当前位置:文档之家› 高精度深长孔的精密加工方法

高精度深长孔的精密加工方法

高精度深长孔的精密加工方法
高精度深长孔的精密加工方法

高精度深长孔的精密加工法

一、历史背景

枪钻与内排屑深孔钻两种加工孔的刀具分别出现于20世纪30年代初和40 年代初的欧洲兵工厂,这并非历史的偶然。其主要历史背景是:

一次世界大战(1914? 1918 年)首次使战争扩大到世界规模。帝国主义列强为瓜分殖民地而需要大量现代化的枪炮(特别是枪械和小口径火炮的需求量极大)。而继续使用传统的扁钻、麻花钻、单刃炮钻,已经完全不能满足大量生产新式武器的要求,迫切需要进行根本性的技术更新。于是高精度深长孔的制造就成为了一个摆在制造者面前的一个首要问题,并且一直延续到了现今。

第一次世界大战中的火炮

二、传统加工工艺及存在的问题

在现代机械加工中,也经常会遇到一些深孔的加工,例如长径比(L/D)≥10,精度要求高,内孔粗糙度一般为Ra0.4 ~0.8 的典型深孔零件,过去我们采用的传统工艺路线一般是:钻孔(加长标准麻花钻)→扩孔(双刃镗扩孔刀)→铰孔(标准六刃铰刀)→研磨

此工艺虽可达到精度要求,但也存在诸多缺点,特别是在最初工序采用加长麻花钻钻孔时,切

削刃越靠近中心,前脚就越大。若钻头刚性差,则震动更大,表面形状误差难以控制,加工后孔的直线度误差,钻头易产生不均匀的磨损等现象,生产效率和产品合格率低,而且研磨抛光时,工作环境比较脏,由于钻孔工序的缺点,而带来的影响难以在后面的工序中克服,形状误差不能得以修正,因此加工质量差。

传统深孔的加工流程

三、工艺路线与刀具的改进

本着提高生产效率提高产品合格率的原则,结合深孔加工的一些特性,对加工工艺及刀具进行了改进,改进后的工艺路线是:钻孔(BTA 钻)→扩孔(BTA 扩)→铰孔(单刃铰刀)→研磨1、钻孔与扩孔刀具及工艺的改进

单管内排屑深孔钻的由来

单管内排屑深孔钻产生于枪钻之后。其历史背景是:枪钻的发明,使小深孔加工中自动冷却润滑排屑和自导向问题获得了满意的解决,但由于存在钻头与钻杆难于快速拆装更换和钻杆刚性不足、进给量受到严格限制等先天缺陷,而不适用于较大直径深孔的加工。如能改为内排屑,则可以保持钻头和枪杆为中空圆柱体,使钻头快速拆装和提高刀具刚性问题同时得到解决。

20 世纪内排屑深孔钻的发展,可概括出以下6 项里程碑式的成果:

①单出屑口单管内排肩深孔钻基本结构的形成。

②用硬质合金取代工具钢和高速钢做切削刃及导向条,使加工效率大幅度提髙。

...word 格式整理版

③由单出屑口单切削刃发展成双出屑口的错齿结构。

④错齿焊接式结构进一步发展为硬质合金刀片机夹结构,最后发展为机夹可转位涂层刀片结构并实现了专业化制造。

⑤双管喷吸钻和DF 系统喷吸钻的问世。

⑥SIED 抽屑器和SIED 刀具系列的发明。

最初的内排屑深孔钻结构有三种模

式。图2.1 是由双刃麻花钻演变而成的内

排屑莫尔斯钻头。为了易于排屑,在麻花

钻的对称切削刃后刀面上磨出间隔有序的

分屑刃。这种钻头的柄部由于和刀杆同属

圆柱体,可以很方便地实现可快速拆装的方牙螺纹连接。为了保持钻头与钻杆的同轴度,同时在受力情况下有足够的结合刚度,在连接螺纹的前后方各设一个互相同轴的短圆柱面(俗称“制口”)。这种可拆卸的钻柄结构,一举克服了枪钻与钻杆不可拆卸的弊端,成为内排屑深孔刀具柄部的通用模式。

图2.2 为一种比莫尔斯钻更加完善的内排屑

深孔钻头(又名“维列梅丘克整体深孔钻”)。

钻头由整体的合金工具钢或高速钢制成,其切削

刃部继承了枪钻的单边刃自导向结构,柄部则借

鉴了莫尔斯钻头和枪钻:当钻头直径大于22mm

时采用方牙螺纹连接;钻头直径小于等于22mm

时采用钻柄与钻杆对焊。这种钻头曾采用两种分

屑方法以克服排屑故障:图2.2(a)为在后刀

面磨出

纪末,我国和国外一些兵工厂都仍有其应用,可认为它是现代内排屑深孔钻的原创结构。这

分屑刃(二三个);图 2.2(b)_ 为在前刀面磨出分削刃,其中前者应用最多。直到20 世

种内排屑深孔钻的最大缺点是制造成本高,而且工效低(平均切削速度不超过

20m/min),不易重磨。

到二战后期的1942 年,德国人Beisner 设计出一种带3 片硬质合金镶片(一片为切削刃,其余2片为导向条)组成的单出屑口内排屑深孔钻(图2.3)。其外刃后刀面上磨出一二个分屑刃,外刃前刀面磨有断屑台。钻头有一个封闭的空腔,后部有制口和方牙螺纹,与钻杆相应的外制口和外方牙螺纹构成快速连接副。

直到Beisnei 钻头的出现,内排屑深孔钻都是单出屑口的结构。这种内排屑钻头的明显优点在于钻头和枪杆的快速拆卸功能和远大于枪钻的刚度,因而可以采用更大的进给量,工效高于枪钻。但在实际应用中很快就暴露出以下各种缺陷:钻头出屑口通道面积不足,对切屑的宽度和形态要求苛刻,必须根据工件材质的变化刃磨出与之相适应的断屑台(高度、宽度和过渡圆角R,使切屑成为“C”形,并_且屑宽度不大

于钻头直径的1/3 。曾经有不少史料报道过这种单出屑口的内排屑硬质合金深孔钻的极限加工记录(例如,最小钻孔直径达令6mm ,达到的钻孔深度超过孔径的300 倍

等)。但是,这些实验记录与生产实践中的应用效果并不能相提并论。要求操作人员根据不同的工件材质、钻头直径、进给量大小相应地控制断屑台尺寸参数和分屑刃参数,并且在切削刃重磨时,保持断屑台的参数不变,这在实践中几乎是行不通的。基于上述原因,当时欧洲的跨国研究机构“钻镗孔与套料协会"对这种内排屑钻头加以总

