置进行自动报警。在生活中,它的应用越来越多,可保障人们的生命财产。 在地球的表层,埋藏着大量的煤炭资源,勤劳勇敢的煤矿工人夜以继日地在井下作业,地下的“乌金”被源源不断地送往电厂、钢厂及千家万户,给人类送来光明和温暖。但是,在煤矿的矿井中有一种危害矿工生命的气体——瓦斯。它不仅会令人窒息,而且一旦爆炸,后果不堪设想。在寒冷的冬天,居民用煤炭取暖,稍不注意会造成煤气中毒。在许多城市中做饭烧水都用上了煤气,这种煤气主要是由一氧化碳和氢气组成的,煤气给人们的生活带来了方便,但是这种有毒、易燃、易爆气体一旦泄漏也会造成巨大的危害。如果能对这些有害气体早发现、早预报该多好啊!为此,科技工作者研制出了专门预报这些有毒、易燃、易爆气体的“电鼻子”。这种“电鼻子”学名叫气敏检漏仪。它的“鼻子”是一块“气敏陶瓷”,亦称气敏半导体。这种气敏陶瓷是用二氧化锡等材料经压制烧结而成的。它的表面和内部吸附着氧分子,当遇到易燃易爆的还原性气体时,这些气体就会与其吸附的氧结合,从而引起陶瓷电阻的变化。在这种情况下,气敏检漏仪就会自动报警。这种“电鼻子”对许多气体反映十分灵敏,如对百万分之一浓度的氢气即能显示。 有了这种“电鼻子”,矿井、工厂和家庭再也不会为这些还原性有害气体而提心吊胆了。因为只要空气中还原性气体超标,指示灯就会闪亮,报警器就会鸣响,人们就可以采取通风、检漏、堵漏等措施。这样,就会化险为夷,生命财产得到了保障。 产品由来编辑 人们在研制试验各种陶瓷时,发现半导体陶瓷作为气敏材料的灵敏度非常高。如薄膜状氧化锌气敏材料可检测氢气、氧气、乙烯和丙烯气体;以铂作催化剂时可检测乙烷和丙烷等烷烃类可燃性气体;氧化锡气敏材料可检测甲烷、乙烷等可燃性气体。氧化铱系材料是测氧分压最常用的敏感材料。此外,氧化铁、氧化钨、氧化铝、氧化铝等氧化物都有一定的气敏特性。它们通过有选择地吸附气体,使半导体的表面能态发生改变,从而引起电导率的变化,以此确定某种未知气体及其浓度。目前探测诸如一氧化碳、酒精、煤气、苯、丙烷、氢、二氧化硫等气体的气敏陶瓷已经获得了成功。 半导体陶瓷气敏材料在工业上有着极为广阔的应用前景。如对煤矿开采中的瓦斯进行控制与检测,对煤气输送和化工生产中管道气体泄漏进行监测等。 气敏陶瓷通常分为半导体式和固体电解质式两大类。 1)按制造方法又分为烧结型、厚膜型和薄膜型。 2)按材料成分分为金属氧化物系列(ZnO、材料成分分为金属氧化物系列(SnO2、ZnO和 复合氧化物系列(通式为A BO F e2O3、ZrO2)和复合氧化物系列(通式为ABO3)。 半导体气敏陶瓷的导电机理主要有能级生成理论和接触粒界势垒理论。按能级生成理论,当Sn O2、Zn O等N型半导体陶瓷表面吸附还原性气体时,气体将电子给予半导体,并以正电荷与半导体相吸,而进入N型半导体内的电子又束缚少数载流子空穴,使空穴与电子的复合率降低,增大电子形成电流的能力,使陶瓷电阻值下降;当N型半导体陶瓷表面吸附氧化性气体时,气体将其空穴给予半导体,并以负离子形式与半导体相吸,而进入N型半导体内的空穴使半导体内的电子数减少,因而陶瓷电阻值增大。接触粒界势垒理论则依据多晶半导体能带模型,在多晶界面存在势垒,当界面存在氧化性气体时势垒增加,存在还原性气体时势垒降低,从而导致阻值变化。

