当前位置:文档之家› PCB设计原则总结

PCB设计原则总结

PCB设计原则总结
PCB设计原则总结

PCB设计的一些原则及Protel DXP的一些操作总结

用PROTEL 电路板设计的一般原则

电路板设计的一般原则包括:电路板的选用、电路板尺寸、元件布局、布线、焊盘、填充、跨接线等。

电路板一般用敷铜层压板制成,板层选用时要从电气性能、可靠性、加工工艺要求和经济指标等方面考虑。常用的敷铜层压板是敷铜酚醛纸质层压板、敷铜环氧纸质层压板、敷铜环氧玻璃布层压板、敷铜环氧酚醛玻璃布层压板、敷铜聚四氟乙烯玻璃布层压板和多层印刷电路板用环氧玻璃布等。不同材料的层压板有不同的特点。环氧树脂与铜箔有极好的粘合力,因此铜箔的附着强度和工作温度较高,可以在260℃的熔锡中不起泡。环氧树脂浸过的玻璃布层压板受潮气的影响较小。超高频电路板最好是敷铜聚四氟乙烯玻璃布层压板。

在要求阻燃的电子设备上,还需要阻燃的电路板,这些电路板都是浸入了阻燃树脂的层压板。电路板的厚度应该根据电路板的功能、所装元件的重量、电路板插座的规格、电路板的外形尺寸和承受的机械负荷等来决定。

主要是应该保证足够的刚度和强度。

常见的电路板的厚度有0.5mm、1.0mm、1.5mm、2.0mm

从成本、铜膜线长度、抗噪声能力考虑,电路板尺寸越小越好,但是板尺寸太小,则散热不良,且相邻的导线容易引起干扰。电路板的制作费用是和电路板的面积相关的,面积越大,造价越高。在设计具有机壳的电路板时,电路板的尺寸还受机箱外壳大小的限制,一定要在确定电路板尺寸前确定机壳大小,否则就无法确定电路板的尺寸。一般情况下,在禁止布线层中指定的布线范围就是电路板尺寸的大小。电路板的最佳形状是矩形,长宽比为3:2 或4:3,当电路板的尺寸大于200mm×150mm 时,应该考虑电路板的机械强度。总之,应该综合考虑利弊来确定电路板的尺寸。

虽然Protel DXP 能够自动布局,但是实际上电路板的布局几乎都是手工完成的。要进行布局时,一般遵循如下规则:

1.特殊元件的布局特殊元件的布局从以下几个方面考虑:

1)高频元件:高频元件之间的连线越短越好,设法减小连线的分布参数和相互之间的电磁干扰,易受干扰的元件不能离得太近。隶属于输入和隶属于输出的元件之间的距离应该尽可能大一些。

2)具有高电位差的元件:应该加大具有高电位差元件和连线之间的距离,以免出现意外短路时损坏元件。为了避免爬电现象的发生,一般要求2000V 电位差之间的铜膜线距离应该大于2mm,若对于更高的电位差,距离还应该加大。带有高电压的器件,应该尽量布置在调试时手不易触及的地方。

3)重量太大的元件:此类元件应该有支架固定,而对于又大又重、发热量多的元件,不宜安装在电路板上。

4)发热与热敏元件:注意发热元件应该远离热敏元件。

5)可以调节的元件:对于电位器、可调电感线圈、可变电容、微动开关等可调元件的布局应该考虑整机的结构要求,若是机内调节,应该放在电路板上容易调节的地方,若是机外调节,其位置要与调节旋钮在机箱面板上的位置相对应。

6)电路板安装孔和支架孔:应该预留出电路板的安装孔和支架的安装孔,因为这些孔和孔附近是不能布线的。

2.按照电路功能布局如果没有特殊要求,尽可能按照原理图的元件安排对元件进行布局,信号从左边进入、从右边输出,从上边输入、从下边输出。按照电路流程,安排各个功能电路单元的位置,使信号流通更加顺畅和保持方向一致。以每个功能电路为核心,围绕这个核心电路进行布局,元件安排应该均匀、整齐、紧凑,原则是减少和缩短各个元件之间的引线和连接。数字电路部分应该与模拟电路部分分开布局。

3.元件离电路板边缘的距离所有元件均应该放置在离板边缘3mm 以内的位置,或者至少距电路板边缘的距离等于板厚,这是由于在大批量生产中进行流水线插件和进行波峰焊时,要提供给导轨槽使用,同时也是防止由于外形加工引起电路板边缘破损,引起铜膜线断裂导致废品。如果电路板上元件过多,不得已要超出3mm 时,可以在电路板边缘上加上3mm 辅边,在辅边上开V 形槽,在生产时用手掰开。

4.元件放置的顺序首先放置与结构紧密配合的固定位置的元件,如电源插座、指示灯、开关和连接插件等。再放置特殊元件,例如发热元件、变压器、集成电路等。最后放置小元件,例如电阻、电容、二极管等。

布线的规则如下:

1)线长:铜膜线应尽可能短,在高频电路中更应该如此。铜膜线的不拐弯处应为圆角或斜角,而直角或尖角在高频电路和布线密度高的情况下会影响电气性能。当双面板布线时,两面的导线应该相互垂直、斜交或弯曲走线,避免相互平行,以减少寄生电容。

2)线宽:铜膜线的宽度应以能满足电气特性要求而又便于生产为准则,它的最小值取决于流过它的电流,但是一般不宜小于0.2mm。只要板面积足够大,铜膜线宽度和间距最好选择0.3mm。一般情况下,1~1.5mm 的线宽,允许流过2A 的电流。例如地线和电源线最好选用大于1mm 的线宽。在集成电路座焊盘之间走两根线时,焊盘直径为50mil,线宽和线间距都是10mil,当焊盘之间走一根线时,焊盘直径为64mil,线宽和线间距都为12mil。注意公制和英制之间的转换,100mil=2.54mm。

3)线间距:相邻铜膜线之间的间距应该满足电气安全要求,同时为了便于生产,间距应该越宽越好。最小间距至少能够承受所加电压的峰值。在布线密度低的情况下,间距应该尽可能的大。

4)屏蔽与接地:铜膜线的公共地线应该尽可能放在电路板的边缘部分。在电路板上应该尽可能多地保留铜箔做地线,这样可以使屏蔽能力增强。另外地线的形状最好作成环路或网格状。多层电路板由于采用内层做电源和地线专用层,因而可以起到更好的屏蔽作用效果。

焊盘

焊盘尺寸焊盘的内孔尺寸必须从元件引线直径和公差尺寸以及镀锡层厚度、孔径公差、孔金属化电镀层厚度等方面考虑,通常情况下以金属引脚直径加上0.2mm 作为焊盘的内孔直径。例如,电阻的金属引脚直径为0.5mm,则焊盘孔直径为0.7mm,而焊盘外径应该为焊盘孔径加1.2mm,最小应该为焊盘孔径加1.0mm。当焊盘直径为1.5mm 时,为了增加焊盘的抗剥离强度,可采用方形焊盘。对于孔直径小于0.4mm 的焊盘,焊盘外径/焊盘孔直径=0.5~3。对于孔直径大于2mm 的焊盘,焊盘外径/焊盘孔直径=1.5~2。

常用的焊盘尺寸如表1-1 所示表16-1

常用的焊盘尺寸

焊盘孔直径/mm 0.4 0.5 0.6 0.8 1.0 1.2 1.6 2.0

焊盘外径/mm 1.5 1.5 2.0

设计焊盘时的注意事项如下:

1)焊盘孔边缘到电路板边缘的距离要大于1mm,这样可以避免加工时导致焊盘缺损。

2)焊盘补泪滴,当与焊盘连接的铜膜线较细时,要将焊盘与铜膜线之间的连接设计成泪滴状,这样可以使焊盘不容易被剥离,而铜膜线与焊盘之间的连线不易断开。

3)相邻的焊盘要避免有锐角。

大面积填充

电路板上的大面积填充的目的有两个,一个是散热,另一个是用屏蔽减少干扰,为避免焊接时产生的热使电路板产生的气体无处排放而使铜膜脱落,应该在大面积填充上开窗,后者使填充为网格状。使用敷铜也可以达到抗干扰的目的,而且敷铜可以自动绕过焊盘并可连接地线。

跨接线

在单面电路板的设计中,当有些铜膜无法连接时,通常的做法是使用跨接线,跨接线的长度应该选择如下几种:6mm、8mm 和10mm。

接地

1地线的共阻抗干扰电路图上的地线表示电路中的零电位,并用作电路中其它各点的公共参考点,在实际电路中由于地线(铜膜线)阻抗的存在,必然会带来共阻抗干扰,因此在布

线时,不能将具有地线符号的点随便连接在一起,这可能引起有害的耦合而影响电路的正常工作。

2.如何连接地线通常在一个电子系统中,地线分为系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等几种,在连接地线时应该注意以下几点:

1)正确选择单点接地与多点接地。在低频电路中,信号频率小于1MHz,布线和元件之间的电感可以忽略,而地线电路电阻上产生的压降对电路影响较大,所以应该采用单点接地法。当信号的频率大于10MHz 时,地线电感的影响较大,所以宜采用就近接地的多点接地法。当信号频率在1~10MHz 之间时,如果采用单点接地法,地线长度不应该超过波长的1/20,否则应该采用多点接地。

2)数字地和模拟地分开。电路板上既有数字电路,又有模拟电路,应该使它们尽量分开,而且地线不能混接,应分别与电源的地线端连接(最好电源端也分别连接)。要尽量加大线性电路的面积。一般数字电路的抗干扰能力强,TTL 电路的噪声容限为0.4~0.6V,CMOS 数字电路的噪声容限为电源电压的0.3~0.45 倍,而模拟电路部分只要有微伏级的噪声,就足以使其工作不正常。所以两类电路应该分开布局和布线。

3)尽量加粗地线。若地线很细,接地电位会随电流的变化而变化,导致电子系统的信号受到干扰,特别是模拟电路部分,因此地线应该尽量宽,一般以大于3mm 为宜。

4)将接地线构成闭环。当电路板上只有数字电路时,应该使地线形成环路,这样可以明显提高抗干扰能力,这是因为当电路板上有很多集成电路时,若地线很细,会引起较大的接地电位差,而环形地线可以减少接地电阻,从而减小接地电位差。

5)同一级电路的接地点应该尽可能靠近,并且本级电路的电源滤波电容也应该接在本级的接地点上。

6)总地线的接法。总地线必须严格按照高频、中频、低频的顺序一级级地从弱电到强电连接。高频部分最好采用大面积包围式地线,以保证有好的屏蔽效果。

抗干扰

具有微处理器的电子系统,抗干扰和电磁兼容性是设计过程中必须考虑的问题,特别是对于时钟频率高、总线周期快的系统;含有大功率、大电流驱动电路的系统;含微弱模拟信号以及高精度A/D 变换电路的系统。为增加系统抗电磁干扰能力应考虑采取以下措施:

1)选用时钟频率低的微处理器。只要控制器性能能够满足要求,时钟频率越低越好,低的时钟可以有效降低噪声和提高系统的抗干扰能力。由于方波中包含各种频率成分,其高频成分很容易成为噪声源,一般情况下,时钟频率3 倍的高频噪声是最具危险性的。

2)减小信号传输中的畸变。当高速信号(信号频率高=上升沿和下降沿快的信号)在铜膜线上传输时,由于铜膜线电感和电容的影响,会使信号发生畸变,当畸变过大时,就会使系统工作不可靠。一般要求,信号在电路板上传输的铜膜线越短越好,过孔数目越少越好。典

型值:长度不超过25cm,过孔数不超过2 个。

3)减小信号间的交叉干扰。当一条信号线具有脉冲信号时,会对另一条具有高输入阻抗的弱信号线产生干扰,这时需要对弱信号线进行隔离,方法是加一个接地的轮廓线将弱信号包围起来,或者是增加线间距离,对于不同层面之间的干扰可以采用增加电源和地线层面的方法解决。

4)减小来自电源的噪声。电源在向系统提供能源的同时,也将其噪声加到所供电的系统中,系统中的复位、中断以及其它一些控制信号最易受外界噪声的干扰,所以,应该适当增加电容来滤掉这些来自电源的噪声。

5)注意电路板与元器件的高频特性。在高频情况下,电路板上的铜膜线、焊盘、过孔、电阻、电容、接插件的分布电感和电容不容忽略。由于这些分布电感和电容的影响,当铜膜线的长度为信号或噪声波长的1/20 时,就会产生天线效应,对内部产生电磁干扰,对外发射电磁波。一般情况下,过孔和焊盘会产生0.6pF 的电容,一个集成电路的封装会产生2~6pF 的电容,一个电路板的接插件会产生520mH 的电感,而一个DIP-24 插座有18nH 的电感,这些电容和电感对低时钟频率的电路没有任何影响,而对于高时钟频率的电路必须给予注意。

6)元件布置要合理分区。元件在电路板上排列的位置要充分考虑抗电磁干扰问题。原则之一就是各个元件之间的铜膜线要尽量的短,在布局上,要把模拟电路、数字电路和产生大噪声的电路(继电器、大电流开关等)合理分开,使它们相互之间的信号耦合最小。

7)处理好地线。按照前面提到的单点接地或多点接地方式处理地线。将模拟地、数字地、大功率器件地分开连接,再汇聚到电源的接地点。电路板以外的引线要用屏蔽线,对于高频和数字信号,屏蔽电缆两端都要接地,低频模拟信号用的屏蔽线,一般采用单端接地。对噪声和干扰非常敏感的电路或高频噪声特别严重的电路应该用金属屏蔽罩屏蔽。

8)去耦电容。去耦电容以瓷片电容或多层陶瓷电容的高频特性较好。设计电路板时,每个集成电路的电源和地线之间都要加一个去耦电容。去耦电容有两个作用,一方面是本集成电路的储能电容,提供和吸收该集成电路开门和关门瞬间的充放电电能,另一方面,旁路掉该器件产生的高频噪声。数字电路中典型的去耦电容为0.1μF,这样的电容有5nH 的分布电感,可以对10MHz 以下的噪声有较好的去耦作用。一般情况下,选择0.01~0.1μF 的电容都可以。

一般要求没10 片左右的集成电路增加一个10μF 的充放电电容。另外,在电源端、电路板的四角等位置应该跨接一个10~100μF 的电容。

高频布线

为了使高频电路板的设计更合理,抗干扰性能更好,在进行1)合理选择层数。利用中间内层平面作为电源和地线层,可以起到屏蔽的作用,有效降低寄生电感、缩短信号线长度、降低信号间的交叉干扰,一般情况下,四层板比两层板的噪声低20dB。

2)走线方式。走线必须按照45°角拐弯,这样可以减小高频信号的发射和相互之间的耦合。

3)走线长度。走线长度越短越好,两根线并行距离越短越好。

4)过孔数量。过孔数量越少越好。

5)层间布线方向。层间布线方向应该取垂直方向,就是顶层为水平方向,底层为垂直方向,这样可以减小信号间的干扰。

6)敷铜。增加接地的敷铜可以减小信号间的干扰。

7)包地。对重要的信号线进行包地处理,可以显著提高该信号的抗干扰能力,当然还可以对干扰源进行包地处理,使其不能干扰其它信号。

8)信号线。信号走线不能环路,需要按照菊花链方式布线。

9)去耦电容。在集成电路的电源端跨接去耦电容。

10)高频扼流。数字地、模拟地等连接公共地线时要接高频扼流器件,一般是中心孔穿有导线的高频铁氧体磁珠。

上一页[1] [2] [3]

PCB设计步骤:

1、设置软件工作环境,其中包括如下几个方面:

(1)、软件规则设置,进入Design\Rules,按照设计的要求对选项中的各项进行设置:

①安全间距设置:PROTEL99SE软件中Routing的Clearance Constraint项规定了板上不同网络的走线、焊盘、过孔等之间必须保持的距离。在单面板和双面板的设计中,首选值为10-12mil;四层及以上的PCB首选值为6-8mil;最大安全间距一般没有限制。

②布线层面和方向设置:Routing的Routing Layers,设置使用的走线层面和每层的走线方向(贴片单面板只用顶层,直插单面板只用底层)。一般情况下,使用默认值。

③过孔选项设置:PROTEL99SE软件中Routing的Routing Via Style项规定了过孔的内、外径的最小、最大和首选值。单面板和双面板过孔外径应设置在40mil——60mil之间;内径应设置在20mil——30mil。四层及以上的PCB外径最小值为20mil,最大值为40mil;内径最小值为10mil,最大值为20mil。

④线宽选项设置:PROTEL99SE软件中Routing的Width Constraint项规定了布线的宽

度。单面板和双面板的布线宽度应设置在10——30mil之间,特殊情况下最大值不应超过60mil,最小值不应低于8 mil;四层及以上PCB最小值不应低于5mil,其余设置参照双面板设置。另可以添加一些网络的线宽设置,如地线、+5伏电源线、时钟线、+12伏电源线、-12伏电源线、交流电源输入线、功率输出线等。地线、时钟线和+5伏电源线首选值一般为60mil(最大值不限,最小值为8 mil,在能走通的情况下线尽量宽)宽度,各种电源线首选值一般为40mil(最大值不限,最小值为8 mil,在能走通的情况下线尽量宽)宽度。按照PCB线宽和电流的关系(大约是每毫米线宽允许通过500毫安的电流)确定最大线宽。

⑤敷铜连接选项设置:PROTEL99SE软件中Manufacturing的Polygon Connect Style项规定了敷铜连接的方式。连接方式(Rule Attributes)设置成Relief Connect方式,导线宽度(Conductor Width)设置成25mil,连接数量(Conductors)设置成4,角度(Angle)设置成90度。

⑥物理孔径设置:PROTEL软件中Manufacturing的Hole Size Constraint项规定了物理孔的大小。最小值设置为20mil,最大值没有限制(备注:物理孔一般是指定位孔和安装孔等等)。其余各项一般可用它的缺省值。

(2)、软件参数设置,进入Design\Options和Tools\Preferences,按照设计的要求对选项

中的各项进行设置:

①可视栅格选项设置:PROTEL软件中Design\Options\Layer中选中:Masks中的Top solder;Silkscreen中Top overlay;Other中Keepout和Multi Layer;System下面各项全部选中。Visible Grid项规定了可视栅格的大小,分别设置成10mil(上)和100mil(下)。

②捕捉和器件移动栅格选项设置:PROTEL软件中Design\Options\Options项规定了捕捉和器件移动栅格的大小,捕捉和器件移动栅格均设置为10mil。选中Electrical Grid并把Range中设为8mil,Visible Kind设为Lines,Measurement Uint设为Imperial。

(3)、DRC校验设置:进入Tools\Design Rules Check,按照设计的要求对选项中的各项进

行设置:Report\Routing Rules的Clearance Constraints,Max/Min Width

Constraints,Short Circuit Constraints和Un-Routed Net Constraints均选中;

Report\Manufacturing Rules的Max/Min Hole Size选中;Report\Options的选项全

部选中;On-line\Routing Rules的Clearance Constraints选中;On-line\

Manufacturing Rules的Layer Pairs选中;On-line\Placement Rules的Component

Clearance选中。

2、添加器件库

3、导入网络表。在导入网络表的过程中,必须保证没有任何错误,严禁在网络表导入有错误的情况下进行设计。

4、确定PCB尺寸及定位孔位置和尺寸,并把相关器件进行锁定

5、元器件布局。

原则:PCB布局的原则是美观大方,疏密得当,符合电气特性,利于布线,尽量分成模块。在可能的情况下将元器件摆放整齐,并尽量保证各主要元器件之间和模块之间的对称性。

要求:整个PCB布局要显得大气,疏密得当,不要有的地方过紧,有的地方过松。丝印框要尽量减少,并突出各模块。模块的汉字或英文标示尽量放在对称和平行一致的位置上,并能体现模块的名称和美感。

布局完成后应对PCB布局进行检查,一般检查有如下几个方面:

(1)印制板尺寸应与加工图纸尺寸相符,有定位标记,设置参考点;

(2)元器件应保证在二维、三维空间上无冲突;

(3)元器件布局应疏密有序,排列整齐;

(4)需经常更换的元器件应保证能方便的进行更换;

(5)热敏元件与发热元件之间是保持适当的距离,在需要散热的地方,应加装散热器,同时保证空气流动的通畅;

(6)可调元器件应保证能方便进行调整;

(7)信号流程应保持顺畅且互连最短;

(8)尽可能保证过孔数量最少;

(9)禁止使用Ctrl+X或Ctrl+Y对器件进行翻转;

(10)一块PCB上孔的内径尺寸不能超过9种。

(11) 影响外观的元器件如TO-220封装的三端稳压器、贴片的电解电容等要尽可能的焊接在反面;不需要调节的电位器、中周和可调电容等要尽可能的焊接在反面,不能透过PCB焊接,并且要在产品规格书中要特别说明;其它特别影响整体外观的元器件如大的电解电容、继电器等设法焊接在反面。

6、PCB布线。一般推荐使用自动布线+手动调整的方法,自动布线要求依次按照地线——

电源线——时钟线——其它的顺序进行布线,在布线规则中设置布线优先级,0为最低级,100为最高级,共101种情况。在比较复杂的电路板中,考虑到电气特性的要求、干扰等因素,我们全部采用手动布线。禁止把过孔放在元器件的管脚上,在自动布线之前应该锁定已经布好的线。走线要兼顾美观和电气特性,特别影响外观得走线要设法走在反面,原则上在产品名称、型号和众友标识的地方正面不要走线(特殊情况除外),在丝印框与Keepout框之间不允许正面走线(特殊情况除外)。