结后,推出了由双出屑口单管内排屑深孔钻和扩孔钻、套料钻三种内排屑深孔刀具组成的BTA 刀具系列。20 世纪60 年代后,BTA 刀具基本上由瑞典

SANDVIK/COROMANT 公司独家生产,单出屑口的实体钻结构一律由双出屑口结构取代,又称为STS(Single-TubeSystem, 单管钻)钻

头。

STS 钻采用

Φ18.4~ Φ65mm 焊接刀片结构,Φ65~

Φ180mm 的大直径钻头采取机夹可转位刀

片的组装结构,分别见图2.4(a)、2.4

(b)。

焊接刀片型BTA 钻原来为可重磨式,

其切削刀片和导向条较长。但由于断屑台的刃磨涉及工件材质、进给量等复杂因素,加上刀具为错齿结构,中间齿的切削刃与其他齿的切削刃不在一个圆锥面上(关于这方面的论述,详见本章以下各节),因而一般企业用户基本不具备重磨条件,不得不在一次使用后尚可重磨的情况下将钻头报废。

20 世纪80 年代后,这种焊片式钻头一律改为短刀齿的一次性使用(Disposible)产品

BTA 扩钻由BTA 实体钻所派生,其排屑方法与实体钻相同。BTA 扩钻的主要用途是对工件已有的粗孔(无缝管孔、铸孔等)进行加工,也可对已钻出的较小孔进行扩大。

目前,以商品形式提供的BTA 扩钻,一律采用机夹可转位刀片型结构,仅有一片刀齿,见图2.5 。直径大于100mm 的扩钻,

则设计成一种结构更复杂的直径可

调式机夹结构。

图2.6 为BTA 套料钻,其

直径为

Φ120~ Φ250mm, 可套出料心

Φ32.5~ Φ142.5mm, 全部为机夹

可转位结构。套料钻用于在大型棒

料上钻出Φ120mm 以上的深

孔。

2、BTA 刀具的工作原理

单管内排屑深孔机床的基本配置见图2.7 。不论是实体钻、扩钻或套料钻,都采用相同的供油和排屑方式。钻头的柄部有方牙螺纹与钻杆相连接。具有一定压力的切削液进人输油器5 后通过钻杆外部的环状空隙流向切削刃部(钻杆与输油器的右端有密封),将切削刃上形成的切屑反向压人钻头的出屑口,经钻杆的中空内腔向后排出,直至积屑盘。切削液经过滤网回落到油箱中,经过若干层过滤网后,重新被供油泵抽出,反复使用。20 世纪70 年代以前,内排屑深孔钻床主要用于加工管形工件,绝大多数深孔机床属于主轴(带工件)旋转、刀具进给或刀具与主轴反向旋转工件进给的运动方式。80 年代以后,在固定工件上钻系列孔、坐标孔的事例越来越多,工件固定、刀具旋转并进给的内排屑深孔机床已经很常见。

图2.8(a)、(b)、(c)分别示出BTA 实

体钻、扩孔钻和套料钻的供油和出屑情况。图中箭头

表示切削液进人通道和切屑排出通道的走向。

图2.9 为输油器(或称油压头)的示意图。输

油器是内排屑深孔钻床上一个十分重要的部件(也称辅

具),它同时要承担以下三项重要功能。

①将高压切削液输向钻头切削刃,以完成冷却、润滑和

排屑三重使命

由图可见,切削液从输油器中间的孔口进人空腔后,由于其右方是封闭的,切削液只能向左通过钻套与钻杆之间的环状空隙和切削刃与导向条之间的空隙流向切削刃部,然后将切屑以反方向推入钻头出屑口,进人钻杆内腔并向后排出。

②对工件定心和实行轴向夹紧。

③对钻头进行导向

以上②、③两项功能一般都由钻套来完成。钻套的外部与车床的尾顶尖相似,通常加工成60 °锥面,而内腔为钻头导向孔。钻套的内外径须高度精确同轴,轴的中心线与主轴中心严格保持一致。钻套孔与钻头之间的间隙必须严格控制。

这种兼有工件后顶尖作用的导向套,又称空心顶尖,是棒料毛坯钻深孔时常见的一种定位和钻头导向方法。采用这种定位方法的棒料,在钻深孔之前一般应先切平端

面,预钻顶尖孔并粗车外圆,以保证在工件旋转情况下不发生振摆。推荐采用图所示三种顶尖

孔型式之一。

当工件过重、过长或弯曲度较中心架大时,不适于采用带有外锥的空心顶尖。常见的对

策有两种:

①工件钻人端支承在中心架上,用带有平头端面和密封环的钻套顶紧工件的端面(图

2.10

2.11) 。工件旋转时,钻套也随之旋转。采用本方案时,工件的后端必须切平,与中心

超强超硬材料上细长孔的特种加工

振动磁极头用弹簧片与铁心连接,振动磁极头与铁心之间留有一定间隙。振动磁极头连同弹簧片,电磁铁组成一个“质量2弹簧的振动系统”,叫极化电磁振动机构。研究表明,这种形式的振动机构,由于没有电磁吸力带来的导轨摩擦力损耗,因而传动效率高。 但由于铁心与磁极头之间有间隙,就会有一定磁通(磁势)损失 。 图3 Ⅱ型电磁动力机构 图4 极化电磁振动机构 2 电磁力计算 211 电磁动力机构作用力的计算 在这种振动机构中,交变电流产生的磁通与直 流电流产生的极化磁通之间的相互作用,产生外力,其大小用式(1)计算: F Σ=βl nB I A sin ωt (1)式中:I A —交变电流幅值,A ;l —线圈上穿过磁 通的线圈长度,m ;n —线圈的匝数。 β—与尺寸大小有关的系数;B —穿过线圈的磁感应强度,T 。 由式(1)可知,如果由加工条件所确定的极化磁通一定,则交变电流I A sin ωt 就是调节振动运动的主要参数。 212 极化电磁振动机构作用力的计算 在极化电磁机构中,工作气隙内同时存在2个独立的磁通:一个是由直流电磁铁的电磁线圈提供的极化磁通Φj ;另一个是由交流电磁铁线圈提供的交流磁通Φm ,其大小和方向取决于交流线圈中电流的大小和方向。当交流线圈通电后产生的交流磁通Φm ,若在一侧气隙内和极化磁通Φj 的方向相反,则合成磁通为Φm -Φj ,则在另一侧气隙内的合成磁通为Φm +Φj 。作用于磁极头上的电磁力为两侧电磁力的合力可由式(2)计算: F m =(Φ2m +Φ2 j )/S μ0(2)式中:S —交流电磁铁轭铁面积,m 2;μ0—真空 磁导率,μ0=1125×10-6 H/m ;Φm —交流磁通,Wb ;Φj —极化磁通,Wb 。 由式(2)可见,当要求的电磁力一定时,增大极化磁通就可相应地减少交流磁通,也就可以相应地减少交流电磁铁线圈的磁势或功率。一般地极化磁 通是由加工要求确定的,为一定值,且这部分磁通是漏磁通或散磁通,数量较小,约占直流磁通(主磁通)的5%~15%。因此,交流电磁铁参数是控制机构振动的主要参数。 3 结语 电磁力振动型机构可以实现较高的振动频率,能为实现强力研磨提供可能。但为了提高磁力研磨机的综合性能,仍需寻找结构简单、能耗低、传动效率高的振动机构。上述的几种传动形式(当然还有其它传动形式)各有其优点和不足,仍需在生产实践中不断改进与完善,设计和研制出更高效率的振动机构。 超强超硬材料上细长孔的特种加工 中航雷达与电子设备研究院(215001) 赵东宏随着航空航天工业的迅猛发展,超强超硬材料 以其优越的性能得到越来越普遍地使用,加工难度也越来越大。其中,超强超硬材料上细长孔(孔径Φ1~710mm ,孔长150~500mm )的加工是经常碰到的一个难题,即使采用价格昂贵的专用孔加工刀具进行钻孔,其使用寿命也不理想。这是因为细长孔的加工处于半封闭状态下,切削条件恶劣,加工难度加大。 目前细长孔的机加工方式,主要采用枪钻和改良型专用钻头,但难以在超硬材料上进行加工(HRC60以上,包括硬质合金)。加工超强材料时,枪钻磨损很大,效率很低,易折断,加工成本高,更难以进行批量加工。改良型专用钻头因为很长,刚性极差,加工出的细长孔往往出现偏斜。且一旦钻头磨损,很容易出现强度极高的毛刺,若在盲孔内出现毛刺,去除将非常困难,会严重影响产品的使用。因此对于超硬材料产品上的超长孔(如孔径Φ2mm ,孔长300mm 以上),常在产品设计上采用分段钻孔后,中间用过渡环焊接来解决(某国外样品就是这样做的)。由于焊接应力会在随后的使用过程中释放出来,引起工件形状,特别是直线度的变化,这对产品使用品质的影响是致命的(如航空发动机内的温度传感器),使安全隐患增大,可靠性降低。 如何经济高效地加工超强超硬材料上的细长孔是一个非常现实的问题。在模具行业,大量采用电加工等方法在淬火钢等高硬度钢上加工细长孔,如模具行业的高速穿孔机,是为线切割打预孔用的,对孔的精度要求不高。试验结果表明,普通高速穿孔机尽管效率较高,但加工直径Φ6mm ,深100mm 的孔 ? 58?《新技术新工艺》?实用技术与工艺装备 2006年 第2期

高精度加工

第十二届车身研讨会论文 汽车覆盖件模具高精度加工 的数控编程技术 天津汽车模具有限公司 刘晓英赵文杰 2000年6月

汽车覆盖件模具高精度加工的数控编程技术 天津汽车模具有限公司刘晓英赵文杰 摘要:在模具型面的数控加工过程中,由于所产生的各项误差,影响了模具的质量和周期。本文 通过分析数控加工时所产生的误差,从数控加工工艺﹑数控编程刀具﹑优化走刀方向及设定加工 边界等方面探讨提高模具型面加工精度的方法。 引言: 随着我国汽车工业的迅速发展,汽车改型换代的周期日趋缩短,对汽车模具的制造精度和生产周期的要求越来越高。从某种意义上讲,汽车覆盖件模具的制造质量和周期,大大影响汽车改型换代的质量和周期,左右着汽车在市场上的竞争力。要想生产出高质量具有竞争力的汽车车身产品,必须首先制造出高质量的汽车模具,而高质量的汽车模具在很大程度上取决于模具的数控加工精度。因此如何应用CAM技术提高模具的加工精度受到模具同行们的广泛关注。 天津汽车模具有限公司于1987年开始应用CAM技术,先后完成了天津夏利轿车换型改造的行李箱内外板﹑前机盖内外板,天津华利汽车换型改造的前围板内外板,一汽捷达轿车翼子板,上海大众桑塔纳轿车,四川丰田旅行车,江西五十铃全顺汽车,北汽福田汽车等国内众多汽车厂家的各类大型模具的制造任务,不仅为企业创造了可观的经济效益,更主要的是我们在实现模具高精度加工的数控编程技术方面取得了许多宝贵的经验,为模具CAM技术的更好应用及更进一步的开发工作奠定了基础。本文将对汽车模具在数控加工时所产生的误差进行分析,并从数控加工工艺﹑数控编程刀具﹑优化走刀方向及设定加工边界等方面谈谈实现模具的高精度数控加工的一些方法,与大家交流探讨。 2.问题的提出 汽车覆盖件模具的设计制造周期主要取决模具的钳工研模及调整时间,发达国家如日本、美国及德国的模具加工中,数控加工及抛光所需的时间占整个模具研制时间的65%。在日本,模具的加工时间占30%,抛光时间占35%。美国和德国模具加工时间为50%,抛光时间为15%。从上述统计数字可以看出,模具的研制时间的缩短,制造质量的提高,主要取决于数控加工质量的提高和抛光时间的缩短。通常模具凸凹模加工完成后,其凸凹模型面的法向距离理论上应为汽车产品件的板料厚度,但是由于加工过程中产生的各种误差,通常达不到理论值,确切地说达到板料厚度的95%时既为合格。超过此范围的部分由钳工修配及抛光来去除。因此为缩短模具的钳工研制时间,降低制造成本,提高加工质量,必须提高模具的数控加工质量,进行高精度的数控加工。如何通过控制数控加工精度以缩短抛光时间,是各模具企业面临的实际问题。 3 数控加工所产生的误差分析 1 加工误差的定义