气敏元件的制备技术4

气敏元件的制备方法1、气敏元件的结构 2、气敏元件制备流程

3、电子浆料的配制 电子浆料有多种分类方法,按用途可分为导体浆料、电阻浆料、介质浆料、磁性浆料;按主要材料与性能可分为贵金属浆料、贱金属浆料;按热处理条件可分为高温(>1000℃)、中温(1000~300℃)及低温(300~100℃)烧结浆,低温浆料又可称为导电胶。 电子浆料主要由导电相(功能相)、粘结相(玻璃相)和有机载体三部分组成。 (1)导电相(功能相) 导电相(功能相)通常以球形、片状或纤维状分散于基体中,构成导电通路。导电相决定了电子浆料的电性能,并影响着固化膜的物理和气敏性能。 电子浆料用的导电相有碳、金属、金属氧化物三大类。 (2)粘结相(玻璃相) 粘结相通常由玻璃、氧化物晶体或二者的混合物组合而成,其主要作用是在厚膜元件的烧结过程中连接、拉紧、固定导电相粒子,并使整个膜层与基体牢固地粘结在一起。粘结相的选择对成膜的机械性能和电性能有一定的影响。根据在玻璃相中的主要作用,氧化物大致可分为三类: 第一类为构成玻璃基本骨架的氧化物,如SiO2、B2O3等,它们能单独形成机械性能和电性能优良的玻璃; 第二类是调节玻璃的物理、化学性能的氧化物,如Al2O3、PbO、BaO、ZnO,它们可改善玻璃的热膨胀系数、机械强度、热和化学稳定性等; 第三类用于改进玻璃性能的氧化物,如PbO、BaO、B2O3、CaF2,它们能降低玻璃的熔化温度,同时还保证了玻璃的电性能和化学性能。 配方1(典型的硼硅酸铅玻璃粉配方) 氧化铅63%,氧化硼25%,二氧化硅12%。玻璃粉约占浆料配方的2%~3%(wt)。 配方2(改进配方) 氧化铋71%,氧化硼13%,氧化铅10%,二氧化硅5%,氧化锑1%。最高烧结温度为800度(要高于融化温度约100度,其融化温度约650度)。 配方3(无铅配方) 1#:二氧化硅50%,氧化铋20%,氧化锌20%,氧化硼10%,熔融温度814.8度 2#:二氧化硅40%,氧化铋30%,氧化锌10%,氧化硼20%,熔融温度772.5度 制备方法: 按1#所示称取各组分于刚玉坩埚中,加热至1200~1500℃熔化,熔制完成后将熔融态玻璃进行水淬处理水淬后烘干样品进行球磨,球磨3 h后,过筛制得所需的无铅玻璃粉。 使用方法: (1)该无铅导电银浆配方最佳质量分数w(银粉)72%,w(玻璃粉)3%和w(有机载体)25% (2)烧结峰值温度为580℃,保温时间为5min,烧结银膜可以获得最好的结构和电性能。 配方4 (Bi2O3-B2O3系玻璃的配方) w(Bi2O3) w(B2O3) w(ZnO) w(Sb2O3) w(Al2O3) 65 25 5 3.5 1.5

高分子湿度传感器的研制

基金项目:部级预研项目基金资助(323030411)收稿日期:2004-10-18 收修改稿日期:2005-06-24 高分子湿度传感器的研制 陈翠萍,蒋 波,谢光忠,蒋亚东 (电子科技大学光电子信息学院新型传感器教育部重点实验室,四川 成都 610054) 摘要:通过对湿敏材料—聚酰亚胺(PI )的湿敏机理的分析,设计了高分子电容式湿度传感器的芯 片结构,并对其制作工艺进行了详细讨论。在此基础上,对传感器变送电路进行了研究,设计了以双时基电路为主的信号处理电路,并最终制备出了输出电压随环境相对湿度线性变化的湿度传感器。对湿度传感器的湿敏特性的测试表明:在1182%~91104%RH 范围内,带湿度处理电路的湿度传感器输出的信号与环境的相对湿度成线性变化,电路能对湿度电容输出电容量进行放大。关键词:聚酰亚胺;传感器;湿度中图分类号:TP212 文献标识码:A 文章编号:1002-1841(2005)10-0004-03 R esearch on H igh Polymer C apacitive H umidity Sensor CHEN Cui 2ping ,JIANG ,Xie G uang 2zhong ,JIANG Ya 2dong (Ministry of Education K ey Laboratory of N ovel T ransducers ,School of Optical and E lectrical In formation ,University of E lectronic Science &T echnology of China ,Chengdu ,610054,China ) Abstract :Through the analysis of the polyimide humidity sensitive mechanism ,the structure of humidity sens or was designed and the humidity sens or manu facture process was discussed in detailed.Through the research of the sens or transducer circuit ,the signal process circuit was designed mainly through dual timer IC.Finally ,the humidity sens or ,which the change of output v oltage followed was fabricated.The test for the sensitivity of humidity sens or shows that the humidity sensitive curve is very linear corresponding to en 2vironment humidity from 1.82%RH to 91.04%RH ,and the signal process circuit could amplify the output capacity which represents change of environment humidity.K ey Words :P olyimide ;Sens or ;Humidity 1 引言 湿度的检测和控制不容忽视[1-4],高分子电容型薄膜湿度传感器是最优秀的一类湿度传感器,它响应范围宽、响应速度快、湿滞小、精度高、温度系数小、长期稳定性好[5],而聚酰亚胺是高分子电容型湿度传感器中研究的最广泛的材料之一[6]。聚酰亚胺(PI )高分子薄膜传感器具有耐热、高温介电稳定性好、耐化学腐蚀、温度系数小、与硅工艺兼容等特性[7]。而且,敏感薄膜聚酰亚胺的预聚物聚酰胺酸是可以溶于有机溶剂的,这种具有一定粘性的混合溶液可用类似半导体工艺中匀胶的方法旋涂在叉指电极上,再在一定的温度下使有机溶剂挥发,再升温,使聚酰胺酸脱水固化形成聚酰亚胺薄膜。运用该工艺,聚酰亚胺薄膜的膜厚容易控制,重复性很高,制作的湿度传感器成本低,精度高,有利于大批量生产。2 传感器的工作原理、敏感结构与制作工艺 当空气湿度发生变化时,PI 膜暴露于空气的部分可通过吸湿、脱湿和水分子的扩散作用使上、下电极之间的PI 层的含水量发生变化,达到平衡时,PI 膜 微孔隙中水分子浓度与空气中水分子浓度相当。实 践证明:PI 膜的电容量与空气湿度在很大范围内存在一线性关系,所以测量介质膜电容的变化量可知空气的湿度。电容式湿度传感器的工作原理是基于两电极之间介质膜的介电常数εr 随环境湿度的变化而变 化,从而导致电容C 的变化。 [8]C = ε0εr S (%RH )d 式中:S 为电极的有效面积;d 为两电极之间的距离;ε0为真空电容率;%RH 为相对湿度。 图1 聚酰亚胺湿度传感器芯片结构 基于此原理,设计了如图1所示的聚酰亚胺湿度传感器芯片结构。采用图1结构制成的聚酰亚胺湿度传感器芯片(以下简称湿敏电容),由于采用了与集成电路兼容的工艺制作,有利于批量生产,所以该产  2005年 第10期 仪表技术与传感器 Instrument T echnique and Sens or 2005 No 110