7、丝印和汉字的放置

(1)产品名称、型号及众友标识的放置

(2)元器件工程号丝印的放置

(3)模块标示汉字的放置

(4)测试钩和测试孔标识的放置

(5)字体放置的要求

8、大面积铺地。进入Place\Polygon Plane,Net Options选项将Connect to Net设置为Connect to GND,同时将Pour Over Same和Remove Dead topper选中,在Plane setting选项中将Grid size设置为18mil,Track width设置为20mil,layer选中相对应的层;Hatching style中选中Vertical Hatch;其它使用缺省值。大面积铺地之前,还应将安全间距值设置为25mil,大面积铺地之后,再将安全间距值还原。在不希望有走线的区域内放置FILL填充层(如散热器和卧放的两脚晶振,HC49S的晶振,多圈电位器的正面,TO220封装的三端稳压器等,如有其它网络的线从此处穿过则很容易造成短路),要上锡的在Top Solder 或Bottom Solder 层的相应处放FILL。

9、对所有过孔和焊盘泪滴:泪滴可增加它们的牢度但会使板上的线变得较难看,对于贴片和单面板一定要加,其它可根据实际情况选择泪滴。

10、重复DRC检查。进入Tools\Design Rules Check,按照设计要求对选项中的各项进行设置,参考前面设置,DRC检查完成后修正检查中发现的错误,修改完后不允许有错误存在。

PCB制板与存档规则:

为防止公司技术泄密,在制板或存档时应将元器件的封装及名称内容全部删除。同时必须附一个制板说明。譬如:厚度:做一般PCB时厚度为1.6mm,大PCB可用2mm ,射频用PCB等一般在0.8-1mm 左右;材料与颜色等。

电路封装形式选择

1.电阻电容的封装形式如何选择,有没有什么原则?比如,同样是104的电容有0603、0805的封装,同样是10uF电容有3216,0805,3528等封装形式,选择哪种封装形式比较合适呢? 我看到的电路里常用电阻电容封装:

电容:

0.01uF可能的封装有0603、0805

10uF的封装有3216、3528、0805

100uF的有7343

320pF封装:0603或0805

电阻:

4.7K、10k、330、33既有0603又有0805封装

请问怎么选择这些封装?

2.有时候两个芯片的引脚(如芯片A的引脚1,芯片B的引脚2)可以直接相连,有时候引脚之间(如A-1和B-2)之间却要加上一片电阻,如22欧,请问这是为什么?这个电阻有什么作用?电阻阻值如何选择?

3.藕合电容如何布置?有什么原则?是不是每个电源引脚布置一片0.1uf?有时候看到0.1uf 和10uf联合起来使用,为什么?

4.所谓5V ttl器件、5V cmos器件是指什么意思?是不是说该器件电源接上5V,其引脚输出或输入电平就是5V ttl或者5v cmos?

5.板子上要做两个串口,可不可以只用一块MAX232芯片?如果可以,用哪个型号的芯片?MAX3232C、MAX3232E还是MAX3232CSE?或者说这几个芯片哪个都可以

6.看PDIUSBD12芯片手册,见到两个概念,不清楚:单地址/数据总线配置、多路地址/数据总线配置,请问这两者有什么区别

7.protel99中,电源和地的网络标号是不是肯定是全局的(即使我使用层次电路原理图绘图模式3:电路端口全局,网络标号局部)

8.晶振起振电路电容好像一般为22pF,这是不是经验值,像上下拉电阻取值一般为4.7k~10K

https://www.doczj.com/doc/972875829.html,b插座电路,有一个电容:0.01uF/2KV,有这么高的耐压电压电容吗?为什么在这里需要使用这么高的耐压电容

10.DB9插座究竟是2发送,3接收还是3接收2发送,或者是由自己定义,无所谓

12.何谓扇入、扇出、扇入系数及扇出系数

13."高速的差分信号线具有速率高,好布线,信号完整性好等特点",请问何谓高速差分信号线?

14.protel 99se中,布线时,信号线、地线、电源线线宽一般是多少?有什么原则需要注意?

15.TTL电路和cmos电路有什么区别?什么时候使用TTL系列?什么时候使用cmos器件?

一些回答:

1.电阻电容的封装形式如何选择,有没有什么原则?比如,同样是104的电容有0603、0805的封装,同样是10uF电容有3216,0805,3528等封装形式,选择哪种封装形式比较合适呢? 我看到的电路里常用电阻电容封装:

电容:

0.01uF可能的封装有0603、0805

10uF的封装有3216、3528、0805

100uF的有7343

320pF封装:0603或0805

电阻:

4.7K、10k、330、33既有0603又有0805封装

请问怎么选择这些封装?

答:选择合适的封装第一要看你的PCB空间,是不是可以放下这个器件。一般来说,封装大的器件会比较便宜,小封装的器件因为加工进度要高一点,有可能会贵一点,然后封装大的电容耐压值会比封装小的同容量电容耐压值高,这些都是要根据你实际的需要来选择的,另外,小封装的元器件对贴装要求会高一点,比如SMT机器的精度。如手机里面的电路板,因为空间有限,工作电压低,就可以选用0402的电阻和电容,而大容量的钽电容就多为3216等等大的封装

2.有时候两个芯片的引脚(如芯片A的引脚1,芯片B的引脚2)可以直接相连,有时候引脚之间(如A-1和B-2)之间却要加上一片电阻,如22欧,请问这是为什么?这个电阻有什么作用?电阻阻值如何选择?

答:这个电阻一般是串电阻,拿来做阻抗匹配的,当然也可以做降压用,用于3.3V I/O 连接2.5V I/O类似的应用上面。阻值的选择要认真看Datasheet,来计算

3.藕合电容如何布置?有什么原则?是不是每个电源引脚布置一片0.1uf?有时候看到0.1uf 和10uf联合起来使用,为什么?

答:电容靠近电源脚,这个问题可以参见

补充一点看法:

在两个芯片的引脚之间串连一个电阻,一般都是在高速数字电路中,为了避免信号产生振铃(即信号的上升或下降沿附近的跳动)。原理是该电阻消耗了振铃功率,也可以认为它降低了传输线路的Q值。

通常在数字电路设计中要真正做到阻抗匹配是比较困难的,原因有二:1、实际的印制板上

连线的阻抗受到面积等设计方面的限制;2、数字电路的输入阻抗和输出阻抗不象模拟电路那样基本固定,而是一个非线性的东西。

实际设计时,我们常用22到33欧姆的电阻,实践证明,在此范围内的电阻能够较好地抑制振铃。但是事物总是两面的,该电阻在抑制振铃的同时,也使得信号延时增加,所以通常只用在频率几兆到几十兆赫兹的场合。频率过低无此必要,而频率过高则此法的延时会严重影响信号传输。另外,该电阻也往往只用在对信号完整性要求比较高的信号线上,例如读写线等,而对于一般的地址线和数据线,由于芯片设计总有一个稳定时间和保持时间,所以即使有点振铃,只要真正发生读写的时刻已经在振铃以后,就无甚大影响。

前面已经补充了一点,再补充一点:关于接地问题。

接地是一个极其重要的问题,有时关系到设计的成败。

首先要明确的是,所有的接地都不是理想的,在任何时候都具有分布电阻与分布电感,前者在信号频率较低时起作用,后者则在信号频率高时成为主要影响因素。由于上述分布参数的存在,信号在经过地线的时候,会产生压降以及磁场。若这些压降或磁场(以及由该磁场引起的感应电压)耦合到其它电路的输入,就可能会被放大(模拟电路中)或影响信号完整性(数字电路中)。所以,一般要求在设计时就考虑这些影响,有一个大致的原则如下:

1、在频率较低的电路中(尤其是模拟电路或模数混合电路中的模拟部分),采用单点接地,即各级放大器的地线(包括电源线)分别接到电源输出端,成为星形连接,并且在这个星的节点上接一个大电容。这样做的目的是避免信号在地线上的压降耦合到其他放大器中。

2、在模拟电路中(尤其是小信号电路)要避免出现地线环,因为环状的地线会产生感应电流,此电流造成的感应电势是许多干扰信号的来源。

3、如果是单纯的数字电路(包括模数混合电路中的数字部分)且信号频率不高(一般不超过10兆),可以共用一组电源与地线,但是必须注意每个芯片的退耦电容必须靠近芯片的电源与地引脚。

4、在高速的数字电路(例如几十兆的信号频率)中,必须采取大面积接地,即采用4层以上的印制板,其中有一个单独的接地层。这样做的目的是给信号提供一个最短的返回路径。由于高速数字信号具有很高的谐波分量,所以此时地线与信号线之间构成的回路电感成为主要影响因素,信号的实际返回路径是紧贴在信号线下面的,这样构成的回路面积最小(从而电感最小)。大面积接地提供了这样的返回路径的可能性,而采用其他的接地方式均无法提供此返回路径。需要注意的是,要避免由于过孔或其他器件在接地平面上造成的绝缘区将信号的返回路径割断(地槽),若出现这种情况,情况会变得十分糟糕。

5、高频模拟电路,也要采取大面积接地。但是由于此时的信号线要考虑阻抗匹配问题,所以情况更复杂一些,在这里就不展开了。

protel元件封装库总结

关键词:protel元件封装

电阻AXIAL

无极性电容RAD

电解电容RB-

电位器VR

二极管DIODE

三极管TO

电源稳压块78和79系列TO-126H和TO-126V

场效应管和三极管一样

整流桥D-44 D-37 D-46

单排多针插座CON SIP

双列直插元件DIP

晶振XTAL1

电阻:RES1,RES2,RES3,RES4;封装属性为axial系列

无极性电容:cap;封装属性为RAD-0.1到rad-0.4

电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0

电位器:pot1,pot2;封装属性为vr-1到vr-5

二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率)

三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林顿管)

电源稳压块有78和79系列;78系列如7805,7812,7820等

79系列有7905,7912,7920等

常见的封装属性有to126h和to126v

整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46)

电阻:AXIAL0.3-AXIAL0.7其中0.4-0.7指电阻的长度,一般用AXIAL0.4 瓷片电容:RAD0.1-RAD0.3。其中0.1-0.3指电容大小,一般用RAD0.1

电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。一般<100uF用

RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6

二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4 发光二极管:RB.1/.2

集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8

贴片电阻

0603表示的是封装尺寸与具体阻值没有关系

但封装尺寸与功率有关通常来说

0201 1/20W

0402 1/16W

0603 1/10W

0805 1/8W

1206 1/4W

电容电阻外形尺寸与封装的对应关系是:

0402=1.0x0.5

0603=1.6x0.8

0805=2.0x1.2

1206=3.2x1.6

1210=3.2x2.5

1812=4.5x3.2

2225=5.6x6.5

关于零件封装我们在前面说过,除了DEVICE。LIB库中的元件外,其它库的元件都已经有了

固定的元件封装,这是因为这个库中的元件都有多种形式:以晶体管为例说明一下:

晶体管是我们常用的的元件之一,在DEVICE。LIB库中,简简单单的只有NPN与PNP之分,但

实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN的2N3054,则有

可能是铁壳的TO-66或TO-5,而学用的CS9013,有TO-92A,TO-92B,还有TO-5,TO-46,TO-5

2等等,千变万化。

还有一个就是电阻,在DEVICE库中,它也是简单地把它们称为RES1和RES2,不管它是100Ω

还是470KΩ都一样,对电路板而言,它与欧姆数根本不相关,完全是按该电阻的功率数来决

定的我们选用的1/4W和甚至1/2W的电阻,都可以用AXIAL0.3元件封装,而功率数大一点的话

,可用AXIAL0.4,AXIAL0.5等等。现将常用的元件封装整理如下:

电阻类及无极性双端元件AXIAL0.3-AXIAL1.0

无极性电容RAD0.1-RAD0.4

有极性电容RB.2/.4-RB.5/1.0

二极管DIODE0.4及DIODE0.7

石英晶体振荡器XTAL1

晶体管、FET、UJT TO-xxx(TO-3,TO-5)

可变电阻(POT1、POT2)VR1-VR5

当然,我们也可以打开C:\Client98\PCB98\library\advpcb.lib库来查找所用零件的对应封装。

这些常用的元件封装,大家最好能把它背下来,这些元件封装,大家可以把它拆分成两部分

来记如电阻AXIAL0.3可拆成AXIAL和0.3,AXIAL翻译成中文就是轴状的,0.3则是该电阻在印

刷电路板上的焊盘间的距离也就是300mil(因为在电机领域里,是以英制单位为主的。同样

的,对于无极性的电容,RAD0.1-RAD0.4也是一样;对有极性的电容如电解电容,其封装为R

B.2/.4,RB.3/.6等,其中“.2”为焊盘间距,“.4”为电容圆筒的外径。

对于晶体管,那就直接看它的外形及功率,大功率的晶体管,就用TO—3,中功率的晶体管

,如果是扁平的,就用TO-220,如果是金属壳的,就用TO-66,小功率的晶体管,就用TO-5 ,TO-46,TO-92A等都可以,反正它的管脚也长,弯一下也可以。

对于常用的集成IC电路,有DIPxx,就是双列直插的元件封装,DIP8就是双排,每排有4个引

脚,两排间距离是300mil,焊盘间的距离是100mil。SIPxx就是单排的封装。等等。

值得我们注意的是晶体管与可变电阻,它们的包装才是最令人头痛的,同样的包装,其管脚

可不一定一样。例如,对于TO-92B之类的包装,通常是1脚为E(发射极),而2脚有可能是

B极(基极),也可能是C(集电极);同样的,3脚有可能是C,也有可能是B,具体是那个

,只有拿到了元件才能确定。因此,电路软件不敢硬性定义焊盘名称(管脚名称),同样的

,场效应管,MOS管也可以用跟晶体管一样的封装,它可以通用于三个引脚的元件。

Q1-B,在PCB里,加载这种网络表的时候,就会找不到节点(对不上)。

在可变电阻上也同样会出现类似的问题;在原理图中,可变电阻的管脚分别为1、W、及2,

所产生的网络表,就是1、2和W,在PCB电路板中,焊盘就是1,2,3。当电路中有这两种元

件时,就要修改PCB与SCH之间的差异最快的方法是在产生网络表后,直接在网络表中,将晶

体管管脚改为1,2,3;将可变电阻的改成与电路板元件外形一样的1,2,3即可。

数字电路PCB设计的抗干扰考虑

在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。形成干扰的基本要素有三个:

(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。

(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。

(3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。

抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。(类似于传染病的预防)

1 抑制干扰源

抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端

并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。

抑制干扰源的常用措施如下:

(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。

(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。

(3)给电机加滤波电路,注意电容、电感引线要尽量短。

(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。

(5)布线时避免90度折线,减少高频噪声发射。

(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。

按干扰的传播路径可分为传导干扰和辐射干扰两类。

所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。

切断干扰传播路径的常用措施如下:

(1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。

(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。

(3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。

(4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。

(5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。

(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。

(7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

2 提高敏感器件的抗干扰性能

提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。

提高敏感器件抗干扰性能的常用措施如下:

(1)布线时尽量减少回路环的面积,以降低感应噪声。

(2)布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦合噪声。

(3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。

(4)对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813,X25043,X25045等,可大幅度提高整个电路的抗干扰性能。

(5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路。

(6)IC器件尽量直接焊在电路板上,少用IC座。

电路设计中的IC代换技巧分析

一、直接代换

直接代换是指用其他IC不经任何改动而直接取代原来的IC,代换后不影响机器的主要性能与指标。

其代换原则是:代换IC的功能、性能指标、封装形式、引脚用途、引脚序号和间隔等几方面均相同。其中IC的功能相同不仅指功能相同;还应注意逻辑极性相同,即输出输入电平极性、电压、电流幅度必须相同。性能指标是指IC的主要电参数(或主要特性曲线)、最大耗散功率、最高工作电压、频率范围及各信号输入、输出阻抗等参数要与原IC相近。功率小的代用件要加大散热片。其中

1.同一型号IC的代换

同一型号IC的代换一般是可靠的,安装集成电路时,要注意方向不要搞错,否则,通电时集成电路很可能被烧毁。有的单列直插式功放IC,虽型号、功能、特性相同,但引脚排列顺序的方向是有所不同的。例如,双声道功放IC LA4507,引脚有“正”、“反”之分,其起始脚标注(色点或凹坑)方向不同:没有后缀与后缀为"R",的IC等,例如M5115P 与M5115RP.

2.不同型号IC的代换

.型号前缀字母相同、数字不同IC的代换。这种代换只要相互间的引脚功能完全相同,其内部电路和电参数稍有差异,也可相互直接代换。如:伴音中放IC LA1363和LA1365,

后者比前者在IC第⑤脚内部增加了一个稳压二极管,其它完全一样。

.型号前缀字母不同、数字相同IC的代换。一般情况下,前缀字母是表示生产厂家及电路的类别,前缀字母后面的数字相同,大多数可以直接代换。但也数,虽数字相同,但功能却完全不同。例如,HA1364是伴音IC,而uPC1364是色解码IC;4558,8脚的是运算放大器NJM4558,14脚的是CD4558数字电路;故二者完全不能代换。

.型号前缀字母和数字都不同IC的代换。有的厂家引进未封装的IC芯片,然后加工成按本厂命名的产品。还有如为了提高某些参数指标而改进产品。这些产品常用不同型号进行命名或用型号后缀加以区别。例如,AN380与uPC1380可以直接代换;AN5620、TEA5620、DG5620等可以直接代换。

二、非直接代换

非直接代换是指不能进行直接代换的IC稍加修改外围电路,改变原引脚的排列或增减个别元件等,使之成为可代换的IC的方法。

代换原则:代换所用的IC可与原来的IC引脚功能不同、外形不同,但功能要相同,特性要相近:代换后不应影响原机性能。

1.不同封装

IC的代换

相同类型的IC芯片,但封装外形不同,代换时只要将新器件的引脚按原器件引脚的形状和排列进行整形。例如,AFT电路CA3064和CA3064E,前者为圆形封装,辐射状引脚:后者为双列直插塑料封装,两者内部特性完全一样,按引脚功能进行连接即可。双列IC AN7114、AN7115与LA4100、LA4102封装形式基本相同,引脚和散热片正好都相差,180度。前面提到的AN5620带散热片双列直插16脚封装、TEA5620双列直插18脚封装,9、10脚位于集成电路的右边,相当于AN5620的散热片,二者其它脚排列一样,将9、10脚连起来接地即可使用。

2.电路功能相同但个别引脚功能不同lC的代换

代换时可根据各个型号IC的具体参数及说明进行。如电视机中的AGC、视频信号输出有正、负极性的区别,只要在输出端加接倒相器后即可代换。

3.类塑相同但引脚功能不同Ic的代换

这种代换需要改变外围电路及引脚排列,因而需要一定的理论知识、完整的资料和丰富的实践经验与技巧。

4、有些空脚不应擅自接地

内部等效电路和应用电路中有的引出脚没有标明,遇到空的引出脚时,不应擅自接地,这些引出脚为更替或备用脚,有时也作为内部连接。

5. 组合代换

组合代换就是把同一型号的多块IC内部未受损的电路部分,重新组合成一块完整的IC,用以代替功能不良的IC的方法。对买不到原配IC的情况下是十分适用的。但要求所利用IC内部完好的电路一定要有接口引出脚。

非直接代换关键是要查清楚互相代换的两种IC的基本电参数、内部等效电路、各引脚的功能、IC部元件之间连接关系的资料。实际操作时予以注意

~ 集成电路引脚的编号顺序,切勿接错;

~为适应代换后的IC的特点,与其相连的外围电路的元件要作相应的改变;

~电源电压要与代换后的工C相符,如果原电路中电源电压高,应设法降压;电压低,要看代换IC能否工作。

&n

pcb设计心得体会范文

pcb设计心得体会范文 一些基本操作,对更深层的有些就不是很了解了。但是时间有限,只有一个星期实训pcb电路板,老师能教给我们的也只有这么多了,剩下的只有靠我们自己回去自己学习了,作为电子工程系的一名学生,深知掌握这些装也软件的重要性,因为以后我们从事的技术工作需要这些软件工具。 第一天搭接电路,还比较简单,只是有点麻烦,电路搭接好后就要开始封装各个元器件的封装,这就需要很大的耐心,一个一个元器件的进行封装,还不能弄错,不然后面就生成不了报表,生成不了报表,后面进行电路板设计的时候就会导入错误,以致不能进行电路板设计。后面用pcbediter 进行设计电路板设计要导入报表,然后才能开始布局和布线,由于导入的库文件里面没有sop8和sop28两个焊盘的封装,因此在进行设计电路板之前,要先设计那两个器件的焊盘的封装,然后导入库函数,才能导入报表的时候不会报错。不过导入的时候也遇到了一些问题,会提示二极管的管脚不匹配,譬如多一个2脚,少一个3角,然后就觉得很神奇,二极管就只有两个管脚怎么会有3脚了。后面通过老师的讲解,