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

高精度细长孔的数控加工研究

高精度细长孔的数控加工研究摘要:目前世界上利用外排屑(如枪钻)深孔钻削技术,可钻削的孔径小到f2mm。而内排屑深孔钻削的孔径很少有小于f16mm的,且多数仍采用传统的BTA钻削系统。由于枪钻结构为不对称形状,质心偏离中轴,这给制造、重磨都带来一定的困难,也使造价增高。另外,其结构刚度和扭转强度低(同直径的圆形钻杆扭转刚度是枪钻的2.3倍),使其使用的钻削速度降低,进给量小。采用单管内排屑喷吸钻(SED)钻削系统,钻削小深孔直径可小到f3.7mm。我工艺所采用SED技术,进行了孔径(mm)f16、f12、f10、f8、f7.62、f5.7、f3.7的小深孔钻削加工,钻削过程平稳,排屑流畅,孔的尺寸形状精度和孔壁表面粗糙度均能满意,在上述孔径范围内,完全可以替代枪钻对小深孔进行钻削加工。由于其刚度好,可加大进给量和钻削速度,使生产效率、钻孔质量和经济效益均有所提高,显示了一定的技术优势。 关键词:高精度细长孔数控加工 一、孔的定义与分类 根据国家标准GB1800—1979的规定:孔主要指圆柱形的内表面。由此可知,广义的孔泛指包容面。孔通常可按如下方法分类: (1)按形状来分。有圆柱孔、圆锥孔、鼓形孔、多边形孔、花键孔和其它异形孔以及特形孔(如弯曲孔)等。其中,以圆柱孔使用最为广泛。 (2)按形态来分。有通孔及盲孔(不通孔);深孔(指孔的深度L与孔径D之比超过5的孔,L/D简称深径比或长径比;L/D=5~20属一般深孔,L/D﹥20~30属中等深孔,L/D ﹥30~100称为特殊深孔)及浅孔。 (3)按孔径的大小来分。有大孔(D﹥100mm)、普通孔(D=10~100mm)、小孔(D=1~10mm)和微孔(D<1mm的孔)。 (4)按加工机理来分。有机械加工、特种加工(见表1)、机电复合加工等。尽管特种加工方法较多,但目前由于设备比较昂贵和加工效率不高等原因,所以无论是现在还是可预见的未来,传统的机械加工仍将是孔加工的主要手段。 表1 孔加工的方法

高精度深长孔加工方法

学院:机械工程学院专业班级: 学号: 姓名:

高精度深长孔的精密加工 一、历史背景 枪钻与内排屑深孔钻两种加工孔的刀具分别出现于20世纪30年代初和40年代初的欧洲兵工厂,这并非历史的偶然。其主要历史背景是: 一次世界大战(1914?1918年)首次使战争扩大到世界规模。帝国主义列强为瓜分殖民地而需要大量现代化的枪炮(特别是枪械和小口径火炮的需求量极大)。而继 续使用传统的扁钻、麻花钻、单刃炮钻,已经完全不能满足大量生产新式武器的要求,迫切需要进行根本性的技术更新。于是高精度深长孔的制造就成为了一个摆在制造者 面前的一个首要问题,并且一直延续到了现今。 第一次世界大战中的火炮 二、传统加工工艺及存在的问题 在现代机械加工中,也经常会遇到一些深孔的加工,例如长径比(L/D)≥10,精度 要求高,内孔粗糙度一般为Ra0.4~0.8的典型深孔零件,过去我们采用的传统工艺路线一般是:钻孔(加长标准麻花钻)→扩孔(双刃镗扩孔刀)→铰孔(标准六刃铰刀)→研磨 此工艺虽可达到精度要求,但也存在诸多缺点,特别是在最初工序采用加长麻花 钻钻孔时,切削刃越靠近中心,前脚就越大。若钻头刚性差,则震动更大,表面形状 误差难以控制,加工后孔的直线度误差,钻头易产生不均匀的磨损等现象,生产效率 和产品合格率低,而且研磨抛光时,工作环境比较脏,由于钻孔工序的缺点,而带来 的影响难以在后面的工序中克服,形状误差不能得以修正,因此加工质量差。

传统深孔的加工流程 三、工艺路线与刀具的改进 本着提高生产效率提高产品合格率的原则,结合深孔加工的一些特性,对加工工艺及刀具进行了改进,改进后的工艺路线是:钻孔(BTA钻)→扩孔(BTA扩)→铰孔(单刃铰刀)→研磨 1、钻孔与扩孔刀具及工艺的改进 单管内排屑深孔钻的由来 单管内排屑深孔钻产生于枪钻之后。其历史背景是:枪钻的发明,使小深孔加工中自动冷却润滑排屑和自导向问题获得了满意的解决,但由于存在钻头与钻杆难于快速拆装更换和钻杆刚性不足、进给量受到严格限制等先天缺陷,而不适用于较大直径深孔的加工。如能改为内排屑,则可以保持钻头和枪杆为中空圆柱体,使钻头快速拆装和提高刀具刚性问题同时得到解决。 20世纪内排屑深孔钻的发展,可概括出以下6项里程碑式的成果: ①单出屑口单管内排肩深孔钻基本结构的形成。 ②用硬质合金取代工具钢和高速钢做切削刃及导向条,使加工效率大幅度提髙。 ③由单出屑口单切削刃发展成双出屑口的错齿结构。 ④错齿焊接式结构进一步发展为硬质合金刀片机夹结构,最后发展为机夹可转位涂层刀片结构并实现了专业化制造。 ⑤双管喷吸钻和DF系统喷吸钻的问世。

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

高精度深长孔加工方法

学院: 机械工程学院: 专业班级: 学号: 名姓 1 / 16 高精度深长孔的精密加工 一、历史背景年代初世纪4030年代初和枪钻与内排屑深孔钻两种加工孔的刀具分别 出现于20 的欧洲兵工厂,这并非历史的偶然。其主要历史背景是:年)首次使战争扩大到世界 规模。帝国主义列强为瓜1918一次世界大战(1914?分殖民地而需要大量现代化的枪炮(特别 是枪械和小口径火炮的需求量极大)。而继续使用传统的扁钻、麻花钻、单刃炮钻,已经完全不 能满足大量生产新式武器的要求,迫切需要进行根本性的技术更新。于是高精度深长孔的制造就 成为了一个摆在制造者面前的一个首要问题,并且一直延续到了现今。