半导体气敏材料的研究现状与发展趋势

龙源期刊网 https://www.doczj.com/doc/9c2927236.html, 半导体气敏材料的研究现状与发展趋势 作者:赖小勇郭茹 来源:《科技创新导报》2017年第35期 摘要:半导体气敏传感器在各种气敏传感器中具有许多优势,如价格低、高灵敏度、操 作简单、适宜小型化(便携化)等,因此备受关注。开发具有优异性能的半导体纳米结构气敏材料正成为当前研究的热点。本文简单介绍了纳米结构半导体气敏材料的研究现状与发展趋势。 关键词:气敏传感器半导体石墨烯纳米结构 中图分类号:O484 文献标识码:A 文章编号:1674-098X(2017)12(b)-0072-02 气体传感器在现代传感器技术领域扮演着非常重要的角色,在医疗诊断、工农业生产、环境监控与保护等领域有着广泛需求和应用。半导体气敏传感器具有价格低、高灵敏度、操作简单、适宜小型化(便携化)等特点而备受关注。目前半导体气敏传感器研究主要集中在对现有气敏材料从骨架尺寸、孔隙结构、化学组成到表面性质的改善、设计和合成新型气敏材料以及气敏元件构型的设计和相关工艺改进[1-4]。 随着纳米科学技术的发展,各种具有优良敏感特性的低维金属氧化物半导体气敏材料被广泛报道。1991年,Xu等[5]报道了SnO2纳米粒子对氢气(H2)、一氧化碳(CO)、甲烷(CH4)等气体的灵敏度与它的粒径尺寸(D)和耗尽层厚度(L)有关,当D接近2L时,灵敏度会显著增加。Chiu等[6]利用粒径3nm左右的SnO2纳米粒子装配了高灵敏度的乙醇 (C2H5OH)气体传感器,检测下限可达1.7×10-6。一方面,粒子的表面积随着粒径的减小而显著增大,与材料发生相互作用的气体分子也增多;另一方面,当D接近2L时,粒子中绝大部分电子处于耗尽层中,载流子浓度非常低,材料中的电子传输受表面-气体相互作用的影响较大,因此灵敏度显著提高。类似地,Bianchi等[7]利用In2O3纳米线装配成NO2传感器,其灵敏度随着纳米线直径的减小而显著增加。Wan等[8]利用直径25nm的ZnO纳米线装配成 C2H5OH气体传感器,发现它对C2H5OH的灵敏度非常高,检测下限可达1×10-6。Xu等[9]利用溶剂热法制备的SnO2纳米棒装配成气体传感器,发现它对硫化氢(H2S)的灵敏度非常高,检测下限可达5×10-6。Du等[10]利用碳纳米管为模板制备了管壁厚度为5nm的In2O3纳米管,发现它在室温下对氨气(NH3)有非常高的敏感性,检测下限可达5×10-6。Hoa等[11]利用厚度为20nm的介孔NiO纳米片装配成气体传感器,可以检测浓度为1×10-6的NO2气体。 另外,由简单纳米单元构成的三维超结构材料也被广泛关注。这类材料除了拥有简单纳米材料尺寸小、比表面积大等的特性外,通常兼具丰富的“传输通道”和“自支撑”结构,有利于气体在材料中的传输扩散,能减少简单纳米材料易团聚和烧结长大所带来的比表面积损失和灵敏度下降,因此对待测气体表现出高的灵敏度和快速的响应以及良好的热稳定性。Li等[12]利用

相关主题
相关文档 最新文档