才明白,原来设计电路板的时候只认封装,不认元器件,是根据封装导入元器件,因此在设计封装的时候,管脚是怎么设计,在原理图里面就要把元器件的管脚改成和封装一样,后面把原理图的管脚改成和导入库函数里面的封装一样,提示就没有了,不过后面又遇到一些小问题,譬如说,下划线写成横线了,然后就有报错,找不到元器件的封装。这给我警示,在原理图的时候,要仔细认真的把管脚封装写对,最然会很麻烦。后面导入报表,开始设计电路板,先开始是布局,大致步好后,然后就开始用软件自带的自动布线,结果发现有很多蝴蝶结,为什么要自动布线,因为最开始我认为如果自动布线可以的话,那手动布线肯定也可以,结果后面一直自动布线不成功。后面老师讲解,才知道,不一定要自动布线成功才能手动布线,浪费了好多时间,以至于后面都要重新排,因为最开始没有把原理图的元器件分块布局,完全是凭感觉乱布局的,后面就是一大片密密麻麻的线,而且很多元器件接点的线都有点长。后面按块先布局,然后再整体布局,然后再微小变动,这样,线明显变少了,而且元器件的接点的线都很少很长了,这样就方便后面的布线了。所以说,布局那是相当的重要啊,先考虑局部,然后再考虑整体。布局步好后,布线就很快了,也没有花多少时间布局,步好后,看了下,还是感觉蛮好的,再没有布电源和地线的情况下,总共打了21个孔,总之,布线的图看起还是蛮自

pcb设计心得体会范文

pcb设计心得体会范文 篇一:PCB电路板设计总结 经过五天的PCB电路板训练,通过对软件的使用,以及实际电路板的设计,对电路板有了更深的认识,知道了电路板的相关知识和实际工作原理。同时也感受到了电路板的强大能力,怪不得现在的电路都是采用集成的电路板电路,因为它实在是有太多的好处,节约空间,方便接线,能大大缩小电路的体积。方便人类小型电器的发明。但是电路板也有一定缺陷,就是太小了,散热不是特别好,这就使得器件的性能不能像想象中那么好。 通过使用,不得不说cadence软件确实很好用,功能太强大,而且也很方便使用,接线,布线,绘制电路板等,很方便使用,不过有一点就是,器件接线的时候不能直接把器件接到导线上,这点不够人性化。虽然说,软件学了五天时间,不过对软件使用还不是能完全掌握,只能掌握一些基本操作,对更深层的有些就不是很了解了。但是时间有限,只有一个星期实训PCB电路板,老师能教给我们的也只有这么多了,剩下的只有靠我们自己回去自己学习了,作为电子工程系的一名学生,深知掌握这些装也软件的重要性,因为以后我们从事的技术工作需要这些软件工具。 第一天搭接电路,还比较简单,只是有点麻烦,电路搭接好后就要开始封装各个元器件的封装,这就需要很大的耐心,一个一个元器件的进行封装,还不能弄错,不然后面就生成不了报表,生成不了报

表,后面进行电路板设计的时候就会导入错误,以致不能进行电路板设计。后面用PCB Editer 进行设计电路板设计要导入报表,然后才能开始布局和布线,由于导入的库文件里面没有sop8和sop28两个焊盘的封装,因此在进行设计电路板之前,要先设计那两个器件的焊盘的封装,然后导入库函数,才能导入报表的时候不会报错。不过导入的时候也遇到了一些问题,会提示二极管的管脚不匹配,譬如多一个2脚,少一个3角,然后就觉得很神奇,二极管就只有两个管脚怎么会有3脚了。后面通过老师的讲解,才明白,原来设计电路板的时候只认封装,不认元器件,是根据封装导入元器件,因此在设计封装的时候,管脚是怎么设计,在原理图里面就要把元器件的管脚改成和封装一样,后面把原理图的管脚改成和导入库函数里面的封装一样,提示就没有了,不过后面又遇到一些小问题,譬如说,下划线写成横线了,然后就有报错,找不到元器件的封装。这给我警示,在原理图的时候,要仔细认真的把管脚封装写对,最然会很麻烦。后面导入报表,开始设计电路板,先开始是布局,大致步好后,然后就开始用软件自带的自动布线,结果发现有很多蝴蝶结,为什么要自动布线,因为最开始我认为如果自动布线可以的话,那手动布线肯定也可以,结果后面一直自动布线不成功。后面老师讲解,才知道,不一定要自动布线成功才能手动布线,浪费了好多时间,以至于后面都要重新排,因为最开始没有把原理图的元器件分块布局,完全是凭感觉乱布局的,后面就是一大片密密麻麻的线,而且很多元器件接点的线都有点长。后面按块先布局,然后再整体布局,然后再微小变动,这样,线明显变

干货-PCB设计经验总结-精

干货-PCB设计经验总结 随着新能源汽车的发展,汽车电气化越来越严重,相关的EMC问题也越来越突出,因此为了从根本上降低EMC的风险,需要从设计阶段尤其是PCB layout 入手,来防患于未然。下面是一位从业十余年的硬件工程师的经验笔记! 如觉得有帮助欢迎支持转发分享给更多需要的人! 叠层: 1.电源和地的平面尽可能近(利于电源噪声高频滤波) 2.信号层:避免两信号层相邻(如果必须相邻,加大两层间距); 3.电源层:避免两电源层相邻; 4.外层:铺地; 布线: 5.关键信号线:避免跨分割(参考平面); 6.关键信号线:“换层不换面(参考平面)”; 7.关键信号线:长度尽可能短; 8.关键信号线:位置远离PCB板边缘及接口; 9.信号线:不能跨越分割间隙布线(否则电磁辐射及信号串扰剧增);

10.信号线:换层(返回路径)必须跨分割时,须使用过孔或滤波电容(10nf); 11.总线:相同功能的并行布置,中间勿参杂其他信号; 12.接收发送信号:分开布线,勿交叉; 13.高速信号线:走线宽度勿突变; 14.电源:电源线不要形成环路(近似包裹的环路) 15.地:地线不要形成环路(近似包裹的环路); 16.地:干扰源的地勿与信号地就近共用(晶振等干扰源的地不干净); 17.地:多芯片并排共电源与地时,电源与地的主线路宜在芯片同侧(回流面积小); 18.分割:模拟地与数字地分割布线,建立“地连接桥”,如有必要进行磁珠滤波; 19.分割:电源/地平面分割需合理(否则高速信号存在EMI、EMC风险); 20.拐角走线:优选45度(降低拐角对走线阻抗影响) 21.拐角走线:长度越长越好(降低拐角对走线阻抗影响) 22.拐角走线:过孔处上下走线拐角要求同上; 23.高频干扰源:下方禁止布线(晶振、开关电源等干扰源); 24.高频干扰源:附近尽量避免布电源主路线(晶振、开关电源等干扰源); 25.接插件:下方禁止布线; 电源滤波: 26.滤波区域为原理信号区域(降低耦合); 27.高频滤波电容需靠近电源PIN脚(容值越小越近);

PCB设计总结

PCB设计总结 、概述 PCB是一个连接电子元器件的载体。PCB设计是一个把原理设计上的电气连接变成实实在 在的,可用的线路连接。简单的PCB设计就是将器件的管脚按照一定的需要连通,但对于 高速,高密度的PCB设计,涉及到很多的方面,包括结构方面,信号完整性,EMC,EMI, 电源设计,加工工艺方面等等。 、布局 1材料 PCB材料很多,我们目前使用的基本都是FR4的,TG参数(高耐热性)是一个很重要的指 标,一般结构工程师会在他们提供的cutout里面给出TG参数的要求。 2合理的层数安排 一块板PCB层数多少合适,要基于生产成本和信号质量需求两方面考虑。对于速度低,密度小的板块,可以考虑层数少些,对于高速,高密度板,要尽可能多的安排完整的电地层,以保证较好的信号质量。 3电源层和地层 3.1、电源层和地层的作用和区别 电源层和地层都可以作为参考平面,在一定程度上来说他们是一样的。但是,相对来说,电源平面的特性阻抗较高,与参考平面存在较大的电位势差。而地平面作为地基准,地平面的屏蔽作用要远远好于电源屏幕,对于重要信号,最好选择地平面作为参考屏幕。 3.2、电源层,信号层,地层位置 A、第二层为地层,用于屏蔽器件(如果有更重要的信号需要地,可以进行调整) B、所有信号层都有参考平面。 C、最好不要相邻信号层,有的话,要安排信号走向为垂直方向。 D、关键信号参考平面为完整的地平面不跨分割区。

3.3、几种常用的板子的叠层方案 四层版 BOT 在该方案中表层具有较好的信号质量,对器件也有较好的屏蔽,使电源层和地层距离适当拉近,可以降低电源地的分布阻抗,保证电源地的去耦效果。 其它一些方案参考 paul wang发的一份emc规范。

PCB-10年设计经验总结

电子产品设计经验总结之PCB设计 1. 根据线路板厂家的能力设定线路板基本参数 根据沧州一带线路板厂的水平,按下列参数设计线路板质量应能保证: *最小导线宽度:8mil; *最小导线间距:8mil; *最小过孔焊盘直径:30 mil; *最小过孔孔径:16 mil; * DRC检查最小间距:8mil; 2. 线路板布局 *固定孔和线路板外形按结构要求以公制尺寸绘制; *螺钉固定孔的焊盘要大于螺钉帽和螺母的直径,以M3的螺钉为例,其焊盘直径为6.5mm,钻孔直径为3.2mm。 *外围接插件位置要总体考虑,避免电缆错位、扭曲; *其他器件要以英制尺寸布置在最小25 mil的网格上,以利布线; *按功能把器件分成多个单元,在显示网络飞线的情况下把单元的各个器件定位; *把各个单元移到线路板的合适位置,利用块移动和旋转功能使大部分走线合理; *模拟电路与数字电路分片布置,数字部分的电流尽量不要穿越模拟区; *模拟电路按信号走向布置,大信号线不得穿越小信号区; *晶体和连接电容下方不得走其他信号线,以免振荡频率不稳; *除单列器件外只允许移动、旋转,不得翻转,否则器件只能焊于焊接面; *核对器件封装 同一型号的贴片器件有不同封装。例如SO14 塑料本体宽度有0.15英寸(3.8mm)和5.1mm的区别。 *核对器件安装位置 器件布局初步完成后,应打出1:1的器件图,核对边沿器件安装位置是否合适。 3. 布线