第一次世界大战中的火炮 二、传统加工工艺及存在的问题,精度≥10在现代机械加工中,也经常会遇到一些深孔的加工,例如长径比(L/D)的典型深孔零件,过去我们采用的传统工艺路0.8要求高,内孔粗糙度一般为Ra0.4~)标准六刃铰刀→研磨(→双刃镗扩孔刀扩孔)(线一般是:钻孔加长标准麻花钻→()铰孔此工艺虽可达到精度要求,但也存在诸多缺点,特别是在最初工序采用加长麻花钻钻孔时,切削刃越靠近中心,前脚就越大。若钻头刚性差,则震动更大,表面形状误差难以控制,加工后孔的直线度误差,钻头易产生不均匀的磨损等现象,生产效率和产品合格率低,而且研磨抛光时,工作环境比较脏,由于钻孔工序的缺点,而带来的影响难以在后面的工序中克服,形状误差不能得以修正,因此加工质量差。2 / 16 传统深孔的加工流程 三、工艺路线与刀具的改进本着提高生产效率提高产品合格率的原则,结合深孔加工的一些特性,对加工工单()→铰孔钻(BTA)→扩孔(BTA扩艺及刀具进行了改进,改进后的工艺路线是:钻孔研磨)→刃铰刀1、钻孔与扩孔刀具及工艺的改进单管内排屑深孔钻的由来枪钻的发明,使小深孔加工中单管内排屑深孔钻产生于枪钻之后。其历史背景是:自动冷却润滑排屑和自导向问题获得了满意的解决,但由于存在钻头与钻杆难于快速拆装更换和钻杆刚性不足、进给量受到严格限制等先天缺陷,而不适用于较大直径深孔的加工。如能改为内排屑,则可以保持钻头和枪杆为中空圆柱体,使钻头快速拆装和提高刀具刚性问题同时

超精密加工的主要方法

研究生课程考核试卷 科目:先进制造技术教师:周忆 姓名:张林刚学号:20110713312 专业:机械设计及理论 上课时间:2011年12 月至2012 年 1 月 阅卷评语: 阅卷教师(签名)

超精密加工的主要方法 -机设一班张林刚20110713312 超精密加工技术是20世纪60年代发展和完善起来的,现已成为当代高技术产品的关键制造技术。近20年来,超精密加工不仅进入到国民经济的各个领域,而且正从单件小批生产方式走向规模生产,可以预见,随着新产品的不断涌现,超精密加工的应用范围将进一步扩大。而我国超精密加工技术起步较晚,技术水平与发达国家相比也有一定差距,因此,寻求超精密加工新的方法并探讨其影响因素就成为目前迫在眉睫的问题。 一、超精密加工技术简介 目前,超精密加工是指精度在0.1~0.01μm,表面粗糙度Ra 值在0.03~0.05μm 的加工技术,如金刚石刀具超精密切削、超精密磨料加工、超精密特种加工和复合加工等。它适用于精密元件、计量标准元件、大规模和超大规模集成电路的制造。而且,超精密加工的精度正处在亚纳米级工艺,日趋向纳米级工艺发展。 二、超精密加工方法 根据加工方法的机理和特点,超精密加工方法可以分为去除加工、结合加工和变形加工三大类,如表1 所示。 下面对三类超精密加工方法分别加以分析。 (一)去除加工 去除加工又称为分离加工,是从工件上去除一部分材料,传统的机械加工方法,如车削、铣削、磨削、研磨和抛光,以及特种加工中的电火花加工、电解加工等,均属这种加工方法。 (二)结合加工 结合加工利用物化方法,将不同材料结合在一起。按结合的机理不同,它又分为附着、注入和连接加工三种。1.附着加工又称为沉积加工,是在工件表面上覆盖一层物质,是一种弱结合,其中典型的加工方法是镀;2.注入加工又称为渗入加工,是在工件表面上注入某些元素,使之与基体材料产生物理化学反应,是具有共价键、离子键、金属键的强结合,用以改变工件表层材料的力学机械性质,如渗碳、渗氮等;3.连接加工将两种相同或不同材料通过物化方法连接在一起。

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

高精度细长孔的数控加工研究

高精度细长孔的数控加工研究摘要:目前世界上利用外排屑(如枪钻)深孔钻削技术,可钻削的孔径小到f2mm。而内排屑深孔钻削的孔径很少有小于f16mm的,且多数仍采用传统的BTA钻削系统。由于枪钻结构为不对称形状,质心偏离中轴,这给制造、重磨都带来一定的困难,也使造价增高。另外,其结构刚度和扭转强度低(同直径的圆形钻杆扭转刚度是枪钻的2.3倍),使其使用的钻削速度降低,进给量小。采用单管内排屑喷吸钻(SED)钻削系统,钻削小深孔直径可小到f3.7mm。我工艺所采用SED技术,进行了孔径(mm)f16、f12、f10、f8、f7.62、f5.7、f3.7的小深孔钻削加工,钻削过程平稳,排屑流畅,孔的尺寸形状精度和孔壁表面粗糙度均能满意,在上述孔径范围内,完全可以替代枪钻对小深孔进行钻削加工。由于其刚度好,可加大进给量和钻削速度,使生产效率、钻孔质量和经济效益均有所提高,显示了一定的技术优势。 关键词:高精度细长孔数控加工 一、孔的定义与分类 根据国家标准GB1800—1979的规定:孔主要指圆柱形的内表面。由此可知,广义的孔泛指包容面。孔通常可按如下方法分类: (1)按形状来分。有圆柱孔、圆锥孔、鼓形孔、多边形孔、花键孔和其它异形孔以及特形孔(如弯曲孔)等。其中,以圆柱孔使用最为广泛。 (2)按形态来分。有通孔及盲孔(不通孔);深孔(指孔的深度L与孔径D之比超过5的孔,L/D简称深径比或长径比;L/D=5~20属一般深孔,L/D﹥20~30属中等深孔,L/D ﹥30~100称为特殊深孔)及浅孔。 (3)按孔径的大小来分。有大孔(D﹥100mm)、普通孔(D=10~100mm)、小孔(D=1~10mm)和微孔(D<1mm的孔)。 (4)按加工机理来分。有机械加工、特种加工(见表1)、机电复合加工等。尽管特种加工方法较多,但目前由于设备比较昂贵和加工效率不高等原因,所以无论是现在还是可预见的未来,传统的机械加工仍将是孔加工的主要手段。 表1 孔加工的方法

高精度深长孔的精密加工方法

高精度深长孔的精密加工法 一、历史背景 枪钻与内排屑深孔钻两种加工孔的刀具分别出现于20世纪30年代初和40年代初的欧洲兵工厂,这并非历史的偶然。其主要历史背景是: 一次世界大战(1914?1918年)首次使战争扩大到世界规模。帝国主义列强为瓜分殖民地而需要大量现代化的枪炮(特别是枪械和小口径火炮的需求量极大)。而继 续使用传统的扁钻、麻花钻、单刃炮钻,已经完全不能满足大量生产新式武器的要求,迫切需要进行根本性的技术更新。于是高精度深长孔的制造就成为了一个摆在制造者 面前的一个首要问题,并且一直延续到了现今。 第一次世界大战中的火炮 二、传统加工工艺及存在的问题 在现代机械加工中,也经常会遇到一些深孔的加工,例如长径比(L/D)≥10,精度 要求高,内孔粗糙度一般为Ra0.4~0.8的典型深孔零件,过去我们采用的传统工艺路线一般是:钻孔(加长标准麻花钻)→扩孔(双刃镗扩孔刀)→铰孔(标准六刃铰刀)→研磨