3.1 线宽 信号线:8~12mil; 电源线:30~100mil(A级电源线可用矩形焊盘加焊裸导线以增加通过电流量); 3.2 标准英制器件以25 mil间距走线。 3.3 公制管脚以5 mil间距走线,距离管脚不远处拐弯,尽量走到25 mil 网格上,便于以后导线调整。 3.4 8mil线宽到过孔中心间距为30mil。 3.5 大量走线方向交叉时可把贴片器件改到焊接面。 3.6 原理图连线不见得合理,可适当修改原理图,重作网络表,使走线尽量简洁、合理。 * 62256 RAM芯片的数据、地址线可不按元件图排列; * MCU 的外接IO管脚可适当调整; * 地址锁存芯片的引脚可适当变动,但要注意信号的对应关系; * CPLD和GAL的引脚可适当调整。 3.7在用贴片管脚较多的器件时,布线不一定坚持横竖各在一面的原则,应以走线简洁、合理为准。 3.8 预留电源和地线走线空间。 3.9 电源线换面时最好在器件管脚处,过孔的电阻较大。 3.10 不应连接的器件有飞线,可能是原理图网络标号相同所致,应修改原理图。 4. 线间距压缩 在引线密度较高,差几根线布放困难时可采取以下办法: * 8mil线宽线间距由25 mil改为20 mil; *过孔较多时可把经过孔的相反方向的走线调整到一排; *经过孔的走线弯曲,压缩线间距; * 5. DRC检查 DRC检查的间距一般为10 mil,如布线困难也可设为8 mil。 布地网前应作一次DRC检查,即除GND没布线外不得有其他问题。如发现问题也容易处理。 6. 佈地网(铺铜) 佈地网首先能减小地线电阻,即减小由地线电阻(电感)形成的电压降,使电路工作稳定。另外也可减少对外辐射,增强电磁兼容性。早期采用网格,近来很多采用连在一起的铜箔。 佈地网用DXP软件较好,即缺画导线较少。

PCB设计问题(个人总结)知识分享

1.工作空间是一个比较大的概念,(先创建一个工作空间,再在这个空间内创建一个工程)——创建一个工程,就自动进入了一个工件空间里,在一个空间里可以有多个工程。 2.原理图向PCB转化的过程中,会出现一些问题:1>某些元器件没有对应的封装(元件管理器,封装管理器)。要将元器件的封装添加到对应项目的库中来。 3.端口与网络标号的概念是不区别的,网络标号是引脚上的相连,而端口的概念就是指输入输出的端口,与外部的接口! 4.对于过孔的类型,应该对电源/接地线与信号线区别对待。一般将电源/接地线过孔的参数设置为:孔径20mil,宽度50mil。一般信号类型的过孔则为:孔径20mil,宽度40mil。 5.安全间距的设置:对同一个层面中的两个图元之间的元件之间的允许的最小的间距,默认情况下可设置为10mil. 6.对于双面板而言,可将顶层布线设置为沿垂直方向,将底层布线设置为沿水平方向。 7.对走线宽度的要求,根据电路抗干扰性和实际的电流的大小,将电源和接地线宽确定为20mil, 其它走线宽度10mil. 8.层的管理: 在Atilum中共可进行74个板层的设计,从物理上可将板层分为6类,即信号层、内部电源层、丝印层、保护层、机械层和其他层。另外还有一个系统的颜色层,但它在物理上并不存在。 ①信号层:在信号层中,有一个Top Layer层,一个Bottom Layer层和30个Mid-Layer,其中各层的作用如下所述: Top Layer:元器件面的信号层,可用来放置元器件和布线。(红色线) Bottom Layer:焊接面信号层,可用来放置元器件和布线。(绿色线) Mid-Layer:中间信号层,共30层,(Mid-Layer1--Mid-Layer30),主要用于布置信号线。 内部电源线:系统共提供了16个内部电源层,(Internal Plane 1--Internal Plane 16).内部电源层又称为电气层,主要用于布置电源线和地线。 ②机械层:系统共提供16个机械层(Mechanical 1--Mechanical 16),主要用于放置电路板的边框和标注尺寸,一般情况下只需要一个机械层。(紫色线) ③掩膜层:掩膜层也叫保护层,共提供4个,分别为2个Paste Layer(锡膏防护层)和2个Solder Layer(阻焊层)。其中锡膏防护层用于在焊盘和过孔的周围设置保护区;而阻焊层则用于为光绘和丝印层屏蔽工艺提供与表面有贴装器件的印制电路板之间的焊接粘贴。当表面无粘贴器件时不需要使用该层。 ④丝印层:丝印层(Overlay Layer)共有两层,分别为TOP Overlay和Bottom Overlay。主要用于绘制元器件的外形轮廓、字符串标注等文字和图形说明。(黄色线) ⑤其他层:Drill Guide 用于绘制钻孔导引层。Keep-out Layer 用于定义能有效放置元件和布线的区域。Drill Drawing 用于选择绘制钻孔图层。Multi-Layer 设置是否显示复合层。 尽管在Altium中提供了多达74层的工作层面,但在设计过程中经常用到的只有顶层、底层、丝印层和禁止布线层等少数几个。 9.一般板子的层数指的是板子所含的信号层和电源层的总个数。 10.规划PCB板(三条框):定义板子的外形尺寸(design-Board shape),定义在机械层;定义板子的物理边界(用画线工具)也是定义在机械层;设定电气边界,用画线工具(Keep-out 层中完成的)。 11.敷铜,喷漆,阻焊层,锡膏防护层。Paste Layer到底是什么意思,焊接层?锡膏防护层?(作用在焊盘和过孔周围设置保护区) Paste层:表面意思是指焊膏层,就是说可以用它来制作印刷锡膏的钢网,这一层只需露出所有需要贴片焊接的焊盘,并且开孔可能会比实际焊盘小。这一层资料不需要提供给

PCB设计总结讲解

PCB设计总结 一. PCB板框设计 1. 物理板框的设计一定要注意尺寸精确,避免安装出现麻烦,确保能够将电路板顺利安装进机箱,外壳,插槽等。 2. 拐角的地方(例如矩形板的四个角)最好使用圆角。一方面避免直角,尖角刮伤人,另一方面圆角可以减轻应力作用,减少PCB 板因各种原因出现断裂的情况。 3. 在布局前应确定好各种安装孔(例如螺丝孔)及各种开口,开槽。一般来说,孔与PCB板边缘的距离至少大于孔的直径。 4. 当电路板的面积大于200 x 150 mm时,应重视该板所受的机械强度。从美学角度来看,电路板的最佳形状为矩形。宽和长之比最好是黄金比值0.618(黄金比值的应用也是很广的)。实际应用时可取宽和长为2:3或3:4等。 5. 结合产品设计要求(尤其是批量生产),综合考虑PCB板的尺寸大小。尺寸过大,印刷铜线过长,阻抗增加,抗噪声能力下降;尺寸过小,散热不好,线距不好控制,相邻导线容易干扰。 6. 一般来说,板框的规划是在KeepOutLayer层进行。 二.PCB板布局设计 元件布置是否合理对整板的寿命,稳定性,易用性及布线都有很大的影响,是设计出优秀PCB板的前提。不同的板的布局各有其要求和特点,但当中不乏一些通用的规则,技巧。。

1. 元件的放置顺序 ①一般来说,首先放置与整板的结构紧密相关的且固定位置的元件。比如常见的电源插座,开关,指示灯,各种有特殊位置要求的接口(连接件之类),继电器等,并且不要与PCB板中的开孔,开槽相冲突,位置要正确。放置好后,最好用软件的锁定功能将其固定。 ②接着放置体积大的元件和核心元件以及一些特殊的元件。例如变压器等大元件,集成电路,处理器等核心IC元件,发热元件等。这些元件会随着布线的考虑有所移动,因此是大致的放置,更不用锁定。 ③最后放置小元件。例如阻容元件,辅助小IC等。 2. 注意点 ①原则上所有元件都应该放置在距离板边缘3mm以上的地方。尤其在大批量生产时的流水线插件和波峰焊,此举是要提供给导轨槽使用的,同时可以防止外形切割加工时引起边缘部分缺损。 ②要重视散热问题。 对于一些大功率的电路,应该将其发热严重的元件(如功率管,高功率变压器等)尽量分布在板的边缘,便于热量散发,不要过于集中在一个地方。总之要适当,尤其在一些精密的模拟系统中,发热器件产生的温度场对一些放大电路的影响是严重的。除了保证有足够的散热措施外,一些功率超大的部分建议做成一个单独的模块,并作好

PCB设计原则总结

PCB设计的一些原则及Protel DXP的一些操作总结 用PROTEL 电路板设计的一般原则 电路板设计的一般原则包括:电路板的选用、电路板尺寸、元件布局、布线、焊盘、填充、跨接线等。 电路板一般用敷铜层压板制成,板层选用时要从电气性能、可靠性、加工工艺要求和经济指标等方面考虑。常用的敷铜层压板是敷铜酚醛纸质层压板、敷铜环氧纸质层压板、敷铜环氧玻璃布层压板、敷铜环氧酚醛玻璃布层压板、敷铜聚四氟乙烯玻璃布层压板和多层印刷电路板用环氧玻璃布等。不同材料的层压板有不同的特点。环氧树脂与铜箔有极好的粘合力,因此铜箔的附着强度和工作温度较高,可以在260℃的熔锡中不起泡。环氧树脂浸过的玻璃布层压板受潮气的影响较小。超高频电路板最好是敷铜聚四氟乙烯玻璃布层压板。 在要求阻燃的电子设备上,还需要阻燃的电路板,这些电路板都是浸入了阻燃树脂的层压板。电路板的厚度应该根据电路板的功能、所装元件的重量、电路板插座的规格、电路板的外形尺寸和承受的机械负荷等来决定。 主要是应该保证足够的刚度和强度。 常见的电路板的厚度有0.5mm、1.0mm、1.5mm、2.0mm 从成本、铜膜线长度、抗噪声能力考虑,电路板尺寸越小越好,但是板尺寸太小,则散热不良,且相邻的导线容易引起干扰。电路板的制作费用是和电路板的面积相关的,面积越大,造价越高。在设计具有机壳的电路板时,电路板的尺寸还受机箱外壳大小的限制,一定要在确定电路板尺寸前确定机壳大小,否则就无法确定电路板的尺寸。一般情况下,在禁止布线层中指定的布线范围就是电路板尺寸的大小。电路板的最佳形状是矩形,长宽比为3:2 或4:3,当电路板的尺寸大于200mm×150mm 时,应该考虑电路板的机械强度。总之,应该综合考虑利弊来确定电路板的尺寸。 虽然Protel DXP 能够自动布局,但是实际上电路板的布局几乎都是手工完成的。要进行布局时,一般遵循如下规则: 1.特殊元件的布局特殊元件的布局从以下几个方面考虑: 1)高频元件:高频元件之间的连线越短越好,设法减小连线的分布参数和相互之间的电磁干扰,易受干扰的元件不能离得太近。隶属于输入和隶属于输出的元件之间的距离应该尽可能大一些。 2)具有高电位差的元件:应该加大具有高电位差元件和连线之间的距离,以免出现意外短路时损坏元件。为了避免爬电现象的发生,一般要求2000V 电位差之间的铜膜线距离应该大于2mm,若对于更高的电位差,距离还应该加大。带有高电压的器件,应该尽量布置在调试时手不易触及的地方。

PCB设计经验总结大全

1.1PCB设计经验总结 布局: 总体思想:在符合产品电气以及机械结构要求的基础上考虑整体美观,在一个PCB板上,元件的布局要求要均衡,疏密有序。 1.印制板尺寸必须与加工图纸尺寸相符,符合PCB制造工艺要求,放置MARK点。 2.元件在二维、三维空间上有无冲突? 3.元件布局是否疏密有序,排列整齐?是否全部布完? 4.需经常更换的元件能否方便的更换?插件板插入设备是否方便? 5.热敏元件与发热元件之间是否有适当的距离? 6.调整可调元件是否方便? 7.在需要散热的地方,装了散热器没有?空气流是否通畅? 8.信号流程是否顺畅且互连最短? 9.插头、插座等与机械设计是否矛盾? 10.蜂鸣器远离柱形电感,避免干扰声音失真。 11.速度较快的器件如SRAM要尽量的离CPU近。 12.由相同电源供电的器件尽量放在一起。 布线: 1.走线要有合理的走向:如输入/输出,交流/直流,强/弱信号,高频/低频,高压/低压等...,它们的走向应该是呈线形的(或分离),不得相互交融。其目的是防止相互干扰。最好的走向是按直线,但一般不易实现,避免环形走线。对于是直流,小信号,低电压PCB

设计的要求可以低些。输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 2.选择好接地点:一般情况下要求共点地,数字地与模拟地在电源输入电容处相连。 3.合理布置电源滤波/退耦电容:布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。在贴片器件的退耦电容最好在布在板子另一面的器件肚子位置,电源和地要先过电容,再进芯片。 4.线条有讲究:有条件做宽的线决不做细;高压及高频线应园滑,不得有尖锐的倒角,拐弯也不得采用直角,一般采用135度角。地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。设计中应尽量减少过线孔,减少并行的线条密度。 5.尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线。 6.数字电路与模拟电路的共地处理,现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接。 7.信号线布在电(地)层上在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。 8.关键信号的处理,关键信号如时钟线应该进行包地处理,避免产生干扰,同时在晶振器件边做一个焊点使晶振外壳接地。

pcb设计总结

PCB设计总结 一、概述 PCB是一个连接电子元器件的载体。PCB设计是一个把原理设计上的电气连接变成实实在在的,可用的线路连接。简单的PCB设计就是将器件的管脚按照一定的需要连通,但对于高速,高密度的PCB设计,涉及到很多的方面,包括结构方面,信号完整性,EMC,EMI,电源设计,加工工艺方面等等。 二、布局 1材料 PCB材料很多,我们目前使用的基本都是FR4的,TG参数(高耐热性)是一个很重要的指标,一般结构工程师会在他们提供的cutout里面给出TG参数的要求。 2合理的层数安排 一块板PCB层数多少合适,要基于生产成本和信号质量需求两方面考虑。对于速度低,密度小的板块,可以考虑层数少些,对于高速,高密度板,要尽可能多的安排完整的电地层,以保证较好的信号质量。 3电源层和地层 3.1、电源层和地层的作用和区别 电源层和地层都可以作为参考平面,在一定程度上来说他们是一样的。但是,相对来说,电源平面的特性阻抗较高,与参考平面存在较大的电位势差。而地平面作为地基准,地平面的屏蔽作用要远远好于电源屏幕,对于重要信号,最好选择地平面作为参考屏幕。 3.2、电源层,信号层,地层位置 A、第二层为地层,用于屏蔽器件(如果有更重要的信号需要地,可以进行调整) B、所有信号层都有参考平面。 C、最好不要相邻信号层,有的话,要安排信号走向为垂直方向。 D、关键信号参考平面为完整的地平面不跨分割区。

3.3、几种常用的板子的叠层方案 四层版 方案1示意图: TOP GND VCC BOT 在该方案中表层具有较好的信号质量,对器件也有较好的屏蔽,使电源层和地层距离适当拉近,可以降低电源地的分布阻抗,保证电源地的去耦效果。 其它一些方案参考paul wang发的一份emc规范。

pcb设计心得体会

pcb设计心得体会 篇一:制作PCB的心得体会 天水师范学院 ——PCB实验设计心得 学院:物理与信息科学学院专业:电子信息科学与技术 班级:11电信(2)班 姓名:赵鹏举 学号:XX1060241 制作PCB的心得体会 学习了一学期的PCB制版,我有很多的心得体会,在整个制版过程中,可以在Altium 之下进行,也可以在DXP XX 下进行,但两者之间要关联的文件,可在打工软件后,在菜单栏DXP---属性preferences---system—file type将文件类型与该软件进行关联,以后就可双击文件而利用这个Altium Designer 打开那个文件。常用的要关联的文件有工程文件project, 原理图文件sch,当然还有PCB文件。 先新建原理图(sch图),再新建PCB图。还要建个和。用来画库里找不到的元件,用来为该元件创建封装(先用游

标卡尺量好尺寸),再将这个封装给了里新建的元件,这样就可以了。若要新建第二个元件,则TOOL-New Component,然后画矩形,放管脚。放管脚Pin时,Display name 要在矩形框内部,风络标识Designator 要在矩形框外部。还有在里画元件封装时一定要注意,将封装画在坐标的(0,0)点,否则将原理图导入PCB后,拖动元件时,会产生鼠标指针跑到别的地方去的现象。原理图上的连线,可以用线直接连,也可以用net网络标识。在建好原理图之后,要先导出所需元件的清单(reports---Bill of materials),里面的模板Template要空着,file format先.xls,然后点Export 就可以保存了。建好原理图后,要进行编译,Project---compile schdoc.,若没弹出message窗口,则需手动去右 下角system,,打开messages对话框,查看文件中的错误,对警告warnings 要进行检查,然后再导入PCB中。Design---updata PCB Document(第一个),就可将原理图导入到PCB中。 一次性修改多个元件的某项属性,可以按shift一个一个的选,也可以选中一个后右键,find similar objects ,然后在PCB Inspector中进行统一修改即可。如果要改变放置的过孔的大小,则步骤为:Tool—属性Preference—PCB

PCB设计---PCIE设计总结

PCIE的PCB设计总结 封装: 常见的PCIE连接器有X1、X4、X8、X16,其中数字代表的是有多少条lane,例如X1,表示1条lane,即1对接收差分信号和1对发送差分信号。不同连接器的管脚数量不同,如下图,为X8连接器。通过管脚号,可以判断是哪种slot,其中: PCIeX1(A18B18)---1条lane;PCIeX4(A32B32)---4条lane; PCIeX8(A49B49)---8条lane;PCIeX16(A82B82)---16条lane; PCIE速率: PCIE信号属于高速数字信号,版本越高,速率越高,目前的服务器和主板上比较常见的是PCIE3.0。PCIE速率见下表; PCI Express Introduced Line Transfer Throughput[i] version code rate[i] ×1 ×2 ×4 ×8 ×16 1 2003 8b/10b 2.5 GT/s 250 MB/s 0.50 GB/s 1.0 GB/s 2.0 GB/s 4.0 GB/s 2 2007 8b/10b 5.0 GT/s 500 MB/s 1.0 GB/s 2.0 GB/s 4.0 GB/s 8.0 GB/s 3 2010 128b/130b 8.0 GT/s 984.6 MB/s 1.97 GB/s 3.9 4 GB/s 7.88 GB/s 15.8 GB/s 4 2017 128b/130b 16.0 GT/s 1969 MB/s 3.94 GB/s 7.88 GB/s 15.7 5 GB/s 31.5 GB/s 5 expected in Q2 2019[33] 128b/130b 32.0 GT/s[ii] 3938 MB/s 7.88 GB/s 15.75 GB/s 31.51 GB/s 63.0 GB/s

pcb设计心得体会

pcb设计心得体会 篇一:PcB电路板设计总结 总结 经过五天的PcB电路板训练,通过对软件的使用,以及实际电路板的设计,对电路板有了更深的认识,知道了电路板的相关知识和实际工作原理。同时也感受到了电路板的强大能力,怪不得现在的电路都是采用集成的电路板电路,因为它实在是有太多的好处,节约空间,方便接线,能大大缩小电路的体积。方便人类小型电器的发明。但是电路板也有一定缺陷,就是太小了,散热不是特别好,这就使得器件的性能不能像想象中那么好。 通过使用,不得不说cadence软件确实很好用,功能太强大,而且也很方便使用,接线,布线,绘制电路板等,很方便使用,不过有一点就是,器件接线的时候不能直接把器件接到导线上,这点不够人性化。虽然说,软件学了五天时间,不过对软件使用还不是能完全掌握,只能掌握一些基本操作,对更深层的有些就不是很了解了。但是时间有限,只有一个星期实训PcB电路板,老师能教给我们的也只有这么多了,剩下的只有靠我们自己回去自己学习了,作为电子工程系的一名学生,深知掌握这些装也软件的重要性,因为以后我们从事的技术工作需要这些软件工具。 第一天搭接电路,还比较简单,只是有点麻烦,电路搭接好后就要开

始封装各个元器件的封装,这就需要很大的耐心,一个一个元器件的进行封装,还不能弄错,不然后面就生成不了报表,生成不了报表,后面进行电路板设计的时候就会导入错误,以致不能进行电路板设计。后面用PcBEditer进行设计电路板设计要导入报表,然后才能开始布局和布线,由于导入的库文件里面没有sop8和sop28两个焊盘的封装,因此在进行设计电路板之前,要先设计那两个器件的焊盘的封装,然后导入库函数,才能导入报表的时候不会报错。不过导入的时候也遇到了一些问题,会提示二极管的管脚不匹配,譬如多一个2脚,少一个3角,然后就觉得很神奇,二极管就只有两个管脚怎么会有3脚了。后面通过老师的讲解,才明白,原来设计电路板的时候只认封装,不认元器件,是根据封装导入元器件,因此在设计封装的时候,管脚是怎么设计,在原理图里面就要把元器件的管脚改成和封装一样,后面把原理图的管脚改成和导入库函数里面的封装一样,提示就没有了,不过后面又遇到一些小问题,譬如说,下划线写成横线了,然后就有报错,找不到元器件的封装。这给我警示,在原理图的时候,要仔细认真的把管脚封装写对,最然会很麻烦。后面导入报表,开始设计电路板,先开始是布局,大致步好后,然后就开始用软件自带的自动布线,结果发现有很多蝴蝶结,为什么要自动布线,因为最开始我认为如果自动布线可以的话,那手动布线肯定也可以,结果后面一直自动布线不成功。后面老师讲解,才知道,不一定要自动布线成功才能手动布线,浪费了好多时间,以至于后面都要重新排,因为最开始没有把原理图的元器件分块布局,完全是凭感觉乱布局的,后面就