此工艺虽可达到精度要求,但也存在诸多缺点,特别是在最初工序采用加长麻花钻钻孔时,切削刃越靠近中心,前脚就越大。若钻头刚性差,则震动更大,表面形状误差难以控制,加工后孔的直线度误差,钻头易产生不均匀的磨损等现象,生产效率和产品合格率低,而且研磨抛光时,工作环境比较脏,由于钻孔工序的缺点,而带来的影响难以在后面的工序中克服,形状误差不能得以修正,因此加工质量差。 传统深孔的加工流程 三、工艺路线与刀具的改进 本着提高生产效率提高产品合格率的原则,结合深孔加工的一些特性,对加工工艺及刀具进行了改进,改进后的工艺路线是:钻孔(BTA钻)→扩孔(BTA扩)→铰孔(单刃铰刀)→研磨 1、钻孔与扩孔刀具及工艺的改进 单管内排屑深孔钻的由来 单管内排屑深孔钻产生于枪钻之后。其历史背景是:枪钻的发明,使小深孔加工中自动冷却润滑排屑和自导向问题获得了满意的解决,但由于存在钻头与钻杆难于快速拆装更换和钻杆刚性不足、进给量受到严格限制等先天缺陷,而不适用于较大直径深孔的加工。如能改为内排屑,则可以保持钻头和枪杆为中空圆柱体,使钻头快速拆装和提高刀具刚性问题同时得到解决。 20世纪内排屑深孔钻的发展,可概括出以下6项里程碑式的成果: ①单出屑口单管内排肩深孔钻基本结构的形成。 ②用硬质合金取代工具钢和高速钢做切削刃及导向条,使加工效率大幅度提髙。

提高孔加工的精度的方法

提高孔加工的精度的方法 对于钳工专业而言,钻孔是其中最重要的加工操作,它是一种确定孔系和孔位置准确度的方式。钻削加工时,操作者可以利用理论联系实际的方法分析岀孔的中心位置、确定钻床主轴线和被加工工件表面的垂直度以及做好麻花钻刃磨的质量提升工作,从而达到不断提升钻孔工艺以及提高钳工操作能力的目的,希望本文能够使更多的人掌握钳工孔加工精度的方法 在钳工专业的基本实习训练中,孔加工是相对比较难掌握的基本操作之一。在孔加工实习训练中反映问题最多的是单孔的直径控制和多孔的孔距精度控制,特别是对孔距的精度控制最为突出。在实践中,如果是成批量的生产加工,可以通过制做工卡具来实现对孔距的控制,这样不仅能满足产品的技术要求,还能极大地提高工作效率。但在小批量的生产加工中,对孔和孔距的形状和位置精度控制,则要通过划线、找正等方法来予以保证。? 钳工孔加工实习课题训练中容易岀现的问题:? 钻孔时孔径超岀尺寸要求,一般是孔径过大;? 孔的表面粗糙度超岀规定的技术要求;? 孔的垂直度超出位置公差要求;? 孔距(包括边心距和孔距)超出尺寸公差的要求;? 孔加工中岀现问题的主要原因分析:? 钻头刃磨时两个主切削刃不对称,在钻削过程中,使钻头的径向受力; 对钻削的切削速度选择不当;? 钻削时工件未与钻头保持垂直;? 未对孔距尺寸公差进行跟踪控制; 三、提高孔加工精度的方法: 在孔加工的课题训练中,对于前三个问题,需要加强练习。比如主切削刃的不对称问题,在刃磨 时,要对砂轮面进行检查,如果砂轮的磨削面不平整,应及时进行修整,刃磨的角度应保持一致。对于不同 的孔径,要选择相应的切削速度。在钻孔过程中,自始至终都要避免钻头的径向受力。钻孔时,不仅要保证平口钳的上平面与钻头的垂直,也要保证夹持工件时夹持面与加工表面的垂直。夹持要牢固,避免在钻孔过程中,由于夹持不牢使工件发生滑陷。这些都需要在实习的过程中让学生慢慢体会和认真掌握的。? 最容易出现也是最难掌握的问题是孔距精度的控制问题,在这里作一下重点阐述。传统的孔的位置 精度的检查是靠划出检查圆”和检查框”的方法。检查圆”它是在钻孔划线完毕后,用划规以样冲眼为中心,划出比需要加工孔的直径大的检查圆”作为钻孔时检查位置是否准确的参照基准。由于划规在旋转中其确定圆心的脚尖与样冲眼的接触中会产生滑动,使划规划的检查圆”容易产生误差。检查框”是利用高度游标卡 尺在孔的十字中心线上划岀等距的方格,是在钻孔的初期样冲眼灭失时,用来替代样冲眼检查孔位置是否正确的依据,检查框”确定的找正基准可以保证钻孔的中心与样冲眼定位的中心重合,保证划线精度,也避免 了划检查圆”的误差。这两种保证孔位置精度的做法在教学中很难被学生掌握。在多年的钳工实习教学实践 中,对于孔距的控制我采用的是跟踪控制法”所谓跟踪控制”就是从划线开始,到加工结束,每一道加工 工序都要通过认真的检查来保证孔距的精度要求在加工者的控制之中。做到前道加工工序是后一道加工工序的精度控制前提,后一道加工序是前一道加工工序的精度控制保证。一环扣一环,从而实现对孔距精度的控制。? 首先是划线,戈熾是孔加工的第一道工序,戈熾的质量是确保孔加工孔距精度的重要前提。俗话说工欲善其事,必先利其器”在孔加工确定孔中心位置的划线中,一般是采用高度游标卡尺,要划线前一是要检查高度尺的示值误差是否在规定的精度误差范围内,以保证所划线条的尺寸准确,检查高度游标卡尺的划线刃口是否锋利,以确保所划线条清晰均匀;二是要检查划线平板的精度,确保划线平板工作表面清洁、无毛刺,以免影响划线精度。调整好尺寸后,可以在工件上轻轻划出一道可见的痕迹,然后用游标卡尺测量 一下这个痕迹,看是否有误差。如果有误差,就要相应调整高度游标卡尺,直到痕迹符合精度要求。接下来就可以按照图纸要求划岀清晰均匀的孔的中心线了。? 其次是打岀准确的样冲眼,样冲眼的作用是为钻头定心。样冲必须磨得圆而尖并保持足够的硬度,根据多年的教学经验,样冲的顶角为40-50度最为适宜。在打样冲眼时,要使样冲与工件垂直,轻轻敲击出 痕迹,然后观察所敲击的样冲眼是否位于孔的十字中心线的正中。检查符合要求后,再加大敲击力度,使将样冲眼加大,这时应该注

齿轮加工工艺

车床主轴箱齿轮 机械加工工艺过程设计 (机电09级) 1.问题提出 零件的几何精度直接影响零件的使用性能,而机械加工工艺过程制定的是否合理将直接影响零件的加工精度。针对车床主轴箱齿轮,应用所学的机械制造基础知识进行一次加机械工工艺过程设计的综合性工程应用训练。 2.专题研究的目的 (1)掌握零件主要部分技术要求的分析方法; (2)掌握零件材料的选择方法和确定毛坯的制备方法及工艺; (3)掌握工艺分析方法; (4)掌握定位基准的选择方法; (5)掌握制定出合理的零件加工顺序的原则和方法; (6)掌握制定出合理的零件加工路线的方法。 3.研究内容 图1所示为车床的一根传动轴车床主轴箱齿轮,完成该齿轮零件的机械加工工艺过程设计。 工艺设计的具体内容包括: 1、进行零件主要部分的技术要求分析研究; 2、确定齿轮的材料、毛坯的制备方法及工艺、热处理工艺; 3、进行加工工艺分析; 4、确定定位基准;

5、制定齿轮的加工顺序; 6、制定齿轮的加工路线; 4.设计过程 4.1零件主要部分的技术要求分析研究 (1)齿轮的工作面为齿面,在传动过程中接触的两齿面会产生一定相互滑动,导致齿面磨损。严重时,会加大齿侧间隙而引起传动不平稳和冲击。为保证传动的平稳性,并且减小摩擦,应采用较高的表面粗糙度,此处选择2.5um. (2)齿轮Φ40H7内孔表面与传动轴为过盈配合,内孔表面为摩擦表面,应采取较高的表面粗糙度要求,此处选择2.5um. (3)齿轮端面和齿顶面为非工作表面,表面粗糙度要求较低,此处为5um. (4)齿轮端面采用端面圆跳动,既保证了端面与基准轴的垂直度要求又保证

了齿轮轴向的圆柱度要求。 (5)Φ40H7内孔选用直线度、垂直度、圆柱度等形位公差,保证了内孔对基准轴的高精度要求。 4.2确定齿轮的材料、毛坯的制备方法及工艺、热处理工艺 1、选择齿轮的材料时,需考虑到机床齿轮工作平稳,无强烈冲击,负荷不大,转速中等,对齿轮强度和韧性的要求不高,但材料要有高的硬度和好的耐磨性。另外综合选用材料的经济因素,选用45#钢。 2、毛坯的制备方法 锻造:下料—自由锻—正火处理 3、热处理工艺:正火或调质处理后再经高频感应加热表面淬火,齿面硬度可达52HRC,齿心硬度为220~250HBS,能够满足性能要求。 ○1正火:将齿轮放入炉中加热到840-8800C,保温约3小时。出炉后在空气中冷却。 目的:充分消除锻造内应力,细化晶粒,适当提高齿轮的硬度,为以后的机加工做性能准备,同时为后序的热处理做组织准备。 ○2表面淬火+回火 表面淬火:利用感应加热淬火装置,只对轮齿部位进行局部感应加热表面淬火。工艺:将齿轮置于感应器内,通入交流电,轮齿温度达到860-9000C后,随即用水快速冷却,淬火后表面不得有裂纹。目的:提高轮齿表面硬度和耐磨性,淬火后表面硬度可达到48-53HRC,淬硬层可达3-4mm。 回火:将齿轮放入炉中加热到200-2400C,保温约1h,出炉后在空气中冷却。目的:消除淬火内应力,防止变形和开裂;获得稳定的组织,保证尺寸稳定性;

齿轮生产工艺流程

齿轮生产工艺流程 展成法是应用齿轮啮合的原理来进行加工的,用这种方法加工出来的齿形轮廓是刀具切削刃运动轨迹的包络线。齿数不同的齿轮,只要模数和齿形角相同,都可以用同一把刀具来加工。用展成原理加工齿形的方法有:滚齿、插齿、剃齿、珩齿和磨齿等方法。其中剃齿、珩齿和磨齿属于齿形的精加工方法。展成法的加工精度和生产率都较高,刀具通用性好,所以在生产中应用十分广泛。 一、滚齿 (一)滚齿的原理及工艺特点 滚齿是齿形加工方法中生产率较高、应用最广的一种加工方法。在滚齿机上用齿轮滚刀加工齿轮的原理,相当于一对螺旋齿轮作无侧隙强制性的啮合,见图9-24所示。滚齿加工的通用性较好,既可加工圆柱齿轮,又能加工蜗轮;既可加工渐开线齿形,又可加工圆弧、摆线等齿形;既可加工大模数齿轮,大直径齿轮。 滚齿可直接加工8~9级精度齿轮,也可用作7 级以上齿轮的粗加工及半精加工。滚齿可以获得较高的运动精度,但因滚齿时齿面是由滚刀的刀齿包络而成,参加切削的刀齿数有限,因而齿面的表面粗糙度较粗。为了提高滚齿的加工精度和齿面质量,宜将粗精滚齿分开。 (二)滚齿加工质量分析 1.影响传动精度的加工误差分析 影响齿轮传动精度的主要原因是在加工中滚刀和被切齿轮的相对位置和相对运动发生了变化。相对位置的变化(几何偏心)产生齿轮

的径向误差;相对运动的变化(运动偏心)产生齿轮的切向误差。 (1)齿轮的径向误差齿轮径向误差是指滚齿时,由于齿坯的实际回转中心与其基准孔中心不重合,使所切齿轮的轮齿发生径向位移而引起的周节累积公差,如图9—4所示。 齿轮的径向误差一般可通过测量齿圈径向跳动△Fr反映出来。切齿时产生齿轮径向误差的主要原因如下: ①调整夹具时,心轴和机床工作台回转中心不重合。 ②齿坯基准孔与心轴间有间隙,装夹时偏向一边。 ③基准端面定位不好,夹紧后内孔相对工作台回转中心产生偏心。 (2)齿轮的切向误差齿轮的切向误差是指滚齿时,实际齿廓相对理论位置沿圆周方向(切向)发生位移,如图9-5所示。当齿轮出现切向位移时,可通过测量公法线长度变动公差△Fw来反映。 切齿时产生齿轮切向误差的主要原因是传动链的传动误差造成的。在分齿传动链的各传动元件中,对传动误差影响最大的是工作台下的分度蜗轮。分度蜗轮在制造和安装中与工作台回转中心不重合(运动偏心),使工作台回转中发生转角误差,并复映给齿轮。其次,影响传动误差的另一重要因素是分齿挂轮的制造和安装误差,这些误差也以较大的比例传递到工作台上。 2.影响齿轮工作平稳性的加工误差分析 影响齿轮传动工作平稳性的主要因素是齿轮的齿形误差△ff和