PCB设计经验总结

-- [PCB]PCB设计经验总结 [PCB]PCB设计经验总结布局:总体思想:在符合产品电气以及机械结构要求的基础上考虑整体美观,在一个PCB板上,元件的布局要求要均衡,疏密有序。1.印制板尺寸必须与加工图纸尺寸相符,符合PCB制造工艺要求,放置MARK点。2.元件在二维、三维空间上有无冲突?3.元件布局是否疏密有序,排列整齐?是否全部布完?4.需经常更换的元件能否方便的更换?插件板插入设备是否方便? 5.热敏元件与发热元件之间是否有适当的距离?6.调整可调元件是否方便?7.在需要散热的地方,装了散热器没有?空气流是否通畅?布局:总体思想:在符合产品电气以及机械结构要求的基础上考虑整体美观,在一个PCB板上,元件的布局要求要均衡,疏密有序。1.印制板尺寸必须与加工图纸尺寸相符,符合PCB制造工艺要求,放置MARK点。2.元件在二维、三维空间上有无冲突?3.元件布局是否疏密有序,排列整齐?是否全部布完?4.需经常更换的元件能否方便的更换?插件板插入设备是否方便? 5.热敏元件与发热元件之间是否有适当的距离?6.调整可调元件是否方便?7.在需要散热的地方,装了散热器没有?空气流是否通畅?8.信号流程是否顺畅且互连最短?9.插头、插座等与机械设计是否矛盾?10.蜂鸣器远离柱形电感,避免干扰声音失真。11.速度较快的器件如SRAM要尽量的离CPU近。12.由相同电源供电的器件尽量放在一起。布线:1.走线要有合理的走向:如输入/输出,交流/直流,强/弱信号,高频/低频,高压/低压等...,它们的走向应该是呈线形的(或分离),不得相互交融。其目的是防止相互干扰。最好的走向是按直线,但一般不易实现,避免环形走线。对于是直流,小信号,低电压PCB设计的要求可以低些。输入端与输出端的边,以免产生反射干扰线应避免相邻平行。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。2.选择好接地点:一般情况下要求共点地,数字地与模拟地在电源输入电容处相连。3.合理布置电源滤波/退耦电容:布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。在贴片器件的退耦电容最好在布在板子另一面的器件肚子位置,电源和地要先过电容,再进芯片。4.线条有讲究:有条件做宽的线决不做细;高压及高频线应园滑,不得有尖锐的倒角,拐弯也不得采用直角,一般采用135度角。地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。设计中应尽量减少过线孔,减少并行的线条密度。5.尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线。6.数字电路与模拟电路的共地处理,现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接。7.信号线布在电(地)层上在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。8.关键信号的处理,关键信号如时钟线应该进行包地处理,避免产生干扰,同时在晶振器件边做一个焊点使晶振外壳接地。9.设计规则检查(DRC)布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地方。对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。模拟电路和数字电路部分,是否有各自独立的地线。后加在PCB中的图形(如

PCB设计实验报告

Protel 99SE原理图与PCB设计的实验报告 摘要: Protel 99SE是一种基于Windows环境下的电路板设计软件。该软件功能强大,提供了原理图设计、电路混合信号仿真、PCB图设计、信号完整性分析等电子线路设计需要用的方法和工具,具有人机界面友好、管理文件灵活、易学易用等优点,因此,无论是进行社会生产,还是科研学习,都是人们首选的电路板设计工具。 我们在为期两个星期的课程设计中只是初步通过学习和使用Protel 99SE软件对一些单片机系统进行原理图设计绘制和电路板的印制( PCB),来达到熟悉和掌握Protel 99SE软件相关操作的学习目的。 在该课程设计报告中我主要阐述了关于原理图绘制过程的步骤说明、自制原器件的绘制和封装的添加以及根据原理图设计PCB图并进行了PCB图的覆铜处理几个方面。 关键字:Protel 99SE原理图封装PCB板 正文 一、课程设计的目的 通过本课程的实习,使学生掌握设计电路原理图、制作电路原理图元器件库、电气法则测试、管理设计文件、制作各种符合国家标准的印制电路板、制作印制板封装库的方法和实际应用技巧。主要包括以下内容:原理图(SCH)设计系统;原理图元件库编辑;印制电路板(PCB)设计系统;印制电路板元件库编辑。 二、课程设计的内容和要求 原理图(SCH)设计系统 (1)原理图的设计步骤; (2)绘制电路原理图; (3)文件管理; (4)生成网络表文件; (5)层次原理图的设计。 基本要求:掌握原理图的设计步骤,会绘制电路原理图,利用原理图生产网络表,以达到检查原理图的正确性的目的;熟悉文件管理的方法和层次原理图的设计方法。 原理图元件库编辑 (1)原理图元件库编辑器; (2)原理图元件库绘图工具和命令; (3)制作自己的元件库。 基本要求:熟悉原理图元件库的编辑环境,熟练使用元件库的常用工具和命令,会制自己的元件库。 印制电路板(PCB)设计系统 (1)印制电路板(PCB)的布线流程; (2)设置电路板工作层面和工作参数; (3)元件布局; (4)手动布线与自动布线; (5)电路板信息报表生成。

高速PCB设计总结参考

最贴近实际的——高速PCB设计总结参考 PCB Designer: ZhuJQ ㈠ 、前言 ㈡、节点叙述 第一、 PCB板层的布局 第二、 主要器件布局 第三、 电源线、地线、关键信号线走线 第四、 高速DDR中地址线、数据线、差分线走线 第五、 滤波电容放置位置关键 第六、 数字地、模拟地分地 第七、 电源管理设计要点 第八、 系统ESD、EMC设计 第九、 PCB设计过孔要求 第十、 在数字系统中主要信号阻抗控制需求 ㈢、综合

前言 随着电子产品的更新换代突飞日异,从简单到复杂,从低端到高端,让我们时时刻刻谨记,活到老学到老的重要。本人根据几年的PCB设计,初步统计了一下,在高速PCB设计中,常常容易犯错或忽略,但又尤其重要的问题,这些细节如果不注意将有可能导致整个系统运行不稳定或导致当机,所在预研或在开发前端尽量去注意这些问题,将可以减免带来很多不必要的问题与麻烦。通常一个产品的开发,以设计前端解决一个问题,也许只需要1块钱,如果到了小批量试产验证阶段去解决同一个问题,也许你要花100块钱,如果到了批量生产有客户客诉问题时再去解决同一个问题,也许你花的就不是10块、100块的事情了,说明产品问题越到后端解决,成本越无法估计,带来的负面问题越无法估量。 节点叙述 一、 PCB板层的布局: 1、在板层布局考虑时,首先需要对整个系统的功能模块、信号线大概的有个了解,例 如DDR等长总共有多少?是16位?还是32位,使用单DDR还是多DDR,然后初步 定义出层数; 2、在层的定义时,初步推荐分为以下几种方式,当然在实际操作过程中需要结合各种 因素考虑后评估出层定义: 四层板: ①Layer 1 2 3 4 S1 VCC1 G1 S2 ②Layer 1 2 3 4 S1 G1 VCC1 S2 ③Layer 1 2 3 4 S1 G1 G2 S2 (电源组数较少的条件) 六层板: ①Layer 1 2 3 4 5 6 S1 G1 P1 P2 G2 S2 ②Layer 1 2 3 4 5 6 S1 G1 P1 S2 G2 S3 (电源组较少且信号线多的条件) ③Layer 1 2 3 4 5 6 S1 G1 P1 G2 S2 G3

初学PCB的EMI设计心得以及高速PCB背板设计方案

初学PCB的EMI设计心得 很多初学者对于EMI设计都摸不着头脑,其实我当初也是一样,但是在做了几次设计以后,也逐渐有了一些体会。 首先,对于大脑里面一定要清楚一个概念--在高频里面,自由空间的阻抗是377欧姆,对于一般的EMI中的空间辐射来说,是由于信号的回路到了可以和空间阻抗相比拟的地步,因而信号通过空间“辐射”出来。了解了这一点,要做的就是把信号回路的阻抗降下来。 控制信号回路的阻抗,主要的办法是缩短信号的长度,减少回路的面积,其次是采取合理的端接,控制回路的反射。其实控制信号回路的一个最简单的办法就是对重点信号进行包地处理(在两边最近的距离走地线,尤其是双面板要特别注意,因为双面微带模型阻抗有150欧姆,和自由空间不相上下,而包地可以提供几十欧姆的阻抗),请注意由于走线本身在高频里面也是有阻抗的,所以最好采用地平面或者地线多次接过孔到地平面。我很多的设计都是在采用包地以后,避免了时钟信号的辐射超标。 另外就是要避免信号穿越被分割的区域,很多工程师信号对地进行分割,但有时候又忘记了,把线布过了这些区域,结果造成信号回路绕过很大的区域,无形中增加了布线长度。 对于EMI传导的部分,重点是要用好旁路电容和去藕电容。旁路电容(提供一条交流短路线)一定要以最短的连线布置在芯片电源管脚和地线(平面)上。去藕电容要放在电流需求变化最大的地方,避免因为走线的阻抗(电感),让噪声从电源和地线上耦合出去。当然,合理串联使用磁珠,可以“吸收”(转换成热能)这些噪声。电感有时也可以用来滤除噪声,但是请注意电感本身也是有频率响应范围的,而且封装也决定其频率响应…… 以上是一些最基本的体会。对于EMI设计来说,需要你真正了解你自己的设计,什么地方需要重点照顾,什么地方出了问题会是什么样的现象,备选方案是什么,都需要预先整理好。 高速PCB背板设计方案 高速PCB背板设计者面临信号衰减、符号间干扰(ISI)及串扰等几项主要挑战。具有创新信号调整技术的芯片产品(如高速PCB背板接口解决方案)可有效解决这些系统级难题,使系统厂商能为其客户提供高性能及可升级的系统,并减少开发时间及成本。 路由器、以太网交换机及存储子系统等基于模块化机箱的系统中,高速PCB背板要求有高等级的信号完整性及更高的系统吞吐量。面向这些应用的系统供应商为了用一种经济且及时的方式来设计这些高速PCB背板,正面临众多挑战。他们还必须保护其客户在原有线卡、机箱及电源上的投资,同时还必须支持更高的性能及提供更新的服务。 今天,一些系统中的PCB背板正采用5Gbps或更高速的串行链路技术运行。为设计能以这种速率工作的高可靠系统,要求芯片厂商提供确保在PCB背板中进行无错误传输的解决方案。本文将阐述基于模块化机箱系统中的高速PCB背板及其设计挑战,同时将讨论能解决这些挑战的芯片解决方案。 一、基于模块化机箱的系统实例

相关主题
文本预览
相关文档 最新文档