高精度圆环薄壁型金属零件加工方法介绍

高精度圆环薄壁型金属零件加工方法介绍 机械制造行业中,经常遇到圆环薄壁型金属零件,此类零件壁厚很薄(2~8mm)、尺寸精度和表面质量要求高、外径尺寸较大(300~800mm)、结构复杂、刚性差,装夹起来非常不便,极易弄伤零件表面,因此,制造难度很大,一次制造合格率很低,即使采用先进的数控车床等设备,在使用数控车床加工时容易引起产品总成变形从而影响精度。为此,对国内外现有的加工方法进行举例分析,并提出一种简便易行、成本低廉的加工方法。 1 国内外现有的加工方法与不足 1.1 国内的加工方法与不足 如加工一种圆环薄壁型零件,其外圆公差0.06mm,同轴度要求0.1mm,零件最薄处壁厚仅2.25mm,外圆尺寸达500mm,外圆表面上还有多处斜槽,国内常见的加工方法是:数控车床三爪卡盘装夹并进行校正,然后分别精车外圆和内孔;但精车外圆和内孔时,工件因材料内应力变化而容易产生变形,产品的最终尺寸出现不同程度的变化而导致超差,却又无法返修,超差较多的只能直接报废。另外,加工外圆和内孔后,还需要使用加工中心来加工斜槽和侧孔,此时,产品外形已经精加工到位,外圆面不能过度受力,不能使用软爪校正,任何的夹紧力对于薄壁件来说都有可能使其变形。因此,现有的加工方法既对于加工者的操作经验要求很高,同时,加工成品率又较低,导致要么产品产量上不去,要么因关键零件无法加工而不能制造整机部件或成套设备。 1.2 国外的加工方法与不足 国外目前的做法有的是通过提高原材料质量,包括锻造、热处理等性能参数,从而改善材料稳定性,降低加工变形性;或通过增加零件的加工工序,即先保证外圆和内孔的尺寸精度基本到位后,然后加工其他槽、孔等局部结构,最后通过修正表面质量使尺寸和表面质量

提高孔加工的精度的方法终审稿)

提高孔加工的精度的方 法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

提高孔加工的精度的方法 对于钳工专业而言,钻孔是其中最重要的加工操作,它是一种确定孔系和孔位置准确度的方式。钻削加工时,操作者可以利用理论联系实际的方法分析出孔的中心位置、确定钻床主轴线和被加工工件表面的垂直度以及做好麻花钻刃磨的质量提升工作,从而达到不断提升钻孔工艺以及提高钳工操作能力的目的,希望本文能够使更多的人掌握钳工孔加工精度的方法 在钳工专业的基本实习训练中,孔加工是相对比较难掌握的基本操作之一。在孔加工实习训练中反映问题最多的是单孔的直径控制和多孔的孔距精度控制,特别是对孔距的精度控制最为突出。在实践中,如果是成批量的生产加工,可以通过制做工卡具来实现对孔距的控制,这样不仅能满足产品的技术要求,还能极大地提高工作效率。但在小批量的生产加工中,对孔和孔距的形状和位置精度控制,则要通过划线、找正等方法来予以保证。 一、钳工孔加工实习课题训练中容易出现的问题: 1、钻孔时孔径超出尺寸要求,一般是孔径过大; 2、孔的表面粗糙度超出规定的技术要求; 3、孔的垂直度超出位置公差要求; 4、孔距(包括边心距和孔距)超出尺寸公差的要求; 二、孔加工中出现问题的主要原因分析: 1、钻头刃磨时两个主切削刃不对称,在钻削过程中,使钻头的径向受力; 2、对钻削的切削速度选择不当; 3、钻削时工件未与钻头保持垂直; 4、未对孔距尺寸公差进行跟踪控制;

三、提高孔加工精度的方法: 在孔加工的课题训练中,对于前三个问题,需要加强练习。比如主切削刃的不对称问题,在刃磨时,要对砂轮面进行检查,如果砂轮的磨削面不平整,应及时进行修整,刃磨的角度应保持一致。对于不同的孔径,要选择相应的切削速度。在钻孔过程中,自始至终都要避免钻头的径向受力。钻孔时,不仅要保证平口钳的上平面与钻头的垂直,也要保证夹持工件时夹持面与加工表面的垂直。夹持要牢固,避免在钻孔过程中,由于夹持不牢使工件发生滑陷。这些都需要在实习的过程中让学生慢慢体会和认真掌握的。 最容易出现也是最难掌握的问题是孔距精度的控制问题,在这里作一下重点阐述。传统的孔的位置精度的检查是靠划出“检查圆”和“检查框”的方法。“检查圆”它是在钻孔划线完毕后,用划规以样冲眼为中心,划出比需要加工孔的直径大的“检查圆”,作为钻孔时检查位置是否准确的参照基准。由于划规在旋转中其确定圆心的脚尖与样冲眼的接触中会产生滑动,使划规划的“检查圆”容易产生误差。“检查框”是利用高度游标卡尺在孔的十字中心线上划出等距的方格,是在钻孔的初期样冲眼灭失时,用来替代样冲眼检查孔位置是否正确的依据,“检查框”确定的找正基准可以保证钻孔的中心与样冲眼定位的中心重合,保证划线精度,也避免了划“检查圆”的误差。这两种保证孔位置精度的做法在教学中很难被学生掌握。在多年的钳工实习教学实践中,对于孔距的控制我采用的是“跟踪控制法”。所谓“跟踪控制”,就是从划线开始,到加工结束,每一道加工工序都要通过认真的检查来保证孔距的精度要求在加工者的控制之中。做到前道加工工序是后一道加工工序的精度控制前提,后一道加工序是前一道加工工序的精度控制保证。一环扣一环,从而实现对孔距精度的控制。 首先是划线,划线是孔加工的第一道工序,划线的质量是确保孔加工孔距精度的重要前提。俗话说“工欲善其事,必先利其器”。在孔加工确定孔中心位置的划线中,一般是采用高度游标卡尺,要划线前一是要检查高度尺的示值误差是否在规定的精度误差范

相关主题
文本预览
相关文档 最新文档